Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (140)

Search Parameters:
Keywords = ecosystem compartments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2014 KB  
Article
Leaf–Litter–Soil C:N:P Coupling Indicates Nitrogen and Phosphorus Limitation Across Subtropical Forest Types
by Bin Wang, Yongjun Yu, Nianchun Jiang, Jianwu Wang and Yuandan Ma
Forests 2026, 17(1), 68; https://doi.org/10.3390/f17010068 - 4 Jan 2026
Viewed by 164
Abstract
Ecological stoichiometry provides a useful lens for linking nutrient status to ecosystem functioning, but cross-compartment (green leaves, surface litter, and topsoil) evidence for subtropical secondary forests is still limited. In particular, it remains unclear how forest type regulates coupled carbon (C), nitrogen (N), [...] Read more.
Ecological stoichiometry provides a useful lens for linking nutrient status to ecosystem functioning, but cross-compartment (green leaves, surface litter, and topsoil) evidence for subtropical secondary forests is still limited. In particular, it remains unclear how forest type regulates coupled carbon (C), nitrogen (N), and phosphorus (P) patterns in leaves, litter, and soils on P-retentive Acrisols and how these patterns can be used to infer nutrient limitations. We measured C, N, and P concentrations and stoichiometric ratios in leaves, surface litter, and topsoil (0–10 cm) from 38 plots representing four dominant forest types (shrub, coniferous, mixed coniferous–broadleaf, and broadleaf) in subtropical public welfare forests of eastern China. We compared elemental concentrations and ratios among forest types and compartments and examined cross-compartment associations. Forest-type differences in stoichiometric patterns were most pronounced for leaf and soil concentrations/ratios, whereas litter metrics were comparatively conservative. Coniferous stands had the highest leaf C concentration and the highest litter C:N and C:P ratios, together with relatively low soil N and P concentrations. Broadleaf stands had the highest soil C and N concentrations and the highest litter and soil N:P, suggesting a tendency toward P limitation under comparatively N-rich conditions. Shrub and mixed forests were intermediate, with shrubs exhibiting the lowest litter N:P. Leaf N:P averaged 7.5 in coniferous stands and 12.5–14.9 in mixed and broadleaf stands. Coherent correlations of C:P from leaves to litter and soils and a negative relationship between leaf N:P and soil C:N suggested coordinated stoichiometric linkages along the leaf–litter–soil continuum. Overall, the results show that forest type organizes plot-scale C:N:P coupling on Acrisols and that leaf–litter–soil stoichiometry can be used as a practical framework for identifying whether N- versus P-related constraints are more likely to dominate different subtropical forest types and for informing nutrient-aware restoration and management. Full article
(This article belongs to the Special Issue Elemental Cycling in Forest Soils)
Show Figures

Figure 1

21 pages, 1010 KB  
Review
Microplastics in the Rural Environment: Sources, Transport, and Impacts
by Awnon Bhowmik and Goutam Saha
Pollutants 2026, 6(1), 3; https://doi.org/10.3390/pollutants6010003 - 4 Jan 2026
Viewed by 367
Abstract
Microplastics (MPs)—synthetic polymer particles less than 5 mm in size—have emerged as ubiquitous contaminants in terrestrial and aquatic environments worldwide, raising concerns about their ecological and human health impacts. While research has predominantly focused on urban and marine settings, evidence shows that rural [...] Read more.
Microplastics (MPs)—synthetic polymer particles less than 5 mm in size—have emerged as ubiquitous contaminants in terrestrial and aquatic environments worldwide, raising concerns about their ecological and human health impacts. While research has predominantly focused on urban and marine settings, evidence shows that rural ecosystems are also affected, challenging assumptions of pristine conditions outside cities and coasts. This review synthesizes current knowledge on the presence, pathways, and impacts of MPs in rural environments, highlighting complex contamination dynamics driven by both local sources (agricultural plastics, domestic waste, rural wastewater, and road runoff) and regional processes (atmospheric deposition, hydrological transport, and sediment transfer). Key findings highlight that rural lakes, streams, soils, and groundwater systems are active sinks and secondary sources of diverse MPs, predominantly polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) in fibrous and fragmented forms. These particles vary in size, density, and color, influencing their transport, persistence, and bioavailability. Ecological effects include bioaccumulation in freshwater species, soil degradation, and potential food chain transfer, while human exposure risks stem from contaminated groundwater, air, and locally produced food. Despite these growing threats, rural systems remain underrepresented in monitoring and policy frameworks. The article calls for context-specific mitigation strategies, enhanced wastewater treatment, rural waste management reforms, and integrated microplastics surveillance across environmental compartments. Full article
(This article belongs to the Section Plastic Pollution)
Show Figures

