Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (607)

Search Parameters:
Keywords = edge width

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6162 KB  
Article
Design and Optimization of Hierarchical Porous Metamaterial Lattices Inspired by the Pistol Shrimp’s Claw: Coupling for Superior Crashworthiness
by Jiahong Wen, Na Wu, Pei Tian, Xinlin Li, Shucai Xu and Jiafeng Song
Biomimetics 2025, 10(9), 582; https://doi.org/10.3390/biomimetics10090582 - 2 Sep 2025
Viewed by 162
Abstract
This study, inspired by the impact resistance of the pistol shrimp’s predatory claw, investigates the design and optimization of bionic energy absorption structures. Four types of bionic hierarchical porous metamaterial lattice structures with a negative Poisson’s ratio were developed based on the microstructure [...] Read more.
This study, inspired by the impact resistance of the pistol shrimp’s predatory claw, investigates the design and optimization of bionic energy absorption structures. Four types of bionic hierarchical porous metamaterial lattice structures with a negative Poisson’s ratio were developed based on the microstructure of the pistol shrimp’s fixed claw. These structures were validated through finite element models and quasi-static compression tests. Results showed that each structure exhibited distinct advantages and shortcomings in specific evaluation indices. To address these limitations, four new bionic structures were designed by coupling the characteristics of the original structures. The coupled structures demonstrated a superior balance across various performance indicators, with the EOS (Eight pillars Orthogonal with Side connectors on square frame) structure showing the most promising results. To further enhance the EOS structure, a parametric study was conducted on the distance d from the edge line to the curve vertex and the length-to-width ratio y of the negative Poisson’s ratio structure beam. A fifth-order polynomial surrogate model was constructed to predict the Specific Energy Absorption (SEA), Crush Force Efficiency (CFE), and Undulation of Load-Carrying fluctuation (ULC) of the EOS structure. A multi-objective genetic algorithm was employed to optimize these three key performance indicators, achieving improvements of 1.98% in SEA, 2.42% in CFE, and 2.05% in ULC. This study provides a theoretical basis for the development of high-performance biomimetic energy absorption structures and demonstrates the effectiveness of coupling design with optimization algorithms to enhance structural performance. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

21 pages, 5927 KB  
Article
Flow Control-Based Aerodynamic Enhancement of Vertical Axis Wind Turbines for Offshore Renewable Energy Deployment
by Huahao Ou, Qiang Zhang, Chun Li, Dinghong Lu, Weipao Miao, Huanhuan Li and Zifei Xu
J. Mar. Sci. Eng. 2025, 13(9), 1674; https://doi.org/10.3390/jmse13091674 - 31 Aug 2025
Viewed by 238
Abstract
As wind energy development continues to expand toward nearshore and deep-sea regions, enhancing the aerodynamic efficiency of vertical axis wind turbines (VAWTs) in complex marine environments has become a critical challenge. To address this, a composite flow control strategy combining leading-edge suction and [...] Read more.
As wind energy development continues to expand toward nearshore and deep-sea regions, enhancing the aerodynamic efficiency of vertical axis wind turbines (VAWTs) in complex marine environments has become a critical challenge. To address this, a composite flow control strategy combining leading-edge suction and trailing-edge gurney flap is proposed. A two-dimensional unsteady numerical simulation framework is established based on CFD and the four-equation Transition SST (TSST) transition model. The key control parameters, including the suction slot position and width as well as the gurney flap height and width, are systematically optimized through orthogonal experimental design. The aerodynamic performance under single (suction or gurney flap) and composite control schemes is comprehensively evaluated. Results show that leading-edge suction effectively delays flow separation, while the gurney flap improves aerodynamic characteristics in the downwind region. Their synergistic effect significantly suppresses blade load fluctuations and enhances the wake structure, thereby improving wind energy capture. Compared to all other configurations, including suction-only and gurney flap-only blades, the composite control blade achieves the most significant increase in power coefficient across the entire tip speed ratio range, with an average improvement of 67.24%, demonstrating superior aerodynamic stability and strong potential for offshore applications. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

