Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (492)

Search Parameters:
Keywords = educational output

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 7455 KiB  
Review
A Comparative Review of Large Language Models in Engineering with Emphasis on Chemical Engineering Applications
by Khoo-Teck Leong, Tin Sin Lee, Soo-Tueen Bee, Chi Ma and Yuan-Yuan Zhang
Processes 2025, 13(9), 2680; https://doi.org/10.3390/pr13092680 (registering DOI) - 23 Aug 2025
Abstract
This review provides a comprehensive overview of the evolution and application of artificial intelligence (AI) and large language models (LLMs) in engineering, with a specific focus on chemical engineering. The review traces the historical development of LLMs, from early rule-based systems and statistical [...] Read more.
This review provides a comprehensive overview of the evolution and application of artificial intelligence (AI) and large language models (LLMs) in engineering, with a specific focus on chemical engineering. The review traces the historical development of LLMs, from early rule-based systems and statistical models like N-grams to the transformative introduction of neural networks and transformer architecture. It examines the pivotal role of models like BERT and the GPT series in advancing natural language processing and enabling sophisticated applications across various engineering disciplines. For example, GPT-3 (175B parameters) demonstrates up to 87.7% accuracy in structured information extraction, while GPT-4 introduces multimodal reasoning with estimated token limits exceeding 32k. The review synthesizes recent research on the use of LLMs in software, mechanical, civil, and electrical engineering, highlighting their impact on automation, design, and decision-making. A significant portion is dedicated to the burgeoning applications of LLMs in chemical engineering, including their use as educational tools, process simulation and modelling, reaction optimization, and molecular design. The review delves into specific case studies on distillation column and reactor design, showcasing how LLMs can assist in generating initial parameters and optimizing processes while also underscoring the necessity of validating their outputs against traditional methods. Finally, the review addresses the challenges and future considerations of integrating LLMs into engineering workflows, emphasizing the need for domain-specific adaptations, ethical guidelines, and robust validation frameworks. Full article
Show Figures

Figure 1

16 pages, 1750 KiB  
Article
An Intelligent Educational System: Analyzing Student Behavior and Academic Performance Using Multi-Source Data
by Haifang Li and Zhandong Liu
Electronics 2025, 14(16), 3328; https://doi.org/10.3390/electronics14163328 - 21 Aug 2025
Viewed by 70
Abstract
Student behavior analysis plays a critical role in enhancing educational quality and enabling personalized learning. While previous studies have utilized machine learning models to analyze campus card consumption data, few have integrated multi-source behavioral data with large language models (LLMs) to provide deeper [...] Read more.
Student behavior analysis plays a critical role in enhancing educational quality and enabling personalized learning. While previous studies have utilized machine learning models to analyze campus card consumption data, few have integrated multi-source behavioral data with large language models (LLMs) to provide deeper insights. This study proposes an intelligent educational system that examines the relationship between student consumption behavior and academic performance. The system is built upon a dataset collected from students of three majors at Xinjiang Normal University, containing exam scores and campus card transaction records. We designed an artificial intelligence (AI) agent that incorporates LLMs, SageGNN-based graph embeddings, and time-series regularity analysis to generate individualized behavior reports. Experimental evaluations demonstrate that the system effectively captures both temporal consumption patterns and academic fluctuations, offering interpretable and accurate outputs. Compared to baseline LLMs, our model achieves lower perplexity while maintaining high report consistency. The system supports early identification of potential learning risks and enables data-driven decision-making for educational interventions. Furthermore, the constructed multi-source dataset serves as a valuable resource for advancing research in educational data mining, behavioral analytics, and intelligent tutoring systems. Full article
Show Figures