Figure 1

17 pages, 730 KB  
Review
Exploring the Muco-Microbiotic Interface as a Hub for Microbial Metabolites and Immune Regulation in Gastroenteric Health and Disease
by Adelaide Carista, Melania Ionelia Gratie, Enrico Tornatore, Salvatore Accomando, Giovanni Tomasello, Domiziana Picone, Stefano Burgio and Francesco Cappello
Cells 2026, 15(1), 45; https://doi.org/10.3390/cells15010045 - 25 Dec 2025
Viewed by 456
Abstract
The mucus layer covering the gastrointestinal tract forms a specialised interface where mucins, microbes, and extracellular vesicles create a dynamic, self-regulating ecosystem. Here, we introduce the concept of the muco-microbiotic layer as an integrated eco-physiological system that maintains mucosal homeostasis through coordinated structural, [...] Read more.
The mucus layer covering the gastrointestinal tract forms a specialised interface where mucins, microbes, and extracellular vesicles create a dynamic, self-regulating ecosystem. Here, we introduce the concept of the muco-microbiotic layer as an integrated eco-physiological system that maintains mucosal homeostasis through coordinated structural, metabolic, and immune functions. The MuMi layer varies regionally in its biochemical composition, microbial inhabitants, and environmental parameters—from the acidic stomach to the anaerobic colon—thereby generating distinct niches for microbial colonisation and metabolite production. We summarise current evidence on how mucin glycans, mucus-associated microbiota, and vesicle-mediated signalling sustain barrier integrity, nutrient flux, and immune tolerance. Perturbations in any of these components lead to barrier failure, microbial encroachment, and inflammation, contributing to a broad spectrum of disorders, including gastritis, inflammatory bowel disease, colorectal cancer, and metabolic syndrome. Methodological advances such as organoid and mucus-on-chip models, spatial multi-omics, and vesiculomics are now enabling site-specific analyses of this complex system. Conceptually, defining the mucus, microbiota, and vesicular compartments as a single MuMi layer provides a new framework for understanding mucosal physiology and pathophysiology, emphasising the interdependence between structure and function. Integrating this perspective into experimental and clinical research may open new avenues for diagnostics and therapies targeting mucosal health. Full article
Show Figures

