Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,769)

Search Parameters:
Keywords = effective speed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5650 KiB  
Article
The In-Plane Deformation and Free Vibration Analysis of a Rotating Ring Resonator of a Gyroscope with Evenly Distributed Mass Imperfections
by Dongsheng Zhang and Shuming Li
Sensors 2025, 25(15), 4764; https://doi.org/10.3390/s25154764 (registering DOI) - 1 Aug 2025
Abstract
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic [...] Read more.
A rotating imperfect ring resonator of the gyroscope is modeled by a rotating thin ring with evenly distributed point masses. The free response of the rotating ring structure at constant speed is investigated, including the steady elastic deformation and wave response. The dynamic equations are formulated by using Hamilton’s principle in the ground-fixed coordinates. The coordinate transformation is applied to facilitate the solution of the steady deformation, and the displacements and tangential tension for the deformation are calculated by the perturbation method. Employing Galerkin’s method, the governing equation of the free vibration is casted in matrix differential operator form after the separation of the real and imaginary parts with the inextensional assumption. The natural frequencies are calculated through the eigenvalue analysis, and the numerical results are obtained. The effects of the point masses on the natural frequencies of the forward and backward traveling wave curves of different orders are discussed, especially on the measurement accuracy of gyroscopes for different cases. In the ground-fixed coordinates, the frequency splitting results in a crosspoint of the natural frequencies of the forward and backward traveling waves. The finite element method is applied to demonstrate the validity and accuracy of the model. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

20 pages, 1907 KiB  
Article
Multi-Innovation-Based Parameter Identification for Vertical Dynamic Modeling of AUV Under High Maneuverability and Large Attitude Variations
by Jianping Yuan, Zhixun Luo, Lei Wan, Cenan Wang, Chi Zhang and Qingdong Chen
J. Mar. Sci. Eng. 2025, 13(8), 1489; https://doi.org/10.3390/jmse13081489 (registering DOI) - 1 Aug 2025
Abstract
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it [...] Read more.
The parameter identification of Autonomous Underwater Vehicles (AUVs) serves as a fundamental basis for achieving high-precision motion control, state monitoring, and system development. Currently, AUV parameter identification typically relies on the complete motion information obtained from onboard sensors. However, in practical applications, it is often challenging to accurately measure key state variables such as velocity and angular velocity, resulting in incomplete measurement data that compromises identification accuracy and model reliability. This issue is particularly pronounced in vertical motion tasks involving low-speed, large pitch angles, and highly maneuverable conditions, where the strong coupling and nonlinear characteristics of underwater vehicles become more significant. Traditional hydrodynamic models based on full-state measurements often suffer from limited descriptive capability and difficulties in parameter estimation under such conditions. To address these challenges, this study investigates a parameter identification method for AUVs operating under vertical, large-amplitude maneuvers with constrained measurement information. A control autoregressive (CAR) model-based identification approach is derived, which requires only pitch angle, vertical velocity, and vertical position data, thereby reducing the dependence on complete state observations. To overcome the limitations of the conventional Recursive Least Squares (RLS) algorithm—namely, its slow convergence and low accuracy under rapidly changing conditions—a Multi-Innovation Least Squares (MILS) algorithm is proposed to enable the efficient estimation of nonlinear hydrodynamic characteristics in complex dynamic environments. The simulation and experimental results validate the effectiveness of the proposed method, demonstrating high identification accuracy and robustness in scenarios involving large pitch angles and rapid maneuvering. The results confirm that the combined use of the CAR model and MILS algorithm significantly enhances model adaptability and accuracy, providing a solid data foundation and theoretical support for the design of AUV control systems in complex operational environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 2514 KiB  
Article
Event-Triggered Model Predictive Control of Buck Converter with Disturbances: Design and Experimentation
by Ziyuan Yang, Shengquan Li, Kaiwen Cao, Donglei Chen, Juan Li and Wei Cao
J. Low Power Electron. Appl. 2025, 15(3), 45; https://doi.org/10.3390/jlpea15030045 (registering DOI) - 1 Aug 2025
Abstract
Considering the challenges posed by traditional continuous control set model predictive control (CCS-MPC) calculations, this paper proposes an event-triggered-based model predictive control (ET-MPC). First, a novel tracking error state-space model is proposed to improve tracking performance. Second, a reduced-order extended state observer (RESO) [...] Read more.
Considering the challenges posed by traditional continuous control set model predictive control (CCS-MPC) calculations, this paper proposes an event-triggered-based model predictive control (ET-MPC). First, a novel tracking error state-space model is proposed to improve tracking performance. Second, a reduced-order extended state observer (RESO) is designed to estimate and compensate for the total disturbances, thereby effectively improving robustness against the variations of the load resistance and reference voltage. At the same time, RESO significantly reduces computational complexity and accelerates the convergence speed of state estimation. Subsequently, an event trigger mechanism is introduced to enhance the MPC with a threshold function for the converter status. Finally, the reduced-order extended state observer-based model predictive control (RESO-MPC) is compared with the proposed ET-MPC through experiments. The ripple voltage of ET-MPC is within 2%, and the computational burden is reduced by more than 57%, verifying the effectiveness of the proposed ET-MPC. Full article
Show Figures