18 pages, 15632 KB  
Article
Influence of Cutter Ring Structure on Rock-Breaking Force and Efficiency of TBM Disc Cutter Based on Discrete Element Method
by Juan-Juan Li, Jin Yu, Wentao Xu, Xiao-Zhao Li, Tian-Chi Fu and Long-Chuan Deng
Buildings 2025, 15(17), 3050; https://doi.org/10.3390/buildings15173050 - 26 Aug 2025
Viewed by 393
Abstract
Understanding the combined effects of edge width and cutter ring shape on the rock-breaking performance is critical for optimising disc cutter design. The intrusion test serves as an effective approach for investigating the rock-breaking mechanism of disc cutters. In this study, a two-dimensional [...] Read more.
Understanding the combined effects of edge width and cutter ring shape on the rock-breaking performance is critical for optimising disc cutter design. The intrusion test serves as an effective approach for investigating the rock-breaking mechanism of disc cutters. In this study, a two-dimensional discrete element method (DEM) model was established to simulate the intrusion process of a single disc cutter. Three commonly used disc cutter types were analysed: disc cutter with flat edge (FEDC), disc cutter with rounded edge (REDC) and disc cutter with alloy tooth (ATDC). The edge widths ranging from 10 mm to 24 mm were examined to assess their influence on rock crack propagation, stress distribution, cutting force and specific cutting energy. The FEDC and REDC exhibited face-contact extrusion breaking, whereas the ATDC was line-contact embedding breaking. The crack extension range, crack number, force chain intensity, stress distribution, rock-breaking force and specific cutting energy ranks are as follows: FEDC > REDC > ATDC. The ATDC generated a higher proportion of tensile cracks compared to the FEDC and REDC, though with fewer long cracks. The rock-breaking efficiency of the FEDC was lower, whereas the REDC and ATDC exhibited higher efficiency. With the increase in edge width, the force chain distribution became more concentrated, leading to greater internal rock damage, and the number and length of cracks increased significantly. Cracks initially expanded laterally at smaller edge widths but extended downward as edge width increased. The peak force and specific cutting energy increased with increasing edge width; the peak force at an edge width of 24 mm is approximately 3.5 times that of an edge width of 10 mm. The REDC is preferable in hard rock formations, and the ATDC is more effective in soft rock formations. The edge width should be determined based on rock properties and thrust capacity. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 9113 KB  
Article
The Cutting Edge Geometric Optimization of the PCBN Tool for the Machining of Cast Iron
by Xian Wu, Zhiqin Su, Chao Zhang, Xuefeng Zhao, Hongfei Yao and Feng Jiang
Micromachines 2025, 16(9), 978; https://doi.org/10.3390/mi16090978 - 26 Aug 2025
Viewed by 356
Abstract
The turning process is the main machining task in brake disc production, and the PCBN tool is the most suitable type of cutting tools in the machining of brake discs made of cast iron. The edge geometric optimization of the PCBN tool is [...] Read more.
The turning process is the main machining task in brake disc production, and the PCBN tool is the most suitable type of cutting tools in the machining of brake discs made of cast iron. The edge geometric optimization of the PCBN tool is the key factor to obtain a better tool performance. In this paper, the cutting simulation for the machining of cast iron with PCBN tool of grade HNMN120712 was established, which exhibits a simulation error lower than 10.8%. The optimal turning parameters were obtained by the equal material removal rate method. The edge geometric parameters were optimized in two stages: firstly, the optimal edge radius was obtained as 30 μm by the comprehensive normalization analysis of the cutting temperature and stress, and then, the chamfer width and angle were further optimized to 0.1 mm and 15°. At finally, the optimized PCBN tool was prepared and tested in the machining of brake discs; the results indicate that the designed tool exhibits an excellent tool performance with 3.4 times the tool life of the conventional tool. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