Figure 1

27 pages, 4316 KB  
Article
Multi-Objective Optimization of Socio-Ecological Systems for Global Warming Mitigation
by Pablo Tenoch Rodriguez-Gonzalez, Alejandro Orozco-Calvillo, Sinue Arnulfo Tovar-Ortiz, Elvia Ruiz-Beltrán and Héctor Antonio Olmos-Guerrero
World 2025, 6(4), 168; https://doi.org/10.3390/world6040168 - 16 Dec 2025
Viewed by 373
Abstract
Socio-ecological systems (SESs) exhibit nonlinear feedback across environmental, social, and economic processes, requiring integrative analytical tools capable of representing such coupled dynamics. This study presents a quantitative framework that integrates a compartmental model of a global human–ecosystem with two complementary optimization approaches (Fisher [...] Read more.
Socio-ecological systems (SESs) exhibit nonlinear feedback across environmental, social, and economic processes, requiring integrative analytical tools capable of representing such coupled dynamics. This study presents a quantitative framework that integrates a compartmental model of a global human–ecosystem with two complementary optimization approaches (Fisher Information (FI) and Multi-Objective Optimization (MOO)) to evaluate policy strategies for sustainability. The model represents biophysical and socio-economic interactions across 15 compartments, incorporating feedback loops between greenhouse gas (GHG) accumulation, temperature anomalies, and trophic–economic dynamics. Six policy-relevant decision variables were selected (wild plant mortality, sectoral prices (agriculture, livestock, and industry), base wages, and resource productivity) and optimized under temporal (25-year) and magnitude (±10%) constraints to ensure policy realism. FI-based optimization enhances system stability, whereas the MOO framework balances environmental, social, and economic objectives using the Ideal Point Method. Both approaches prevent the systemic collapse observed in the baseline scenario. The FI and MOO strategies reduce terminal global temperature by 11.4% and 15.0%, respectively, relative to the baseline (35 °C → 31.0 °C under FI; 35 °C → 29.7 °C under MOO). Resource-use efficiency, measured through the resource requirement coefficient (λ), improves by 8–10% under MOO (0.6767 → 0.6090) and by 6–7% under FI (0.6668 → 0.6262). These outcomes offer actionable guidance for long-term climate policy at national and international scales. The MOO framework provided the most balanced outcomes, enhancing environmental and social performance while maintaining economic viability. Overall, the integration of optimization and information-theoretic approaches within SES models can support evidence-based public policy design, offering actionable pathways toward resilient, efficient, and equitable sustainability transitions. Full article
Show Figures

Graphical abstract

14 pages, 4003 KB  
Perspective
Advancing Aquatic Ecotoxicology Testing of Anticancer Drugs Through Mesocosms
by Andrea Carboni and Matteo Calvaresi
Molecules 2025, 30(24), 4787; https://doi.org/10.3390/molecules30244787 - 15 Dec 2025
Viewed by 337
Abstract
The widespread use of anticancer drugs (ACDs) in human therapies determines the occurrence of these potent cytotoxic chemicals into aquatic ecosystems. Nowadays, ACDs are ubiquitous contaminants in wastewater effluents and freshwater compartments, raising urgent questions about their environmental impact. Designed to disrupt cellular [...] Read more.
The widespread use of anticancer drugs (ACDs) in human therapies determines the occurrence of these potent cytotoxic chemicals into aquatic ecosystems. Nowadays, ACDs are ubiquitous contaminants in wastewater effluents and freshwater compartments, raising urgent questions about their environmental impact. Designed to disrupt cellular proliferation, these compounds are inherently bioactive and can exert toxic effects on non-target organisms even at trace concentrations. Conventional fate and toxicity tests provide important initial data but are limited in ecological realism, often focusing on single-specie and single-endpoint under controlled conditions and overlooking complex interactions, trophic dynamics, and long-term chronic exposures. Knowledge of all these aspects is needed for proper monitoring, assessment, and regulation of ACDs. Simulated ecosystem experiments, such as mesocosms, provide intermediate-scale, semi-controlled platforms for investigating real-world exposure scenarios, assessing ACD fate, and identifying both direct and indirect ecological effects. They offer distinct advantages for evaluating the chronic toxicity of persistent pollutants by enabling realistic long-term contamination simulations and supporting the simultaneous collection of comprehensive hazard and exposure endpoints. This perspective underscores the growing concern surrounding the contamination of ACDs, examines the limitations of traditional assessment approaches, and advocates for mesocosm-based studies as a critical bridge between laboratory research and ecosystem-level understanding. By integrating mesocosm experiments into environmental fate and risk evaluation, we can better predict the behavior and ecological consequences of anticancer pharmaceuticals, guiding strategies to mitigate their impact on aquatic life. Full article
Show Figures

