Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = effective electro-mechanical coupling coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 14906 KB  
Article
Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS
by Chun-Lin Li and Guo-Hua Feng
Micromachines 2025, 16(8), 879; https://doi.org/10.3390/mi16080879 - 29 Jul 2025
Viewed by 384
Abstract
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature [...] Read more.
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature growth and improve ferroelectric performance for advanced flexible MEMS. Characterizations including XRD, PFM, and P–E loop analysis evaluated crystallinity, piezoelectric coefficient d33, and polarization behavior. The results demonstrate that the multilayered Ti/TiO2/STO/PZT structure significantly enhances performance. XRD confirmed the STO buffer layer effectively reduces lattice mismatch with PZT to ~0.76%, promoting stable morphotropic phase boundary (MPB) composition formation. This optimized film exhibited superior piezoelectric and ferroelectric properties, with a high d33 of 113.42 pm/V, representing an ~8.65% increase over unbuffered Ti/PZT samples, and displayed more uniform domain behavior in PFM imaging. Impedance spectroscopy showed the lowest minimum impedance of 8.96 Ω at 10.19 MHz, indicating strong electromechanical coupling. Furthermore, I–V measurements demonstrated significantly suppressed leakage currents in the STO-buffered samples, with current levels ranging from 10−12 A to 10−9 A over ±3 V. This structure also showed excellent fatigue endurance through one million electrical cycles, confirming its mechanical and electrical stability. These findings highlight the potential of this hydrothermally engineered flexible heterostructure for high-performance actuators and sensors in advanced MEMS applications. Full article
(This article belongs to the Special Issue Manufacturing and Application of Advanced Thin-Film-Based Device)
Show Figures

Figure 1

21 pages, 12189 KB  
Article
Optimized Design of the Basic Structure of Dry-Coupled Shear Wave Probe for Ultrasonic Testing of Rock and Concrete
by Yonghao Lu, Yinqiu Zhou, Chenhui Zhu, Xueshen Cao and Hao Chen
Sensors 2025, 25(9), 2660; https://doi.org/10.3390/s25092660 - 23 Apr 2025
Viewed by 504
Abstract
Although shear horizontal waves have advantages over longitudinal waves, including a higher resolution, less wave mode conversion, and much better reflection coefficients at void and crack interfaces in nondestructive detection, they require good contact surface flatness and efficient coupling agents. In this paper, [...] Read more.
Although shear horizontal waves have advantages over longitudinal waves, including a higher resolution, less wave mode conversion, and much better reflection coefficients at void and crack interfaces in nondestructive detection, they require good contact surface flatness and efficient coupling agents. In this paper, we analyze and design the basic components of the dry-coupled ultrasonic shear wave probe through theoretical analyses and numerical simulations. The admittance characteristics, resonant frequency, and electromechanical coupling coefficients of the double-laminated vibrator under different size parameters in both 2D and 3D models are simulated, and the probe structures are optimized based on the simulation results and operational requirements. The simulation results of the wave field excited by the double-laminated vibrator show the effectiveness of the optimized probe models. Additionally, the dry coupling method of the probe is simulated to study the acoustic energy distribution under various dry-coupled structures. Finally, we compare the measured admittance with the simulated values, and they are in good agreement. Full article
Show Figures