25 pages, 9065 KB  
Article
PWFNet: Pyramidal Wavelet–Frequency Attention Network for Road Extraction
by Jinkun Zong, Yonghua Sun, Ruozeng Wang, Dinglin Xu, Xue Yang and Xiaolin Zhao
Remote Sens. 2025, 17(16), 2895; https://doi.org/10.3390/rs17162895 - 20 Aug 2025
Viewed by 665
Abstract
Road extraction from remote sensing imagery plays a critical role in applications such as autonomous driving, urban planning, and infrastructure development. Although deep learning methods have achieved notable progress, current approaches still struggle with complex backgrounds, varying road widths, and strong texture interference, [...] Read more.
Road extraction from remote sensing imagery plays a critical role in applications such as autonomous driving, urban planning, and infrastructure development. Although deep learning methods have achieved notable progress, current approaches still struggle with complex backgrounds, varying road widths, and strong texture interference, often leading to fragmented road predictions or the misclassification of background regions. Given that roads typically exhibit smooth low-frequency characteristics while background clutter tends to manifest in mid- and high-frequency ranges, incorporating frequency-domain information can enhance the model’s structural perception and discrimination capabilities. To address these challenges, we propose a novel frequency-aware road extraction network, termed PWFNet, which combines frequency-domain modeling with multi-scale feature enhancement. PWFNet comprises two key modules. First, the Pyramidal Wavelet Convolution (PWC) module employs multi-scale wavelet decomposition fused with localized convolution to accurately capture road structures across various spatial resolutions. Second, the Frequency-aware Adjustment Module (FAM) partitions the Fourier spectrum into multiple frequency bands and incorporates a spatial attention mechanism to strengthen low-frequency road responses while suppressing mid- and high-frequency background noise. By integrating complementary modeling from both spatial and frequency domains, PWFNet significantly improves road continuity, edge clarity, and robustness under complex conditions. Experiments on the DeepGlobe and CHN6-CUG road datasets demonstrate that PWFNet achieves IoU improvements of 3.8% and 1.25% over the best-performing baseline methods, respectively. In addition, we conducted cross-region transfer experiments by directly applying the trained model to remote sensing images from different geographic regions and at varying resolutions to assess its generalization capability. The results demonstrate that PWFNet maintains the continuity of main and branch roads and preserves edge details in these transfer scenarios, effectively reducing false positives and missed detections. This further validates its practicality and robustness in diverse real-world environments. Full article
Show Figures

Figure 1

20 pages, 7883 KB  
Article
Mechanical Response of Two-Way Reinforced Concrete Slabs Under Combined Horizontal and Vertical Loads in Fire
by Xing Feng, Yingting Wang, Xiangheng Zha, Binhui Jiang, Qingyuan Xu, Wenjun Wang and Faxing Ding
Materials 2025, 18(16), 3880; https://doi.org/10.3390/ma18163880 - 19 Aug 2025
Viewed by 410
Abstract
The existing analytical methods lack a reasonable explanation for the cracking and deformation response mechanism of two-way reinforced concrete (RC) slabs under combined horizontal and vertical loads during a fire. In addition, there is a lack of comparative studies on different boundary conditions. [...] Read more.
The existing analytical methods lack a reasonable explanation for the cracking and deformation response mechanism of two-way reinforced concrete (RC) slabs under combined horizontal and vertical loads during a fire. In addition, there is a lack of comparative studies on different boundary conditions. Therefore, solid finite-element models were established using ABAQUS 6.14 software to simulate the behavior of two-way RC slabs under combined horizontal and vertical loads in fire. The models considered two different support conditions: four edges simply supported (FSS) and adjacent edges simply supported and adjacent edges quasi-fixed (ASSAQF). Based on experimental model verification, mechanical and parametric analyses were performed to further investigate the deflection, stress variation characteristics, and mechanical response of a concrete slab and reinforcements. The results show that (1) The stress redistribution process of two-way RC slabs under combined horizontal and vertical loads with these two support conditions (FSS and ASSAQF) during fire undergoes four stages: elastic, elastic–plastic, plastic, and tensile cracking. (2) Increasing the horizontal load, vertical load level, and length–width ratio and decreasing the slab thickness all shorten the fire resistance to a certain extent. (3) Compared to slabs with FSS, the stronger support condition of slabs with ASSAQF significantly prolongs the duration of the inverted arch effect stage, resulting in a superior fire resistance, with the fire resistance performance improved by 11–59%. Full article
Show Figures

Figure 1

29 pages, 2939 KB  
Article
Scour Near Offshore Structures—Part 2: Practical Scour Model
by L. C. van Rijn and K. L. Meijer
J. Mar. Sci. Eng. 2025, 13(8), 1583; https://doi.org/10.3390/jmse13081583 - 18 Aug 2025
Viewed by 382
Abstract
Scour near various offshore structures has been studied by performing numerical model runs with the modified (Fortran) SEDTUBE model, as a follow-up of an earlier paper on scour near marine offshore structures. A fairly simple 1D numerical model (SEDTUBE model) for the computation [...] Read more.
Scour near various offshore structures has been studied by performing numerical model runs with the modified (Fortran) SEDTUBE model, as a follow-up of an earlier paper on scour near marine offshore structures. A fairly simple 1D numerical model (SEDTUBE model) for the computation of sand transport rates and scour depths near structures on the seabed (berms, bed protections) is proposed, tested and validated. The model domain is a stream tube (varying or constant width) including the loose seabed and the hard layers of (multiple) structures. Hence, the model computes the sediment transport along the bed and over the structure(s). The SEDTUBE model can predict the time evolution of free scour depth around rock berms; bed protections; and pile-type structures, as well as the edge scour further away from the pile, in unidirectional and bidirectional tidal flows (weak and strong currents) in combination with waves over a sandy sediment bed with d50 in the range between 0.2 and 2 mm. Five laboratory and four field cases have been used for validation of the model. The model is much more than a scour model; it can also be used for the prediction of sedimentation in shipping channels. The model is valid for sandy beds and for mud–sand beds with slight cohesive properties. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