Figure 1

19 pages, 3636 KiB  
Article
Smart Osteology: An AI-Powered Two-Stage System for Multi-Species Long Bone Detection and Classification Using YOLOv5 and CNN Architectures for Veterinary Anatomy Education and Forensic Applications
by İmdat Orhan
Vet. Sci. 2025, 12(8), 765; https://doi.org/10.3390/vetsci12080765 - 16 Aug 2025
Viewed by 285
Abstract
In this study, bone detection was performed using the YOLO algorithm on a dataset comprising photographs of the scapula, humerus, and femur from cattle, horses, and dogs. Subsequently, convolutional neural networks (CNNs) were employed to classify both the bone type and the species. [...] Read more.
In this study, bone detection was performed using the YOLO algorithm on a dataset comprising photographs of the scapula, humerus, and femur from cattle, horses, and dogs. Subsequently, convolutional neural networks (CNNs) were employed to classify both the bone type and the species. Trained on a total of 26,148 images, the model achieved an accuracy rate of up to 97.6%. The system was designed to operate not only on mobile devices but also in an offline, “closed model” version, thereby enhancing its applicability in forensic medicine settings where data security is critical. Additionally, the application was structured as a virtual assistant capable of responding to users in both written and spoken formats and of generating output in PDF format. In this regard, this study presents a significant example of digital transformation in fields such as veterinary anatomy education, forensic medicine, archaeology, and crime scene investigation, providing a solid foundation for future applications. Full article
(This article belongs to the Special Issue Animal Anatomy Teaching: New Concepts, Innovations and Applications)
Show Figures

Figure 1

20 pages, 287 KiB  
Article
Teaching in the AI Era: Sustainable Digital Education Through Ethical Integration and Teacher Empowerment
by Ahmet Küçükuncular and Ahmet Ertugan
Sustainability 2025, 17(16), 7405; https://doi.org/10.3390/su17167405 - 15 Aug 2025
Viewed by 518
Abstract
This study critically examines the integration of artificial intelligence (AI) into education through the lens of Marx’s theory of alienation, engaging with contemporary critiques of digital capitalism and academic labour. Drawing on an exploratory survey of 395 educators in Northern Cyprus, a context [...] Read more.
This study critically examines the integration of artificial intelligence (AI) into education through the lens of Marx’s theory of alienation, engaging with contemporary critiques of digital capitalism and academic labour. Drawing on an exploratory survey of 395 educators in Northern Cyprus, a context of early-stage AI adoption, the paper identifies four distinct forms of alienation exacerbated by AI: from the product of academic labour, from the educational process, from professional identity (species-being), and from interpersonal relations. Findings suggest that while educators who view AI more positively tend to report lower levels of alienation, particularly with respect to their pedagogical outputs, this association is tentative due to the low reliability of the AI perception scale (Cronbach’s α = 0.42). The results, therefore, serve as hypothesis-generating rather than conclusive. Situating the empirical findings within broader critiques by Noble, Hall, Preston, and Komljenovic, the study highlights how algorithmic governance, commercial platform logics, and data-driven performance regimes threaten teacher autonomy, creativity, and relationality. The paper concludes with a call for participatory governance, ethical oversight, and human-centred design to ensure that AI integration supports, not supplants, educators. In doing so, it contributes to critical debates on the ethical sustainability of digital education under conditions of intensifying automation. Full article
(This article belongs to the Special Issue Sustainable Digital Education: Innovations in Teaching and Learning)
22 pages, 10765 KiB  
Article
Exploring the Cognitive Reconstruction Mechanism of Generative AI in Outcome-Based Design Education: A Study on Load Optimization and Performance Impact Based on Dual-Path Teaching
by Qidi Dong, Jiaxi He, Nanxin Li, Binzhu Wang, Heng Lu and Yingyin Yang
Buildings 2025, 15(16), 2864; https://doi.org/10.3390/buildings15162864 - 13 Aug 2025
Viewed by 312
Abstract
Undergraduate design education faces a structural contradiction characterized by high cognitive load (CL) and relatively low innovation output. Meanwhile, existing generative AI tools predominantly emphasize the generation of visual outcomes, often overlooking the logical guidance mechanisms inherent in design thinking. This study proposes [...] Read more.
Undergraduate design education faces a structural contradiction characterized by high cognitive load (CL) and relatively low innovation output. Meanwhile, existing generative AI tools predominantly emphasize the generation of visual outcomes, often overlooking the logical guidance mechanisms inherent in design thinking. This study proposes a Dual-Path teaching model integrating critical reconstruction behaviors to examine how AI enhances design thinking. It adopts structured interactions with the DeepSeek large language model, CL theory, and Structural Equation Modeling for analysis. Quantitative results indicate that AI-assisted paths significantly enhance design quality (72.43 vs. 65.60 in traditional paths). This improvement is attributed to a “direct effect + multiple mediators” model: specifically, AI reduced the mediating role of Extraneous Cognitive Load from 0.907 to 0.017, while simultaneously enhancing its investment in Germane Cognitive Load to support deep, innovative thinking. Theoretically, this study is among the first to integrate AI-driven critical reconstruction behaviors (e.g., iteration count, cross-domain terms) into CL theory, validating the “logical chain externalization → load optimization” mechanism in design education contexts. Practically, it provides actionable strategies for the digital transformation of design education, fostering interdisciplinary thinking and advancing a teaching paradigm where low-order cognition is outsourced to reinforce high-order creative thinking. Full article
(This article belongs to the Topic Architectural Education)
Show Figures