Figure 1

16 pages, 7015 KB  
Article
Laterally Excited Bulk Acoustic Wave Resonators with Rotated Electrodes Using X-Cut LiNbO3 Thin-Film Substrates
by Jieyu Liu, Wenjuan Liu, Zhiwei Wen, Min Zeng, Yao Cai and Chengliang Sun
Sensors 2025, 25(6), 1740; https://doi.org/10.3390/s25061740 - 11 Mar 2025
Viewed by 1081
Abstract
With the development of piezoelectric-on-insulator (POI) substrates, X-cut LiNbO3 thin-film resonators with interdigital transducers are widely investigated due to their adjustable resonant frequency (fs) and effective electromechanical coupling coefficient (Keff2). This paper presents [...] Read more.
With the development of piezoelectric-on-insulator (POI) substrates, X-cut LiNbO3 thin-film resonators with interdigital transducers are widely investigated due to their adjustable resonant frequency (fs) and effective electromechanical coupling coefficient (Keff2). This paper presents an in-depth study of simulations and measurements of laterally excited bulk acoustic wave resonators based on an X-cut LiNbO3/SiO2/Si substrate and a LiNbO3 thin film to analyze the effects of electrode angle rotation (θ) on the modes, fs, and Keff2. The rotated θ leads to different electric field directions, causing mode changes, where the resonators without cavities are longitudinal leaky SAWs (LLSAWs, θ = 0°) and zero-order shear horizontal SAWs (SH0-SAWs, θ = 90°) and the resonators with cavities are zero-order-symmetry (S0) lateral vibrating resonators (LVRs, θ = 0°) and SH0 plate wave resonators (PAW, θ = 90°). The resonators are fabricated based on a 400 nm X-cut LiNbO3 thin-film substrate, and the measured results are consistent with those from the simulation. The fabricated LLSAW and SH0-SAW without cavities show a Keff2 of 1.62% and 26.6% and a Bode-Qmax of 1309 and 228, respectively. Meanwhile, an S0 LVR and an SH0-PAW with cavities present a Keff2 of 4.82% and 27.66% and a Bode-Qmax of 3289 and 289, respectively. In addition, the TCF with a different rotated θ is also measured and analyzed. This paper systematically analyzes resonators on X-cut LiNbO3 thin-film substrates and provides potential strategies for multi-band and multi-bandwidth filters. Full article
(This article belongs to the Special Issue Advanced Flexible Electronics for Sensing Application)
Show Figures

Figure 1

13 pages, 3936 KB  
Communication
Study on Vibration Characteristics of Functionally Graded Material Composite Spherical Piezoelectric Transducer
by Sha Wang and Junjie Shan
Sensors 2025, 25(5), 1514; https://doi.org/10.3390/s25051514 - 28 Feb 2025
Viewed by 746
Abstract
Non-uniform composite structures for transducers exhibit considerable potential in enhancing impedance matching and efficiency. Here, a functionally graded material composite spherical piezoelectric transducer (FGM-cSPT) is proposed, and a three-port electromechanical equivalent circuit model is established. The correctness of the theoretical model is verified [...] Read more.
Non-uniform composite structures for transducers exhibit considerable potential in enhancing impedance matching and efficiency. Here, a functionally graded material composite spherical piezoelectric transducer (FGM-cSPT) is proposed, and a three-port electromechanical equivalent circuit model is established. The correctness of the theoretical model is verified using the finite element method and experiment. Based on the theoretical model, the effects of the non-uniform coefficient and the geometric dimension of FGM-cSPT on the electromechanical vibration characteristics (resonance frequency, anti-resonance frequency, and effective electromechanical coupling coefficient) of the transducer are analyzed. The results show that the non-uniform coefficient and geometric dimension can effectively regulate the vibration characteristics of the FGM-cSPT, which can be used to guide engineering design. Our methodology will offer possibilities for designing FGM-cSPTs and may promote applications in various fields, such as marine exploitation, structural health detection, and energy collection. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 5689 KB  
Communication
Study on the Consistency of Elements in 1-1-3-Type Piezoelectric Composite Materials
by Zhongrui Du, Nianyi Shen, Chao Zhong and Lei Qin
Sensors 2025, 25(5), 1479; https://doi.org/10.3390/s25051479 - 27 Feb 2025
Viewed by 748
Abstract
This study introduces a novel 1-1-3-type piezoelectric array structure and investigates variations in the piezoelectric phase’s volume fraction. Its performance and consistency are compared with that of a conventional 1-3-type piezoelectric array of identical volume fraction. Finite element analysis was applied to study [...] Read more.
This study introduces a novel 1-1-3-type piezoelectric array structure and investigates variations in the piezoelectric phase’s volume fraction. Its performance and consistency are compared with that of a conventional 1-3-type piezoelectric array of identical volume fraction. Finite element analysis was applied to study the effects of the positions of the elements in 1-1-3-type and 1-3-type piezoelectric arrays on the electrical conductivity curves, as well as the differences in vibration modes. To validate the theoretical models, experimental fabrication and testing were performed, and we developed a high-precision testing fixture designed to minimize experimental errors. The results demonstrate that the resonance frequency fluctuations in the 1-1-3-type piezoelectric array are maintained within 1%, and conductance fluctuations within 13.4%, significantly enhancing consistency compared to the 1-3-type array. Furthermore, the electromechanical coupling coefficient of the 1-1-3 array was also found to be superior to that of the 1-3-type, indicating improved performance parameters. Full article
Show Figures