31 pages, 6204 KB  
Article
Optimization and Validation of CO2 Laser-Machining Parameters for Wood–Plastic Composites (WPCs)
by Sharizal Ahmad Sobri, Teoh Ping Chow, Tan Koon Tatt, Mohd Hisham Nordin, Andi Hermawan, Mohd Hazim Mohamad Amini, Mohd Natashah Norizan, Norshah Afizi Shuaib and Wan Omar Ali Saifuddin Wan Ismail
Polymers 2025, 17(16), 2216; https://doi.org/10.3390/polym17162216 - 13 Aug 2025
Viewed by 606
Abstract
Wood–plastic composites (WPCs) offer a sustainable alternative to solid wood, yet their heterogeneous structure presents challenges in laser machining due to thermal sensitivity and inconsistent material behaviour. This study investigates the optimization of CO2 laser-cutting parameters for WPCs, focusing on feed rate [...] Read more.
Wood–plastic composites (WPCs) offer a sustainable alternative to solid wood, yet their heterogeneous structure presents challenges in laser machining due to thermal sensitivity and inconsistent material behaviour. This study investigates the optimization of CO2 laser-cutting parameters for WPCs, focusing on feed rate and assist-gas pressure. Using a 1500 W CO2 laser, a full factorial experimental design was employed to cut 18 mm thick WPC panels at varying feed rates (1000–3000 mm/min) and gas pressures (1–3 bar). Statistical analyses including MANOVA and linear regression were conducted to evaluate their effects on key machining responses: cutting depth, heat-affected zone (HAZ) width, cut-edge quality, and surface finish. Results indicated that feed rate significantly influences both cutting depth and thermal damage, while gas pressure plays a major role in improving surface quality and reducing HAZ. Optimal combinations were identified for various performance goals, and validation trials at the selected parameters confirmed alignment with predicted outcomes. The optimized settings yielded high-quality cuts with reduced HAZ and enhanced surface characteristics. This study demonstrates the effectiveness of a statistical optimization approach in refining CO2 laser-cutting conditions for WPCs, offering insights for improved process control and sustainable manufacturing applications. This study also introduces a multi-objective optimization approach that verifies the interaction effects of feed rate and assist-gas pressure, enabling precise and efficient CO2 laser cutting of 18 mm thick WPCs. Full article
Show Figures

Graphical abstract

22 pages, 5387 KB  
Article
A Study on a Directional Gradient-Based Defect Detection Method for Plate Heat Exchanger Sheets
by Zhibo Ding and Weiqi Yuan
Electronics 2025, 14(16), 3206; https://doi.org/10.3390/electronics14163206 - 12 Aug 2025
Viewed by 348
Abstract
Micro-crack defects on the surfaces of plate heat exchanger sheets often exhibit a linear grayscale pattern when clustered. In defect detection, traditional methods are more suitable than deep learning models in controlled production environments with limited computing resources to meet stringent national standards, [...] Read more.
Micro-crack defects on the surfaces of plate heat exchanger sheets often exhibit a linear grayscale pattern when clustered. In defect detection, traditional methods are more suitable than deep learning models in controlled production environments with limited computing resources to meet stringent national standards, which require low miss rates. However, deep learning models commonly suffer feature loss when detecting individual, small-scale defects, leading to higher leak detection rates. Moreover, in grayscale image line detection using traditional methods, the varying direction, width, and asymmetric grayscale profiles of defects can result in filled grayscale valleys due to width-adaptive smoothing coefficients, complicating accurate defect extraction. To address these issues, this study establishes a theoretical foundation for parameter selection in variable-width defect detection. We propose a directional gradient-based algorithm that mathematically constrains the Gaussian template width to cover variable-width defects with a fixed σ, reframing the detection defect from ridge edges to centrally symmetric double-ridge edges in gradient images. Experimental results show that, when tested in the defective boards library and under simulated factory CPU conditions, this algorithm achieves a miss detection rate of 14.55%, a false detection rate of 21.85%, and an 600 × 600 pixel image detection time of 0.1402 s. Compared to traditional line detection and deep learning object detection methods, this algorithm proves advantageous for detecting micro-crack defects on plate heat exchanger sheets in industrial production, particularly in data-scarce and resource-limited scenarios. Full article
Show Figures