Figure 1

27 pages, 3770 KiB  
Article
Precision Time Interval Generator Based on CMOS Counters and Integration with IoT Timing Systems
by Nebojša Andrijević, Zoran Lovreković, Vladan Radivojević, Svetlana Živković Radeta and Hadžib Salkić
Electronics 2025, 14(16), 3201; https://doi.org/10.3390/electronics14163201 - 12 Aug 2025
Viewed by 508
Abstract
Precise time interval generation is a cornerstone of modern measurement, automation, and distributed control systems, particularly within Internet of Things (IoT) architectures. This paper presents the design, implementation, and evaluation of a low-cost and high-precision time interval generator based on Complementary Metal-Oxide Semiconductor [...] Read more.
Precise time interval generation is a cornerstone of modern measurement, automation, and distributed control systems, particularly within Internet of Things (IoT) architectures. This paper presents the design, implementation, and evaluation of a low-cost and high-precision time interval generator based on Complementary Metal-Oxide Semiconductor (CMOS) logic counters (Integrated Circuit (IC) IC 7493 and IC 4017) and inverter-based crystal oscillators (IC 74LS04). The proposed system enables frequency division from 1 MHz down to 1 Hz through a cascade of binary and Johnson counters, enhanced with digitally controlled multiplexers for output signal selection. Unlike conventional timing systems relying on expensive Field-Programmable Gate Array (FPGA) or Global Navigation Satellite System (GNSS)-based synchronization, this approach offers a robust, locally controlled reference clock suitable for IoT nodes without network access. The hardware is integrated with Arduino and ESP32 microcontrollers via General-Purpose Input/Output (GPIO) level interfacing, supporting real-time timestamping, deterministic task execution, and microsecond-level synchronization. The system was validated through Python-based simulations incorporating Gaussian jitter models, as well as real-time experimental measurements using Arduino’s micros() function. Results demonstrated stable pulse generation with timing deviations consistently below ±3 µs across various frequency modes. A comparative analysis confirms the advantages of this CMOS-based timing solution over Real-Time Clock (RTC), Network Time Protocol (NTP), and Global Positioning System (GPS)-based methods in terms of local autonomy, cost, and integration simplicity. This work provides a practical and scalable time reference architecture for educational, industrial, and distributed applications, establishing a new bridge between classical digital circuit design and modern Internet of Things (IoT) timing requirements. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

22 pages, 1165 KiB  
Article
AI-Assisted Exam Variant Generation: A Human-in-the-Loop Framework for Automatic Item Creation
by Charles MacDonald Burke
Educ. Sci. 2025, 15(8), 1029; https://doi.org/10.3390/educsci15081029 - 11 Aug 2025
Viewed by 338
Abstract
Educational assessment relies on well-constructed test items to measure student learning accurately, yet traditional item development is time-consuming and demands specialized psychometric expertise. Automatic item generation (AIG) offers template-based scalability, and recent large language model (LLM) advances promise to democratize item creation. However, [...] Read more.
Educational assessment relies on well-constructed test items to measure student learning accurately, yet traditional item development is time-consuming and demands specialized psychometric expertise. Automatic item generation (AIG) offers template-based scalability, and recent large language model (LLM) advances promise to democratize item creation. However, fully automated approaches risk introducing factual errors, bias, and uneven difficulty. To address these challenges, we propose and evaluate a hybrid human-in-the-loop (HITL) framework for AIG that combines psychometric rigor with the linguistic flexibility of LLMs. In a Spring 2025 case study at Franklin University Switzerland, the instructor collaborated with ChatGPT (o4-mini-high) to generate parallel exam variants for two undergraduate business courses: Quantitative Reasoning and Data Mining. The instructor began by defining “radical” and “incidental” parameters to guide the model. Through iterative cycles of prompt, review, and refinement, the instructor validated content accuracy, calibrated difficulty, and mitigated bias. All interactions (including prompt templates, AI outputs, and human edits) were systematically documented, creating a transparent audit trail. Our findings demonstrate that a HITL approach to AIG can produce diverse, psychometrically equivalent exam forms with reduced development time, while preserving item validity and fairness, and potentially reducing cheating. This offers a replicable pathway for harnessing LLMs in educational measurement without sacrificing quality, equity, or accountability. Full article
Show Figures