Figure 1

10 pages, 708 KB  
Article
Numerical Homogenization Method Applied to Evaluate Effective Converse Flexoelectric Coefficients
by Khader M. Hamdia
Computation 2025, 13(2), 48; https://doi.org/10.3390/computation13020048 - 9 Feb 2025
Viewed by 729
Abstract
This paper presents a numerical homogenization method for estimating the effective converse flexoelectric coefficients. A 2D model made of two-phase composite is developed at the microscale in consideration of a representative volume element that includes a continuous flexoelectric fiber embedded in a pure [...] Read more.
This paper presents a numerical homogenization method for estimating the effective converse flexoelectric coefficients. A 2D model made of two-phase composite is developed at the microscale in consideration of a representative volume element that includes a continuous flexoelectric fiber embedded in a pure elastic matrix. In the implementation, the constitutive equations are derived from the electromechanical enthalpy accounting for higher-order coupling terms. Electric boundary conditions associated with an inhomogeneous electric field are imposed, allowing the approximation of the generated mechanical strains and stresses. Accordingly, the numerical simulations yield the overall equivalent converse flexoelectricity tensor for the longitudinal, transversal, and shear couplings. The results showed that the composite undergoes an obvious straining, which creates actuation due to the converse effect. The components of the homogenized longitudinal and transverse coefficients were found to be dependent on the volume fraction and elastic properties of the constituents. Full article
(This article belongs to the Special Issue Computational Methods in Structural Engineering)
Show Figures

Figure 1

21 pages, 12918 KB  
Article
Analysis and Optimization Design of Moving Magnet Linear Oscillating Motors
by Minghu Yu, Yuqiu Zhang, Jiekun Lin and Peng Zhang
Actuators 2025, 14(2), 81; https://doi.org/10.3390/act14020081 - 8 Feb 2025
Cited by 1 | Viewed by 840
Abstract
Permanent Magnet Linear Oscillating Motors (PMLOMs) are popular in micro-positioning systems, biomedical devices, and refrigeration compressors due to their simple structure, high efficiency, rapid response, and quiet operation. This paper proposes a method for the analysis and optimization of electromechanical systems that employs [...] Read more.
Permanent Magnet Linear Oscillating Motors (PMLOMs) are popular in micro-positioning systems, biomedical devices, and refrigeration compressors due to their simple structure, high efficiency, rapid response, and quiet operation. This paper proposes a method for the analysis and optimization of electromechanical systems that employs a moving magnet linear oscillating motor. A simplified magnetic circuit method model was built to derive an electromagnetic thrust formula, and the initial design parameters of the motor and the thrust at the equilibrium position were calculated. Subsequently, a finite element model was developed, and a multi-objective optimization method was applied to refine the key dimensions of the motor to enhance its thrust characteristics. Furthermore, an analysis of the resonant characteristics of the electromechanical coupled system was conducted to identify the optimal operating frequency for the optimization scheme. Finally, the experimental validation of the optimized design was performed on a prototype, with the measured data showing a general correlation with the trends observed in the simulation analysis results. The effectiveness of this system analysis method was validated through experimental data. The results demonstrate that the thrust at the initial position is linearly correlated with both the outer arc radius of the permanent magnet and its mechanical pole arc coefficient. Additionally, the axial length of the outer stator, the axial spacing between the two outer stators, and the axial length of the magnets serve as key influencing parameters for the thrust characteristics within the effective stroke range. Furthermore, when the motor operates at its mechanical resonance frequency, it can attain the maximum efficiency. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