Figure 1

17 pages, 1546 KiB  
Article
Design and Optimization of Valve Lift Curves for Piston-Type Expander at Different Rotational Speeds
by Yongtao Sun, Qihui Yu, Zhenjie Han, Ripeng Qin and Xueqing Hao
Fluids 2025, 10(8), 204; https://doi.org/10.3390/fluids10080204 (registering DOI) - 1 Aug 2025
Abstract
The piston-type expander (PTE), as the primary output component, significantly influences the performance of an energy storage system. This paper proposes a non-cam variable valve actuation system for the PTE, supported by a mathematical model. An enhanced S-curve trajectory planning method is used [...] Read more.
The piston-type expander (PTE), as the primary output component, significantly influences the performance of an energy storage system. This paper proposes a non-cam variable valve actuation system for the PTE, supported by a mathematical model. An enhanced S-curve trajectory planning method is used to design the valve lift curve. The study investigates the effects of various valve lift design parameters on output power and efficiency at different rotational speeds, employing orthogonal design and SPSS Statistics 27 (Statistical Product and Service Solutions) simulations. A grey comprehensive evaluation method is used to identify optimal valve lift parameters for each speed. The results show that valve lift parameters influence PTE performance to varying degrees, with intake duration having the greatest effect, followed by maximum valve lift, while intake end time has the least impact. The non-cam PTE outperforms the cam-based PTE. At 800 rpm, the optimal design yields 7.12 kW and 53.5% efficiency; at 900 rpm, 8.17 kW and 50.6%; at 1000 rpm, 9.2 kW and 46.8%; and at 1100 rpm, 12.09 kW and 41.2%. At these speeds, output power increases by 18.37%, 11.42%, 11.62%, and 9.82%, while energy efficiency improves by 15.01%, 15.05%, 14.24%, and 13.86%, respectively. Full article
Show Figures

Figure 1

18 pages, 3271 KiB  
Article
Mobile App–Induced Mental Fatigue Affects Strength Asymmetry and Neuromuscular Performance Across Upper and Lower Limbs
by Andreas Stafylidis, Walter Staiano, Athanasios Mandroukas, Yiannis Michailidis, Lluis Raimon Salazar Bonet, Marco Romagnoli and Thomas I. Metaxas
Sensors 2025, 25(15), 4758; https://doi.org/10.3390/s25154758 (registering DOI) - 1 Aug 2025
Abstract
This study aimed to investigate the effects of mental fatigue on physical and cognitive performance (lower-limb power, isometric and handgrip strength, and psychomotor vigilance). Twenty-two physically active young adults (12 males, 10 females; Mage = 20.82 ± 1.47) were randomly assigned to [...] Read more.
This study aimed to investigate the effects of mental fatigue on physical and cognitive performance (lower-limb power, isometric and handgrip strength, and psychomotor vigilance). Twenty-two physically active young adults (12 males, 10 females; Mage = 20.82 ± 1.47) were randomly assigned to either a Mental Fatigue (MF) or Control group (CON). The MF group showed a statistically significant (p = 0.019) reduction in non-dominant handgrip strength, declining by approximately 2.3 kg (about 5%), while no such change was observed in the CON group or in dominant handgrip strength across groups. Reaction time (RT) was significantly impaired following the mental fatigue protocol: RT increased by 117.82 ms, representing an approximate 46% longer response time in the MF group (p < 0.001), whereas the CON group showed a smaller, non-significant increase of 32.82 ms (~12% longer). No significant differences were found in squat jump performance, indicating that lower-limb explosive power may be less affected by acute mental fatigue. These findings demonstrate that mental fatigue selectively impairs fine motor strength and cognitive processing speed, particularly reaction time, while gross motor power remains resilient. Understanding these effects is critical for optimizing performance in contexts requiring fine motor control and sustained attention under cognitive load. Full article
(This article belongs to the Special Issue Sensing Human Cognitive Factors)
Show Figures