Figure 1

25 pages, 7961 KiB  
Article
A Multi-Layer Attention Knowledge Tracking Method with Self-Supervised Noise Tolerance
by Haifeng Wang, Hao Liu, Yanling Ge and Zhihao Yu
Appl. Sci. 2025, 15(15), 8717; https://doi.org/10.3390/app15158717 - 6 Aug 2025
Viewed by 338
Abstract
The knowledge tracing method based on deep learning is used to assess learners’ cognitive states, laying the foundation for personalized education. However, deep learning methods are inefficient when processing long-term series data and are prone to overfitting. To improve the accuracy of cognitive [...] Read more.
The knowledge tracing method based on deep learning is used to assess learners’ cognitive states, laying the foundation for personalized education. However, deep learning methods are inefficient when processing long-term series data and are prone to overfitting. To improve the accuracy of cognitive state prediction, we design a Multi-layer Attention Self-supervised Knowledge Tracing Method (MASKT) using self-supervised learning and the Transformer method. In the pre-training stage, MASKT uses a random forest method to filter out positive and negative correlation feature embeddings; then, it reuses noise-processed restoration tasks to extract more learnable features and enhance the learning ability of the model. The Transformer in MASKT not only solves the problem of long-term dependencies between input and output using an attention mechanism, but also has parallel computing capabilities that can effectively improve the learning efficiency of the prediction model. Finally, a multidimensional attention mechanism is integrated into cross-attention to further optimize prediction performance. The experimental results show that, compared with various knowledge tracing models on multiple datasets, MASKT’s prediction performance remains 2 percentage points higher. Compared with the multidimensional attention mechanism of graph neural networks, MASKT’s time efficiency is shortened by nearly 30%. Due to the improvement in prediction accuracy and performance, this method has broad application prospects in the field of cognitive diagnosis in intelligent education. Full article
Show Figures

Figure 1

15 pages, 4422 KiB  
Article
Advanced Deep Learning Methods to Generate and Discriminate Fake Images of Egyptian Monuments
by Daniyah Alaswad and Mohamed A. Zohdy
Appl. Sci. 2025, 15(15), 8670; https://doi.org/10.3390/app15158670 - 5 Aug 2025
Viewed by 355
Abstract
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines [...] Read more.
Artificial intelligence technologies, particularly machine learning and computer vision, are being increasingly utilized to preserve, restore, and create immersive virtual experiences with cultural artifacts and sites, thus aiding in conserving cultural heritage and making it accessible to a global audience. This paper examines the performance of Generative Adversarial Networks (GAN), especially Style-Based Generator Architecture (StyleGAN), as a deep learning approach for producing realistic images of Egyptian monuments. We used Sigmoid loss for Language–Image Pre-training (SigLIP) as a unique image–text alignment system to guide monument generation through semantic elements. We also studied truncation methods to regulate the generated image noise and identify the most effective parameter settings based on architectural representation versus diverse output creation. An improved discriminator design that combined noise addition with squeeze-and-excitation blocks and a modified MinibatchStdLayer produced 27.5% better Fréchet Inception Distance performance than the original discriminator models. Moreover, differential evolution for latent-space optimization reduced alignment mistakes during specific monument construction tasks by about 15%. We checked a wide range of truncation values from 0.1 to 1.0 and found that somewhere between 0.4 and 0.7 was the best range because it allowed for good accuracy while retaining many different architectural elements. Our findings indicate that specific model optimization strategies produce superior outcomes by creating better-quality and historically correct representations of diverse Egyptian monuments. Thus, the developed technology may be instrumental in generating educational and archaeological visualization assets while adding virtual tourism capabilities. Full article
(This article belongs to the Special Issue Novel Applications of Machine Learning and Bayesian Optimization)
Show Figures