14 pages, 5962 KB  
Article
Studies on the High-Power Piezoelectric Property Measurement Methods and Decoupling the Power and Temperature Effects on PZT-5H
by Wenchao Xue, Xiaobo Wang, Yuliang Zhu and Chengtao Luo
Sensors 2025, 25(2), 349; https://doi.org/10.3390/s25020349 - 9 Jan 2025
Cited by 1 | Viewed by 1061
Abstract
For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the [...] Read more.
For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics. The results from both methods indicated that with increasing power, the electromechanical coupling coefficient k31 , the piezoelectric constant d31, and the elastic compliance s11E of the PZT-5H showed increasing trends, while the mechanical quality factor Qm first decayed rapidly and then stabilized at a fixed level. Additionally, under the combined impedance method, the temperature of the vibrators rose significantly due to self-heating, whereas the transient method generated almost no heat, and the vibrators remained at room temperature. By comparing the results from the two methods, we decoupled the effects of temperature and power on the high-power piezoelectric performance. The results showed that the self-heating temperature amplified the effects of power on k31, d31, and s11E, while its influence on Qm remained negligible. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

17 pages, 3598 KB  
Article
Influence of Lamb Wave Anisotropy on Detection of Water-to-Ice Phase Transition
by Andrey Smirnov, Vladimir Anisimkin, Nikita Ageykin, Elizaveta Datsuk and Iren Kuznetsova
Sensors 2024, 24(24), 7969; https://doi.org/10.3390/s24247969 - 13 Dec 2024
Cited by 1 | Viewed by 672
Abstract
An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study [...] Read more.
An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study of the effect of water-to-ice phase transition on the properties of Lamb and quasi shear horizontal (QSH) acoustic waves of a higher order propagating in different directions in piezoelectric plates with strong anisotropy. Y-cut LiNbO3, 128Y-cut LiNbO3, and 36Y-cut LiTaO3 plates with a thickness of 500 μm and 350 μm were used as piezoelectric substrates. It was shown that the amplitude of the waves under study can decrease, increase, or remain relatively stable due to the water-to-ice phase transition, depending on the propagation direction and mode order. The greatest decrease in amplitude (42.1 dB) due to glaciation occurred for Lamb waves with a frequency of 40.53 MHz and propagating in the YX+30° LiNbO3 plate. The smallest change in the amplitude (0.9 dB) due to glaciation was observed for QSH waves at 56.5 MHz propagating in the YX+60° LiNbO3 plate. Additionally, it was also found that, in the YX+30° LiNbO3 plate, the water-to-ice transition results in the complete absorption of all acoustic waves within the specified frequency range (10–60 MHz), with the exception of one. The phase velocities, electromechanical coupling coefficients, elastic polarizations, and attenuation of the waves under study were calculated. The structures “air–piezoelectric plate–air”, “air–piezoelectric plate–liquid”, and “air–piezoelectric plate–ice” were considered. The results obtained can be used to develop methods for detecting ice formation and measuring its parameters. Full article
Show Figures