Figure 1

16 pages, 9287 KB  
Article
Nanosecond Laser Cutting of Double-Coated Lithium Metal Anodes: Toward Scalable Electrode Manufacturing
by Masoud M. Pour, Lars O. Schmidt, Blair E. Carlson, Hakon Gruhn, Günter Ambrosy, Oliver Bocksrocker, Vinayakraj Salvarrajan and Maja W. Kandula
J. Manuf. Mater. Process. 2025, 9(8), 275; https://doi.org/10.3390/jmmp9080275 - 11 Aug 2025
Viewed by 504
Abstract
The transition to high-energy-density lithium metal batteries (LMBs) is essential for advancing electric vehicle (EV) technologies beyond the limitations of conventional lithium-ion batteries. A key challenge in scaling LMB production is the precise, contamination-free separation of lithium metal (LiM) anodes, hindered by lithium’s [...] Read more.
The transition to high-energy-density lithium metal batteries (LMBs) is essential for advancing electric vehicle (EV) technologies beyond the limitations of conventional lithium-ion batteries. A key challenge in scaling LMB production is the precise, contamination-free separation of lithium metal (LiM) anodes, hindered by lithium’s strong adhesion to mechanical cutting tools. This study investigates high-speed, contactless laser cutting as a scalable alternative for shaping double-coated LiM anodes. The effects of pulse duration, pulse energy, repetition frequency, and scanning speed were systematically evaluated using a nanosecond pulsed laser system on 30 µm LiM foils laminated on both sides of an 8 µm copper current collector. A maximum single-pass cutting speed of 3.0 m/s was achieved at a line energy of 0.06667 J/mm, with successful kerf formation requiring both a minimum pulse energy (>0.4 mJ) and peak power (>2.4 kW). Cut edge analysis showed that shorter pulse durations (72 ns) significantly reduced kerf width, the heat-affected zone (HAZ), and bulge height, indicating a shift to vapor-dominated ablation, though with increased spatter due to recoil pressure. Optimal edge quality was achieved with moderate pulse durations (261–508 ns), balancing energy delivery and thermal control. These findings define critical laser parameter thresholds and process windows for the high-speed, high-fidelity cutting of double-coated LiM battery anodes, supporting the industrial adoption of nanosecond laser systems in scalable LMB electrode manufacturing. Full article
Show Figures

Figure 1

25 pages, 1731 KB  
Article
Coverage Analysis of 5G Intelligent High-Speed Railway System Based on Beamwidth-Adaptive Free-Space Optical Communication
by Shuai Dong, Zhi-Zhao Zeng, Dan-Ting Zhang, Zi-Qi Sun and Jin-Yuan Wang
Sensors 2025, 25(16), 4906; https://doi.org/10.3390/s25164906 - 8 Aug 2025
Viewed by 440
Abstract
The rapid development of intelligent high-speed railways (HSRs) has significantly improved the transportation efficiency of modern transit systems, while also imposing higher bandwidth demands on mobile communication systems. Free-space optical (FSO) communication technology, as a promising solution, can effectively meet the high-speed data [...] Read more.
The rapid development of intelligent high-speed railways (HSRs) has significantly improved the transportation efficiency of modern transit systems, while also imposing higher bandwidth demands on mobile communication systems. Free-space optical (FSO) communication technology, as a promising solution, can effectively meet the high-speed data transmission requirements in intelligent HSR scenarios. In this paper, we consider an intelligent HSR system based on beamwidth-adaptive FSO communication and investigate the coverage performance of the system. Different from the circular cells used in traditional radio frequency wireless communication systems, this paper focuses on the coverage problem of narrow-strip-shaped cells in HSR systems based on FSO communication. When the transmitter emits a wide beam, the channel gain includes geometric loss, atmospheric attenuation, and atmospheric turbulence. When the transmitter emits a narrow beam, the channel gain includes pointing error, atmospheric attenuation, and atmospheric turbulence. To adapt the width of the transmitter’s beam, we propose a beamwidth-adaptive HSR system and a beamwidth-adaptive method. Furthermore, we derive closed-form expressions of the edge coverage probability (ECP) and the percentage of cell coverage area (CCA), where the ECP is the probability that the received signal-to-noise ratio at the cell edge is greater than or equal to a given threshold, and the percentage of CCA dictates the percentage of locations within a cell that are not in outage. The accuracy of the derived theoretical expressions is validated through Monte-Carlo simulations. The average relative error of the ECP between theoretical and simulation results is only 0.035%, and the corresponding error of the percentage of CCA is 0.087%. In addition, the impacts of factors such as cell diameter, transmission power, signal-to-noise ratio threshold, and weather visibility on coverage performance are also discussed. Full article
Show Figures