Figure 1

16 pages, 4280 KiB  
Article
Dynamic Simulation Model of Single Reheat Steam Turbine and Speed Control System Considering the Impact of Industrial Extraction Heat
by Libin Wen, Hong Hu and Jinji Xi
Processes 2025, 13(8), 2445; https://doi.org/10.3390/pr13082445 (registering DOI) - 1 Aug 2025
Abstract
This study conducts an in-depth analysis of the dynamic characteristics of a single reheat steam turbine generator unit and its speed control system under variable operating conditions. A comprehensive simulation model was constructed to comprehensively evaluate the impact of the heat extraction system [...] Read more.
This study conducts an in-depth analysis of the dynamic characteristics of a single reheat steam turbine generator unit and its speed control system under variable operating conditions. A comprehensive simulation model was constructed to comprehensively evaluate the impact of the heat extraction system on the dynamic behavior of the unit, which integrates the speed control system, actuator, single reheat steam turbine body, and once-through boiler dynamic coupling. This model focuses on revealing the mechanism of the heat extraction regulation process on the core operating parameters of the unit and the system frequency regulation capability. Based on the actual parameters of a 300 MW heat unit in a power plant in Guangxi, the dynamic response of the established model under typical dynamic conditions such as extraction flow regulation, primary frequency regulation response, and load step disturbance was simulated and experimentally verified. The results show that the model can accurately characterize the dynamic characteristics of the heat unit under variable operating conditions, and the simulation results are in good agreement with the actual engineering, with errors within an acceptable range, effectively verifying the dynamic performance of the heat system module and the rationality of its control parameter design. This study provides a reliable theoretical basis and model support for the accurate simulation of the dynamic behavior of heat units in the power system and the design of optimization control strategies for system frequency regulation. Full article
(This article belongs to the Special Issue Challenges and Advances of Process Control Systems)
Show Figures