Figure 1

16 pages, 1651 KiB  
Article
Modular Pipeline for Text Recognition in Early Printed Books Using Kraken and ByT5
by Yahya Momtaz, Lorenza Laccetti and Guido Russo
Electronics 2025, 14(15), 3083; https://doi.org/10.3390/electronics14153083 - 1 Aug 2025
Viewed by 587
Abstract
Early printed books, particularly incunabula, are invaluable archives of the beginnings of modern educational systems. However, their complex layouts, antique typefaces, and page degradation caused by bleed-through and ink fading pose significant challenges for automatic transcription. In this work, we present a modular [...] Read more.
Early printed books, particularly incunabula, are invaluable archives of the beginnings of modern educational systems. However, their complex layouts, antique typefaces, and page degradation caused by bleed-through and ink fading pose significant challenges for automatic transcription. In this work, we present a modular pipeline that addresses these problems by combining modern layout analysis and language modeling techniques. The pipeline begins with historical layout-aware text segmentation using Kraken, a neural network-based tool tailored for early typographic structures. Initial optical character recognition (OCR) is then performed with Kraken’s recognition engine, followed by post-correction using a fine-tuned ByT5 transformer model trained on manually aligned line-level data. By learning to map noisy OCR outputs to verified transcriptions, the model substantially improves recognition quality. The pipeline also integrates a preprocessing stage based on our previous work on bleed-through removal using robust statistical filters, including non-local means, Gaussian mixtures, biweight estimation, and Gaussian blur. This step enhances the legibility of degraded pages prior to OCR. The entire solution is open, modular, and scalable, supporting long-term preservation and improved accessibility of cultural heritage materials. Experimental results on 15th-century incunabula show a reduction in the Character Error Rate (CER) from around 38% to around 15% and an increase in the Bilingual Evaluation Understudy (BLEU) score from 22 to 44, confirming the effectiveness of our approach. This work demonstrates the potential of integrating transformer-based correction with layout-aware segmentation to enhance OCR accuracy in digital humanities applications. Full article
Show Figures

Figure 1

23 pages, 1192 KiB  
Article
Multi-Model Dialectical Evaluation of LLM Reasoning Chains: A Structured Framework with Dual Scoring Agents
by Catalin Anghel, Andreea Alexandra Anghel, Emilia Pecheanu, Ioan Susnea, Adina Cocu and Adrian Istrate
Informatics 2025, 12(3), 76; https://doi.org/10.3390/informatics12030076 - 1 Aug 2025
Viewed by 601
Abstract
(1) Background and objectives: Large language models (LLMs) such as GPT, Mistral, and LLaMA exhibit strong capabilities in text generation, yet assessing the quality of their reasoning—particularly in open-ended and argumentative contexts—remains a persistent challenge. This study introduces Dialectical Agent, an internally developed [...] Read more.
(1) Background and objectives: Large language models (LLMs) such as GPT, Mistral, and LLaMA exhibit strong capabilities in text generation, yet assessing the quality of their reasoning—particularly in open-ended and argumentative contexts—remains a persistent challenge. This study introduces Dialectical Agent, an internally developed modular framework designed to evaluate reasoning through a structured three-stage process: opinion, counterargument, and synthesis. The framework enables transparent and comparative analysis of how different LLMs handle dialectical reasoning. (2) Methods: Each stage is executed by a single model, and final syntheses are scored via two independent LLM evaluators (LLaMA 3.1 and GPT-4o) based on a rubric with four dimensions: clarity, coherence, originality, and dialecticality. In parallel, a rule-based semantic analyzer detects rhetorical anomalies and ethical values. All outputs and metadata are stored in a Neo4j graph database for structured exploration. (3) Results: The system was applied to four open-weight models (Gemma 7B, Mistral 7B, Dolphin-Mistral, Zephyr 7B) across ten open-ended prompts on ethical, political, and technological topics. The results show consistent stylistic and semantic variation across models, with moderate inter-rater agreement. Semantic diagnostics revealed differences in value expression and rhetorical flaws not captured by rubric scores. (4) Originality: The framework is, to our knowledge, the first to integrate multi-stage reasoning, rubric-based and semantic evaluation, and graph-based storage into a single system. It enables replicable, interpretable, and multidimensional assessment of generative reasoning—supporting researchers, developers, and educators working with LLMs in high-stakes contexts. Full article
Show Figures