Figure 1

9 pages, 4045 KB  
Article
A Laterally Excited Bulk Acoustic Wave Resonator Based on LiNbO3 with Arc-Shaped Electrodes
by Jieyu Liu, Wenjuan Liu, Zhiwei Wen, Min Zeng and Chengliang Sun
Micromachines 2024, 15(11), 1367; https://doi.org/10.3390/mi15111367 - 12 Nov 2024
Cited by 2 | Viewed by 2390
Abstract
High frequency and large bandwidth are growing trends in communication radio-frequency devices. The LiNbO3 thin film material is expected to become the preferred piezoelectric material for high coupling resonators in the 5G frequency band due to its ultra-high piezoelectric coefficient and low [...] Read more.
High frequency and large bandwidth are growing trends in communication radio-frequency devices. The LiNbO3 thin film material is expected to become the preferred piezoelectric material for high coupling resonators in the 5G frequency band due to its ultra-high piezoelectric coefficient and low loss characteristics. The main mode of laterally excited bulk acoustic wave resonators (XBAR) have an ultra-high sound velocity, which enables high-frequency applications. However, the interference of spurious modes is one of the main reasons hindering the widespread application of XBAR. In this paper, a Z-cut LiNbO3 thin film-based XBAR with arc-shaped electrodes is presented. We investigate the electric field distribution of the XBAR, while the irregular boundary of the arc-shaped electrodes affects the electric field between the existing interdigital transducers (IDTs). The mode shapes and impedance response of the XBAR with arc-shaped electrodes and the XBARs with traditional IDTs are compared in this work. The fabricated XBAR on a 350 nm Z-cut LiNbO3 thin film with arc-shaped electrodes operating at over 5 GHz achieves a high effective electromechanical coupling coefficient of 29.8% and the spurious modes are well suppressed. This work promotes an XBAR with an optimized electrode design to further achieve the desired performance. Full article
(This article belongs to the Special Issue Piezoelectric Devices and System in Micromachines)
Show Figures

Figure 1

15 pages, 3521 KB  
Article
Fabrication of Radial Array Transducers Using 1-3 Composite via a Bending and Superposition Technique
by Chong Li, Jing Zhu and Ruimin Chen
Micromachines 2024, 15(11), 1363; https://doi.org/10.3390/mi15111363 - 11 Nov 2024
Viewed by 1692
Abstract
Piezoelectric composite materials, combining the advantages of both piezoelectric materials and polymers, have been extensively used in ultrasonic transducers. However, the pitch size of radial array ultrasonic transducers normally exceeds one wavelength, which limits their performance. In order to minimize grating lobes of [...] Read more.
Piezoelectric composite materials, combining the advantages of both piezoelectric materials and polymers, have been extensively used in ultrasonic transducers. However, the pitch size of radial array ultrasonic transducers normally exceeds one wavelength, which limits their performance. In order to minimize grating lobes of current radial transducers and then increase their imaging resolution, a 2.5 MHz 1-3 composite radial array transducer with 64 elements and 600 μm pitch was designed and fabricated by combining flexible circuit board and using a bending-and-superposition method. All the array elements were connected and actuated via the customized circuit board which is thin and soft. The kerf size is set to be 1/3 wavelength. PZT-5H/epoxy 1-3 composite was used as an active material because it exhibits an ultrahigh electromechanical coupling coefficient (kt = 0.74), a very low mechanical quality factor (Qm = 11), and relatively low acoustic impedance (Zc = 13.43 MRayls). The developed radial array transducer exhibited a center frequency of 2.72 MHz, an average −6 dB bandwidth of 36%, an insertion loss of 31.86 dB, and a crosstalk of −26.56 dB between the adjacent elements near the center frequency. These results indicate that the bending-and-superposition method is an effective way to fabricate radial array transducers by binding flexible circuit boards. Furthermore, the utilization of tailored flexible circuitry boards presents an effective approach for realizing reductions in crosstalk level (CTL). Full article
(This article belongs to the Collection Piezoelectric Transducers: Materials, Devices and Applications)
Show Figures