Figure 1

16 pages, 1465 KiB  
Article
Investigation of the Effects of Laser Welding Process Parameters on Weld Forming Quality Based on Orthogonal Experimental Design and Image Processing
by Yuewei Ai, Ning Sun, Shibo Han, Yang Zhang and Chang Lei
Materials 2025, 18(15), 3627; https://doi.org/10.3390/ma18153627 (registering DOI) - 1 Aug 2025
Abstract
Image processing has been widely adopted as an effective technology for analyzing weld forming quality which is greatly affected by the welding process parameters. In this paper, an L25(53) orthogonal experiment is designed to investigate the effects of welding [...] Read more.
Image processing has been widely adopted as an effective technology for analyzing weld forming quality which is greatly affected by the welding process parameters. In this paper, an L25(53) orthogonal experiment is designed to investigate the effects of welding process parameters on the weld forming quality in laser welding of aluminum alloy. The weld characteristics including the weld width (WW), weld penetration (PD), weld area (WA) and weld porosity (WP) under the conditions of the different welding process parameters consisting of the laser power (LP), welding speed (WS) and defocus distance (DD) are extracted from the laser welding experiment based on image processing. The effectiveness of the weld characteristics extraction method is verified by comparing the extracted results with the measured results. It is found that the WW, PD and WA are all significantly influenced by the LP among the three welding process parameters while the influences of the three process parameters on the WP are insignificant. The DD has a significant influence on the PD and the WS has a significant influence on the WA. The corresponding significance of influence is lower than the significance of influence of LP. The analysis results are conducive to the optimization of laser welding process parameters and improvement of welding quality. Full article
(This article belongs to the Special Issue Advanced Computational Methods in Manufacturing Processes)
24 pages, 14731 KiB  
Article
Hybrid Laser Cleaning of Carbon Deposits on N52B30 Engine Piston Crowns: Multi-Objective Optimization via Response Surface Methodology
by Yishun Su, Liang Wang, Zhehe Yao, Qunli Zhang, Zhijun Chen, Jiawei Duan, Tingqing Ye and Jianhua Yao
Materials 2025, 18(15), 3626; https://doi.org/10.3390/ma18153626 (registering DOI) - 1 Aug 2025
Abstract
Carbon deposits on the crown of engine pistons can markedly reduce combustion efficiency and shorten service life. Conventional cleaning techniques often fail to simultaneously ensure a high carbon removal efficiency and maintain optimal surface integrity. To enable efficient and precise carbon removal, this [...] Read more.
Carbon deposits on the crown of engine pistons can markedly reduce combustion efficiency and shorten service life. Conventional cleaning techniques often fail to simultaneously ensure a high carbon removal efficiency and maintain optimal surface integrity. To enable efficient and precise carbon removal, this study proposes the application of hybrid laser cleaning—combining continuous-wave (CW) and pulsed lasers—to piston carbon deposit removal, and employs response surface methodology (RSM) for multi-objective process optimization. Using the N52B30 engine piston as the experimental substrate, this study systematically investigates the combined effects of key process parameters—including CW laser power, pulsed laser power, cleaning speed, and pulse repetition frequency—on surface roughness (Sa) and carbon residue rate (RC). Plackett–Burman design was employed to identify significant factors, the method of the steepest ascent was utilized to approximate the optimal region, and a quadratic regression model was constructed using Box–Behnken response surface methodology. The results reveal that the Y-direction cleaning speed and pulsed laser power exert the most pronounced influence on surface roughness (F-values of 112.58 and 34.85, respectively), whereas CW laser power has the strongest effect on the carbon residue rate (F-value of 57.74). The optimized process parameters are as follows: CW laser power set at 625.8 W, pulsed laser power at 250.08 W, Y-direction cleaning speed of 15.00 mm/s, and pulse repetition frequency of 31.54 kHz. Under these conditions, the surface roughness (Sa) is reduced to 0.947 μm, and the carbon residue rate (RC) is lowered to 3.67%, thereby satisfying the service performance requirements for engine pistons. This study offers technical insights into the precise control of the hybrid laser cleaning process and its practical application in engine maintenance and the remanufacturing of end-of-life components. Full article
Show Figures

Figure 1

17 pages, 3062 KiB  
Article
Spatiotemporal Risk-Aware Patrol Planning Using Value-Based Policy Optimization and Sensor-Integrated Graph Navigation in Urban Environments
by Swarnamouli Majumdar, Anjali Awasthi and Lorant Andras Szolga
Appl. Sci. 2025, 15(15), 8565; https://doi.org/10.3390/app15158565 (registering DOI) - 1 Aug 2025
Abstract
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal [...] Read more.
This study proposes an intelligent patrol planning framework that leverages reinforcement learning, spatiotemporal crime forecasting, and simulated sensor telemetry to optimize autonomous vehicle (AV) navigation in urban environments. Crime incidents from Washington DC (2024–2025) and Seattle (2008–2024) are modeled as a dynamic spatiotemporal graph, capturing the evolving intensity and distribution of criminal activity across neighborhoods and time windows. The agent’s state space incorporates synthetic AV sensor inputs—including fuel level, visual anomaly detection, and threat signals—to reflect real-world operational constraints. We evaluate and compare three learning strategies: Deep Q-Network (DQN), Double Deep Q-Network (DDQN), and Proximal Policy Optimization (PPO). Experimental results show that DDQN outperforms DQN in convergence speed and reward accumulation, while PPO demonstrates greater adaptability in sensor-rich, high-noise conditions. Real-map simulations and hourly risk heatmaps validate the effectiveness of our approach, highlighting its potential to inform scalable, data-driven patrol strategies in next-generation smart cities. Full article
(This article belongs to the Special Issue AI-Aided Intelligent Vehicle Positioning in Urban Areas)
Show Figures