Figure 1

15 pages, 288 KiB  
Systematic Review
Interventions to Improve Vaccination Uptake Among Adults: A Systematic Review and Meta-Analysis
by Anelisa Jaca, Lindi Mathebula, Thobile Malinga, Kimona Rampersadh, Masibulele Zulu, Ameer Steven-Jorg Hohlfeld, Charles Shey Wiysonge, Julie C. Jacobson Vann and Duduzile Ndwandwe
Vaccines 2025, 13(8), 811; https://doi.org/10.3390/vaccines13080811 - 30 Jul 2025
Viewed by 611
Abstract
Background: Immunization is a highly effective intervention for controlling over 20 life-threatening infectious diseases, significantly reducing both morbidity and mortality rates. One notable achievement in vaccination efforts was the global eradication of smallpox, which the World Health Assembly declared on 8 May 1980. [...] Read more.
Background: Immunization is a highly effective intervention for controlling over 20 life-threatening infectious diseases, significantly reducing both morbidity and mortality rates. One notable achievement in vaccination efforts was the global eradication of smallpox, which the World Health Assembly declared on 8 May 1980. Additionally, there has been a remarkable 99.9% reduction in wild poliovirus cases since 1988, decreasing from more than 350,000 cases that year to just 30 cases in 2022. Objectives: The objective of this review was to assess the effects of various interventions designed to increase vaccination uptake among adults. Search Methods: A thorough search was conducted in the CENTRAL, Embase Ovid, Medline Ovid, PubMed, Web of Science, and Global Index Medicus databases for primary studies. This search was conducted in August 2021 and updated in November 2024. Selection Criteria: Randomized trials were eligible for inclusion in this review, regardless of publication status or language. Data Analysis: Two authors independently screened the search outputs to select potentially eligible studies. Risk ratios (RR) with 95% confidence intervals (CI) were calculated for each randomized controlled trial (RCT). A meta-analysis was conducted using a random-effects model, and the quality of the evidence was assessed using the GRADE approach. Main Results: A total of 35 randomized controlled trials met the inclusion criteria and were included in this review, with the majority conducted in the United States. The interventions targeted adults aged 18 and older who were eligible for vaccination, involving a total of 403,709 participants. The overall pooled results for interventions aimed at increasing influenza vaccination showed a risk ratio of 1.41 (95% CI: 1.15, 1.73). Most studies focused on influenza vaccination (18 studies), while the remaining studies examined various other vaccines, including those for hepatitis A, COVID-19, hepatitis B, pneumococcal disease, tetanus, diphtheria, pertussis (Tdap), herpes zoster, and human papillomavirus (HPV). The results indicate that letter reminders were slightly effective in increasing influenza vaccination uptake compared to the control group (RR: 1.75, 95% CI: 0.97, 1.16; 6 studies; 161,495 participants; low-certainty evidence). Additionally, participants who received education interventions showed increased levels of influenza vaccination uptake compared to those in the control group (RR: 1.88, 95% CI: 0.61, 5.76; 3 studies; 1318 participants; low-certainty evidence). Furthermore, tracking and outreach interventions also led to an increase in influenza vaccination uptake (RR: 1.87, 95% CI: 0.78, 4.46; 2 studies; 33,752 participants; low-certainty evidence). Conclusions: Letter reminders and educational interventions targeted at recipients are effective in increasing vaccination uptake compared to control groups. Full article
31 pages, 4576 KiB  
Article
Detection, Isolation, and Identification of Multiplicative Faults in a DC Motor and Amplifier Using Parameter Estimation Techniques
by Sanja Antić, Marko Rosić, Branko Koprivica, Alenka Milovanović and Milentije Luković
Appl. Sci. 2025, 15(15), 8322; https://doi.org/10.3390/app15158322 - 26 Jul 2025
Viewed by 356
Abstract
The increasing complexity of modern control systems highlights the need for reliable and robust fault detection, isolation, and identification (FDII) methods, particularly in safety-critical and industrial applications. The study focuses on the FDII of multiplicative faults in a DC motor and its electronic [...] Read more.
The increasing complexity of modern control systems highlights the need for reliable and robust fault detection, isolation, and identification (FDII) methods, particularly in safety-critical and industrial applications. The study focuses on the FDII of multiplicative faults in a DC motor and its electronic amplifier. To simulate such scenarios, a complete laboratory platform was developed for real-time FDII, using relay-based switching and custom LabVIEW software 2009. This platform enables real-time experimentation and represents an important component of the study. Two estimation-based fault detection (FD) algorithms were implemented: the Sliding Window Algorithm (SWA) for discrete-time models and a modified Sliding Integral Algorithm (SIA) for continuous-time models. The modification introduced to the SIA limits the data length used in least squares estimation, thereby reducing the impact of transient effects on parameter accuracy. Both algorithms achieved high model output-to-measured signal agreement, up to 98.6% under nominal conditions and above 95% during almost all fault scenarios. Moreover, the proposed fault isolation and identification methods, including a decision algorithm and an indirect estimation approach, successfully isolated and identified faults in key components such as amplifier resistors (R1, R9, R12), capacitor (C8), and motor parameters, including armature resistance (Ra), inertia (J), and friction coefficient (B). The decision algorithm, based on continuous-time model coefficients, demonstrated reliable fault isolation and identification, while the reduced Jacobian-based approach in the discrete model enhanced fault magnitude estimation, with deviations typically below 10%. Additionally, the platform supports remote experimentation, offering a valuable resource for advancing model-based FDII research and engineering education. Full article
Show Figures