Figure 1

17 pages, 6198 KB  
Article
The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab
by Zhixuan Xue, Kun Yang, Yafeng Li, Chaochao Pei, Dongzhi Hou, Qi Zhao, Yang Wang, Lei Chen, Chao Chen and Wangzhong Mu
Materials 2025, 18(16), 3724; https://doi.org/10.3390/ma18163724 - 8 Aug 2025
Viewed by 328
Abstract
This study investigates the distribution characteristics of residual ferrite in 304L austenitic stainless steel continuous casting slab and the impact of heat treatment processes on its content. Through optical microscopy (OM), thermodynamic calculation software (Thermo–Calc) and heat treatment experiments, it is found that [...] Read more.
This study investigates the distribution characteristics of residual ferrite in 304L austenitic stainless steel continuous casting slab and the impact of heat treatment processes on its content. Through optical microscopy (OM), thermodynamic calculation software (Thermo–Calc) and heat treatment experiments, it is found that the residual ferrite content along the thickness direction at the width center of the slab exhibits an “M”-shaped distribution—lowest at the edges (approximately 3%) and highest near the center (approximately 13%). Within the triangular zone of the slab, the residual ferrite content varies between 1.8% and 12.2%, with its average along the thickness direction also showing an “M”-shaped distribution; along the width direction, the average residual ferrite content is lower at the edge positions, while within the internal triangular zone, it ranges between 8% and 10%. The ferrite morphology changes significantly across solidification zones: elongated in the surface fine-grain zone, lath-like and skeletal in the columnar grain zone and network-like in the central equiaxed grain zone. Thermodynamic calculations indicate that the solidification mode of the 304L continuous casting slab follows the FA mode. Heat treatment experiments conducted across the entire slab thickness demonstrate effective reduction in residual ferrite content; the optimal reduction is achieved at 1250 °C with a 48 min hold followed by air cooling while preserving the original “M”-shaped distribution characteristic after treatment. Increasing the heat treatment temperature, prolonging the holding time and reducing the cooling rate all contribute to reducing residual ferrite content. Full article
(This article belongs to the Special Issue Advanced Stainless Steel—from Making, Shaping, Treating to Products)
Show Figures

Figure 1

13 pages, 3292 KB  
Article
Topological Large-Area Waveguide States Based on THz Photonic Crystals
by Yulin Zhao, Feng Liang, Jingsen Li, Jianfei Han, Jiangyu Chen, Haihua Hu, Ke Zhang and Yuanjie Yang
Photonics 2025, 12(8), 791; https://doi.org/10.3390/photonics12080791 - 5 Aug 2025
Viewed by 502
Abstract
Terahertz (THz) has attracted substantial attention owing to its unique advantages in high-speed communications. However, conventional THz waveguide systems are inherently constrained by high transmission losses, stringent fabrication precision requirements, and extreme sensitivity to structural defects. Topological edge states with topological protection have [...] Read more.
Terahertz (THz) has attracted substantial attention owing to its unique advantages in high-speed communications. However, conventional THz waveguide systems are inherently constrained by high transmission losses, stringent fabrication precision requirements, and extreme sensitivity to structural defects. Topological edge states with topological protection have driven significant advancements in THz wave manipulation. Nevertheless, the width of the topological waveguide based on edge states remains restricted. In this work, we put forward a type of spin photonic crystal with three-layer heterostructures, where large-area topological waveguide states are demonstrated. The results show that these topological waveguide states are localized within the region of Dirac photonic crystals. They also display spin-momentum-locking characteristics and maintain strong robustness against defects and sharp bends. Furthermore, a THz beam splitter and a topological beam modulator are implemented. The designed heterostructures expand the applications of multi-functional topological devices and provide a prospective pathway for overcoming the waveguide bottleneck in THz applications. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