Figure 1

21 pages, 6893 KiB  
Article
Nose-Wheel Steering Control via Digital Twin and Multi-Disciplinary Co-Simulation
by Wenjie Chen, Luxi Zhang, Zhizhong Tong and Leilei Liu
Machines 2025, 13(8), 677; https://doi.org/10.3390/machines13080677 (registering DOI) - 1 Aug 2025
Abstract
The aircraft nose-wheel steering system serves as a critical component for ensuring ground taxiing safety and maneuvering efficiency. However, its dynamic control stability faces significant challenges under complex operational conditions. Existing research predominantly focuses on single-discipline modeling, with insufficient in-depth analysis of the [...] Read more.
The aircraft nose-wheel steering system serves as a critical component for ensuring ground taxiing safety and maneuvering efficiency. However, its dynamic control stability faces significant challenges under complex operational conditions. Existing research predominantly focuses on single-discipline modeling, with insufficient in-depth analysis of the coupling effects between hydraulic system dynamics and mechanical dynamics. Traditional PID controllers exhibit limitations in scenarios involving nonlinear time-varying conditions caused by normal load fluctuations of the landing gear buffer strut during high-speed landing phases, including increased control overshoot and inadequate adaptability to abrupt load variations. These issues severely compromise the stability of high-speed deviation correction and overall aircraft safety. To address these challenges, this study constructs a digital twin model based on real aircraft data and innovatively implements multidisciplinary co-simulation via Simcenter 3D, AMESim 2021.1, and MATLAB R2020a. A fuzzy adaptive PID controller is specifically designed to achieve adaptive adjustment of control parameters. Comparative analysis through co-simulation demonstrates that the proposed mechanical–electrical–hydraulic collaborative control strategy significantly reduces response delay, effectively minimizes control overshoot, and decreases hydraulic pressure-fluctuation amplitude by over 85.2%. This work provides a novel methodology for optimizing steering stability under nonlinear interference scenarios, offering substantial engineering applicability and promotion value. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

19 pages, 3458 KiB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 (registering DOI) - 1 Aug 2025
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
23 pages, 3153 KiB  
Article
Research on Path Planning Method for Mobile Platforms Based on Hybrid Swarm Intelligence Algorithms in Multi-Dimensional Environments
by Shuai Wang, Yifan Zhu, Yuhong Du and Ming Yang
Biomimetics 2025, 10(8), 503; https://doi.org/10.3390/biomimetics10080503 (registering DOI) - 1 Aug 2025
Abstract
Traditional algorithms such as Dijkstra and APF rely on complete environmental information for path planning, which results in numerous constraints during modeling. This not only increases the complexity of the algorithms but also reduces the efficiency and reliability of the planning. Swarm intelligence [...] Read more.
Traditional algorithms such as Dijkstra and APF rely on complete environmental information for path planning, which results in numerous constraints during modeling. This not only increases the complexity of the algorithms but also reduces the efficiency and reliability of the planning. Swarm intelligence algorithms possess strong data processing and search capabilities, enabling them to efficiently solve path planning problems in different environments and generate approximately optimal paths. However, swarm intelligence algorithms suffer from issues like premature convergence and a tendency to fall into local optima during the search process. Thus, an improved Artificial Bee Colony-Beetle Antennae Search (IABCBAS) algorithm is proposed. Firstly, Tent chaos and non-uniform variation are introduced into the bee algorithm to enhance population diversity and spatial searchability. Secondly, the stochastic reverse learning mechanism and greedy strategy are incorporated into the beetle antennae search algorithm to improve direction-finding ability and the capacity to escape local optima, respectively. Finally, the weights of the two algorithms are adaptively adjusted to balance global search and local refinement. Results of experiments using nine benchmark functions and four comparative algorithms show that the improved algorithm exhibits superior path point search performance and high stability in both high- and low-dimensional environments, as well as in unimodal and multimodal environments. Ablation experiment results indicate that the optimization strategies introduced in the algorithm effectively improve convergence accuracy and speed during path planning. Results of the path planning experiments show that compared with the comparison algorithms, the average path planning distance of the improved algorithm is reduced by 23.83% in the 2D multi-obstacle environment, and the average planning time is shortened by 27.97% in the 3D surface environment. The improvement in path planning efficiency makes this algorithm of certain value in engineering applications. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