Figure 1

12 pages, 5082 KB  
Article
Excellent Hole Mobility and Out–of–Plane Piezoelectricity in X–Penta–Graphene (X = Si or Ge) with Poisson’s Ratio Inversion
by Sitong Liu, Xiao Shang, Xizhe Liu, Xiaochun Wang, Fuchun Liu and Jun Zhang
Nanomaterials 2024, 14(16), 1358; https://doi.org/10.3390/nano14161358 - 17 Aug 2024
Viewed by 1175
Abstract
Recently, the application of two–dimensional (2D) piezoelectric materials has been seriously hindered because most of them possess only in–plane piezoelectricity but lack out–of–plane piezoelectricity. In this work, using first–principles calculation, by atomic substitution of penta–graphene (PG) with tiny out–of–plane piezoelectricity, we design and [...] Read more.
Recently, the application of two–dimensional (2D) piezoelectric materials has been seriously hindered because most of them possess only in–plane piezoelectricity but lack out–of–plane piezoelectricity. In this work, using first–principles calculation, by atomic substitution of penta–graphene (PG) with tiny out–of–plane piezoelectricity, we design and predict stable 2D X–PG (X = Si or Ge) semiconductors with excellent in–plane and out–of–plane piezoelectricity and extremely high in–plane hole mobility. Among them, Ge–PG exhibits better performance in all aspects with an in–plane strain piezoelectric coefficient d11 = 8.43 pm/V, an out–of–plane strain piezoelectric coefficient d33 = −3.63 pm/V, and in–plane hole mobility μh = 57.33 × 103 cm2 V−1 s−1. By doping Si and Ge atoms, the negative Poisson’s ratio of PG approaches zero and reaches a positive value, which is due to the gradual weakening of the structure’s mechanical strength. The bandgaps of Si–PG (0.78 eV) and Ge–PG (0.89 eV) are much smaller than that of PG (2.20 eV), by 2.82 and 2.47 times, respectively. This indicates that the substitution of X atoms can regulate the bandgap of PG. Importantly, the physical mechanism of the out–of–plane piezoelectricity of these monolayers is revealed. The super–dipole–moment effect proposed in the previous work is proved to exist in PG and X–PG, i.e., it is proved that their out–of–plane piezoelectric stress coefficient e33 increases with the super–dipole–moment. The e33–induced polarization direction is also consistent with the super–dipole–moment direction. X–PG is predicted to have prominent potential for nanodevices applied as electromechanical coupling systems: wearable, ultra–thin devices; high–speed electronic transmission devices; and so on. Full article
Show Figures

Figure 1

16 pages, 4921 KB  
Article
Effect of Filling Material Properties on 1-3 Piezoelectric Composite Performance
by Yao Liu, Yang Zhou, Zhigang Zhao and Jinjie Zhou
Micromachines 2024, 15(7), 812; https://doi.org/10.3390/mi15070812 - 22 Jun 2024
Cited by 2 | Viewed by 1485
Abstract
The 1-3 piezoelectric composite is the key component of the acoustic transducer, which is widely used in detection, due to the high energy conversion efficiency, cheap raw material, and low aging. To reveal the influence of epoxy mixture, used to connect the piezoelectric [...] Read more.
The 1-3 piezoelectric composite is the key component of the acoustic transducer, which is widely used in detection, due to the high energy conversion efficiency, cheap raw material, and low aging. To reveal the influence of epoxy mixture, used to connect the piezoelectric column, on the composite performance, a 1-3 piezoelectric composite model was built. The effects of mixture properties on the impedance curves, vibration mode, and deformation displacement of the composite were determined. Six 1-3 piezoelectric composites with different filling mixture properties, by changing the glass microspheres’ mass ratio in the epoxy, were prepared and measured to validate the model. The results showed that with the increase in the proportion of the glass microsphere in the epoxy mixture, the vibration coupling of the piezoelectric composites was gradually eliminated. The acoustic impedance was reduced by 12%. The electromechanical coupling coefficient and effective electromechanical coupling coefficient were increased by 5.4% and 8.3%, respectively. The density and Young’s modulus decrease in filling mixture can significantly improve piezoelectric composite performance. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications)
Show Figures