Figure 1

21 pages, 1745 KiB  
Article
AI and Q Methodology in the Context of Using Online Escape Games in Chemistry Classes
by Markéta Dobečková, Ladislav Simon, Lucia Boldišová and Zita Jenisová
Educ. Sci. 2025, 15(8), 962; https://doi.org/10.3390/educsci15080962 - 25 Jul 2025
Viewed by 356
Abstract
The contemporary digital era has fundamentally reshaped pupil education. It has transformed learning into a dynamic environment with enhanced access to information. The focus shifts to the educator, who must employ teaching strategies, practices, and methods to engage and motivate the pupils. New [...] Read more.
The contemporary digital era has fundamentally reshaped pupil education. It has transformed learning into a dynamic environment with enhanced access to information. The focus shifts to the educator, who must employ teaching strategies, practices, and methods to engage and motivate the pupils. New possibilities are emerging for adopting active pedagogical approaches. One example is the use of educational online escape games. In the theoretical part of this paper, we present online escape games as a tool that broadens pedagogical opportunities for schools in primary school chemistry education. These activities are known to foster pupils’ transversal or soft skills. We investigate the practical dimension of implementing escape games in education. This pilot study aims to analyse primary school teachers’ perceptions of online escape games. We collected data using Q methodology and conducted the Q-sort through digital technology. Data analysis utilised both the PQMethod programme and ChatGPT 4-o, with a subsequent comparison of their respective outputs. Although some numerical differences appeared between the ChatGPT and PQMethod analyses, both methods yielded the same factor saturation and overall results. Full article
(This article belongs to the Special Issue Innovation in Teacher Education Practices)
Show Figures

Figure 1

19 pages, 857 KiB  
Article
Financial Technology Expenditure and Green Total Factor Productivity: Influencing Mechanisms and Threshold Effects
by Yalin Qi, Yanlin Lu, Huanyu Xu and Gang Sheng
Sustainability 2025, 17(14), 6653; https://doi.org/10.3390/su17146653 - 21 Jul 2025
Viewed by 409
Abstract
The integration of financial technology expenditures and green total factor productivity (GTFP) constitutes a critical impetus for sustainable economic advancement. This study employs provincial panel data from China (2012–2020) and uses the SBM model with undesirable outputs, the PVAR model, moderation effect analysis, [...] Read more.
The integration of financial technology expenditures and green total factor productivity (GTFP) constitutes a critical impetus for sustainable economic advancement. This study employs provincial panel data from China (2012–2020) and uses the SBM model with undesirable outputs, the PVAR model, moderation effect analysis, and threshold regression to investigate the underlying mechanisms and threshold effects of financial technology expenditure on GTFP. The results show that (1) financial technology expenditure has a significant promoting effect on the growth of GTFP, with a coefficient of 0.614 (p < 0.05), indicating the need for further increases in fiscal investment in science and technology; (2) the effect of financial technology expenditure on GTFP varies across the eastern, central, and western regions of China, with stronger effects observed in the eastern region, suggesting that the government should formulate differentiated financial technology expenditure policies on the basis of local conditions; and (3) that educational investment and industrial upgrading play strong moderating roles in the impact of financial technology expenditure on GTFP, with interaction term coefficients of 0.059 (p < 0.05) and 0.206 (p < 0.1), respectively. Threshold analysis further reveals that the positive effect strengthens significantly once educational investment surpasses a log value of 9.3674 and industrial upgrading exceeds a ratio of 0.0814. However, currently, China’s education investment and industrial structure upgrading are still insufficient, necessitating further increases in education investment and promoting the transformation and upgrading of the industrial structure. Full article
(This article belongs to the Special Issue Circular Economy and Sustainability)
Show Figures

Figure 1

Back to TopTop