20 pages, 6322 KB  
Article
Alluvial Fan Fringe Reservoir Architecture Anatomy—A Case Study of the X4-X5 Section of the Xihepu Formation in the Kekeya Oilfield
by Baiyi Zhang, Lixin Wang and Yanshu Yin
Appl. Sci. 2025, 15(15), 8547; https://doi.org/10.3390/app15158547 - 31 Jul 2025
Viewed by 332
Abstract
The Kekeya oilfield is located at the southwestern edge of the Tarim Basin, in the southern margin of the Yecheng depression, at the western end of the second structural belt of the northern foothills of the Kunlun Mountains. It is one of the [...] Read more.
The Kekeya oilfield is located at the southwestern edge of the Tarim Basin, in the southern margin of the Yecheng depression, at the western end of the second structural belt of the northern foothills of the Kunlun Mountains. It is one of the important oil and gas fields in western China, with significant oil and gas resource potential in the X4-X5 section of the Xihepu Formation. This study focuses on the edge of the alluvial fan depositional system, employing various techniques, including core data and well logging data, to precisely characterize the sand body architecture and comprehensively analyze the reservoir architecture in the study area. First, the regional geological background of the area is analyzed, clarifying the sedimentary environment and evolutionary process of the Xihepu Formation. Based on the sedimentary environment and microfacies classification, the sedimentary features of the region are revealed. On this basis, using reservoir architecture element analysis, the interfaces of the reservoir architecture are finely subdivided. The spatial distribution characteristics of the planar architecture are discussed, and the spatial distribution and internal architecture of individual sand body units are analyzed. The study focuses on the spatial combination of microfacies units along the profile and their internal distribution patterns. Additionally, a quantitative analysis of the sizes of various types of sand bodies is conducted, constructing the sedimentary model for the region and revealing the control mechanisms of different sedimentary architectures on reservoir properties and oil and gas accumulation patterns. This study pioneers a quantitative model for alluvial fan fringe in gentle-slope basins, featuring the following: (1) lobe width-thickness ratios (avg. 128), (2) four base-level-sensitive boundary markers, and (3) a retrogradational stacking mechanism. The findings directly inform reservoir development in analogous arid-climate systems. This research not only provides a scientific basis for the exploration and development of the Kekeya oilfield but also serves as an important reference for reservoir architecture studies in similar geological contexts. Full article
Show Figures

Figure 1

13 pages, 1132 KB  
Review
M-Edge Spectroscopy of Transition Metals: Principles, Advances, and Applications
by Rishu Khurana and Cong Liu
Catalysts 2025, 15(8), 722; https://doi.org/10.3390/catal15080722 - 30 Jul 2025
Viewed by 682
Abstract
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides [...] Read more.
M-edge X-ray absorption spectroscopy (XAS), which probes 3p→3d transitions in first-row transition metals, provides detailed insights into oxidation states, spin-states, and local electronic structure with high element and orbital specificity. Operating in the extreme ultraviolet (XUV) region, this technique provides sharp multiplet-resolved features with high sensitivity to ligand field and covalency effects. Compared to K- and L-edge XAS, M-edge spectra exhibit significantly narrower full widths at half maximum (typically 0.3–0.5 eV versus >1 eV at the L-edge and >1.5–2 eV at the K-edge), owing to longer 3p core-hole lifetimes. M-edge measurements are also more surface-sensitive due to the lower photon energy range, making them particularly well-suited for probing thin films, interfaces, and surface-bound species. The advent of tabletop high-harmonic generation (HHG) sources has enabled femtosecond time-resolved M-edge measurements, allowing direct observation of ultrafast photoinduced processes such as charge transfer and spin crossover dynamics. This review presents an overview of the fundamental principles, experimental advances, and current theoretical approaches for interpreting M-edge spectra. We further discuss a range of applications in catalysis, materials science, and coordination chemistry, highlighting the technique’s growing impact and potential for future studies. Full article
(This article belongs to the Special Issue Spectroscopy in Modern Materials Science and Catalysis)
Show Figures

Graphical abstract

Back to TopTop