Figure 1

11 pages, 5814 KB  
Article
Miniaturized Multi-Cantilever MEMS Resonators with Low Motional Impedance
by Haolin Li, Qingrui Yang, Yi Yuan, Shuai Shi, Pengfei Niu, Quanning Li, Xuejiao Chen, Menglun Zhang and Wei Pang
Micromachines 2024, 15(6), 688; https://doi.org/10.3390/mi15060688 - 24 May 2024
Viewed by 4039
Abstract
Microelectromechanical system (MEMS) cantilever resonators suffer from high motional impedance (Rm). This paper investigates the use of mechanically coupled multi-cantilever piezoelectric MEMS resonators in the resolution of this issue. A double-sided actuating design, which utilizes a resonator with a 2.5 [...] Read more.
Microelectromechanical system (MEMS) cantilever resonators suffer from high motional impedance (Rm). This paper investigates the use of mechanically coupled multi-cantilever piezoelectric MEMS resonators in the resolution of this issue. A double-sided actuating design, which utilizes a resonator with a 2.5 μm thick AlN film as the passive layer, is employed to reduce Rm. The results of experimental and finite element analysis (FEA) show agreement regarding single- to sextuple-cantilever resonators. Compared with a standalone cantilever resonator, the multi-cantilever resonator significantly reduces Rm; meanwhile, the high quality factor (Q) and effective electromechanical coupling coefficient (Kteff2) are maintained. The 30 μm wide quadruple-cantilever resonator achieves a resonance frequency (fs) of 55.8 kHz, a Q value of 10,300, and a series impedance (Rs) as low as 28.6 kΩ at a pressure of 0.02 Pa; meanwhile, the smaller size of this resonator compared to the existing multi-cantilever resonators is preserved. This represents a significant advancement in MEMS resonators for miniaturized ultra-low-power oscillator applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

18 pages, 1251 KB  
Article
Structural Optimization Study on a Three-Degree-of-Freedom Piezoelectric Ultrasonic Transducer
by Zhizhong Wu, Zhao Zhang, Deguang Wu, Yuanhang Chen, Fan Hu, Chenxin Guo and Lijun Tang
Actuators 2024, 13(5), 177; https://doi.org/10.3390/act13050177 - 8 May 2024
Cited by 3 | Viewed by 1955
Abstract
A three-degree-of-freedom (3-DOF) piezoelectric ultrasonic transducer is a critical component in elliptical and longitudinal ultrasonic vibration-assisted cutting processes, with its geometric structure directly influencing its performance. This paper proposes a structural optimization method based on a convolutional neural network (CNN) and non-dominated sorting [...] Read more.
A three-degree-of-freedom (3-DOF) piezoelectric ultrasonic transducer is a critical component in elliptical and longitudinal ultrasonic vibration-assisted cutting processes, with its geometric structure directly influencing its performance. This paper proposes a structural optimization method based on a convolutional neural network (CNN) and non-dominated sorting genetic algorithm II (NSGA2). This method establishes a transducer lumped model to obtain the electromechanical coupling coefficients (X-ke and Z-ke) and thermal power (X-P) indicators, evaluating the bending and longitudinal vibration performance of the transducer. By creating a finite element model of the transducer with mechanical losses, a dataset of different transducer performance parameters, including the tail mass, piezoelectric stack, and dimensions of the horn, is obtained. Training a CNN model with this dataset yields objective functions for the relationship between different transducer geometric structures and performance parameters. The NSGA2 algorithm solves the X-ke and Z-ke objective functions, obtaining the Pareto set of the transducer geometric dimensions and determining the optimal transducer geometry in conjunction with X-P. This method achieves simultaneous improvements in X-ke and Z-ke of the transducer by 22.33% and 25.89% post-optimization and reduces X-P to 18.97 W. Furthermore, the finite element simulation experiments of the transducer validate the effectiveness of this method. Full article
Show Figures

Figure 1

Back to TopTop