14 pages, 2795 KiB  
Article
Obtaining Rotational Stiffness of Wind Turbine Foundation from Acceleration and Wind Speed SCADA Data
by Jiazhi Dai, Mario Rotea and Nasser Kehtarnavaz
Sensors 2025, 25(15), 4756; https://doi.org/10.3390/s25154756 (registering DOI) - 1 Aug 2025
Abstract
Monitoring the health of wind turbine foundations is essential for ensuring their operational safety. This paper presents a cost-effective approach to obtain rotational stiffness of wind turbine foundations by using only acceleration and wind speed data that are part of SCADA data, thus [...] Read more.
Monitoring the health of wind turbine foundations is essential for ensuring their operational safety. This paper presents a cost-effective approach to obtain rotational stiffness of wind turbine foundations by using only acceleration and wind speed data that are part of SCADA data, thus lowering the use of moment and tilt sensors that are currently being used for obtaining foundation stiffness. First, a convolutional neural network model is applied to map acceleration and wind speed data within a moving window to corresponding moment and tilt values. Rotational stiffness of the foundation is then estimated by fitting a line in the moment-tilt plane. The results obtained indicate that such a mapping model can provide stiffness values that are within 7% of ground truth stiffness values on average. Second, the developed mapping model is re-trained by using synthetic acceleration and wind speed data that are generated by an autoencoder generative AI network. The results obtained indicate that although the exact amount of stiffness drop cannot be determined, the drops themselves can be detected. This mapping model can be used not only to lower the cost associated with obtaining foundation rotational stiffness but also to sound an alarm when a foundation starts deteriorating. Full article
(This article belongs to the Special Issue Sensors Technology Applied in Power Systems and Energy Management)
Show Figures

Figure 1

30 pages, 955 KiB  
Review
Breaking Barriers with Sound: The Implementation of Histotripsy in Cancer
by Ashutosh P. Raman, Parker L. Kotlarz, Alexis E. Giff, Katherine A. Goundry, Paul Laeseke, Erica M. Knavel Koepsel, Mosa Alhamami and Dania Daye
Cancers 2025, 17(15), 2548; https://doi.org/10.3390/cancers17152548 (registering DOI) - 1 Aug 2025
Abstract
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and [...] Read more.
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and precisely destroy targeted tissue in a predefined volume while sparing critical structures like bile ducts, ureters, and blood vessels. Such precision is of value when treating tumors near vital structures. The FDA has cleared histotripsy for the treatment of all liver tumors. Major medical centers are currently spearheading clinical trials, and some institutions have already integrated the technology into patient care. Histotripsy is now being studied for a host of other cancers, including primary kidney and pancreatic tumors. Preclinical murine and porcine models have already revealed promising outcomes. One of histotripsy’s primary advantages is its non-thermal mechanical actuation. This feature allows it to circumvent the limitations of heat-based techniques, including the heat sink effect and unpredictable treatment margins near sensitive tissues. In addition to its non-invasive ablative capacities, it is being preliminarily explored for its potential to induce immunomodulation and promote abscopal inhibition of distant, untreated tumors through CD8+ T cell responses. Thus, it may provide a multilayered therapeutic effect in the treatment of cancer. Histotripsy has the potential to improve precision and outcomes across a multitude of specialties, from oncology to cardiovascular medicine. Continued trials are crucial to further expand its applications and validate its long-term efficacy. Due to the speed of recent developments, the goal of this review is to provide a comprehensive and updated overview of histotripsy. It will explore its physics-based mechanisms, differentiating it from similar technologies, discuss its clinical applications, and examine its advantages, limitations, and future. Full article
Show Figures

Figure 1

25 pages, 17212 KiB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 (registering DOI) - 1 Aug 2025
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Figure 1

Back to TopTop