Graphical abstract

17 pages, 4587 KB  
Article
Unsupervised Cluster Analysis of Eddy Covariance Flux Footprints from SMEAR Estonia and Integration with Forest Growth Data
by Anuj Thapa Magar, Dmitrii Krasnov, Allar Padari, Emílio Graciliano Ferreira Mercuri and Steffen M. Noe
Geomatics 2025, 5(4), 70; https://doi.org/10.3390/geomatics5040070 - 27 Nov 2025
Viewed by 350
Abstract
Eddy covariance measurements are increasingly utilized for assessing the exchange of matter and energy between ecosystems and the atmosphere across various time scales, ranging from hours to years. The flux footprint represents the area observable by flux tower sensors and illustrates how the [...] Read more.
Eddy covariance measurements are increasingly utilized for assessing the exchange of matter and energy between ecosystems and the atmosphere across various time scales, ranging from hours to years. The flux footprint represents the area observable by flux tower sensors and illustrates how the surface influences the measured flux. Flux footprint models describe both the spatial extent and the specific location of the surface area contributing to the observed turbulent fluxes. In this study, we applied a simple two-dimensional parameterization for flux footprint prediction (FFP), developed by Kljun et al. to identify the location of peak footprint contribution every half hour over a six-year period. Monthly cluster analysis was performed on these data. Using an open-source geographic information system (GIS) software, the resulting clusters were overlaid on a base map of the site obtained from the Estonian Land Board, where different compartments have varying growth stages and species compositions. Our main objective was to integrate forest inventory data with ecosystem exchange and productivity data continuously recorded by the eddy covariance measurement tower at Järvselja, Estonia. This integration enabled spatially explicit visualization of half-hourly flux contributions using geographic information system software. Full article
Show Figures

Figure 1

19 pages, 2073 KB  
Article
A Deep Learning Approach for Microplastic Segmentation in Microscopic Images
by Yuan Yao, Wending Xu and Haoxin Fan
Toxics 2025, 13(12), 1018; https://doi.org/10.3390/toxics13121018 - 25 Nov 2025
Viewed by 709
Abstract
The ubiquitous presence of microplastics across environmental compartments presents a formidable ecotoxicological and risk assessment challenge, fundamentally complicated by the link between microplastic morphology and differential toxicological outcomes. Current analytical methods face a significant measurement bottleneck, hindering the precise, high-throughput characterization needed for [...] Read more.
The ubiquitous presence of microplastics across environmental compartments presents a formidable ecotoxicological and risk assessment challenge, fundamentally complicated by the link between microplastic morphology and differential toxicological outcomes. Current analytical methods face a significant measurement bottleneck, hindering the precise, high-throughput characterization needed for robust mechanistic and exposure studies. To address this, we introduce MNv4-Conv-M-fpn, a novel deep learning model specifically engineered for multi-class microplastic segmentation and morphological characterization from microscopic images. This model is designed to provide the toxicologically-relevant granularity required for rigorous risk assessment, segmenting images into six classes: five distinct microplastic categories (fiber, fragment, sphere, foam, and film) and the background. By incorporating advanced architectural features—including transfer learning, a Feature Pyramid Network, and a Feature Fusion Module—our approach achieves high accuracy, computational efficiency, and near real-time inference speed. Comprehensive validation using a diverse dataset demonstrates that MNv4-Conv-M-fpn outperforms existing segmentation methods while maintaining low computational load. This makes the model well-suited for high-throughput deployment in environmental laboratories and resource-constrained monitoring efforts. This approach offers a valuable tool for environmental monitoring, enabling more precise and scalable analysis of microplastic pollution in various ecosystems. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Graphical abstract

19 pages, 2148 KB  
Article
Benthic Producers, Methane Carbon, and Diazotrophic Nitrogen as Sources of Nutrients in the Food Web of a Subarctic Lake
by Nadezhda A. Berezina, Yulia I. Gubelit and Alexey A. Maximov
Diversity 2025, 17(11), 799; https://doi.org/10.3390/d17110799 - 17 Nov 2025
Viewed by 429
Abstract
The majority of research on food webs has focused on temperate lakes, and little is known about the food web of lakes in polar regions. Subarctic lakes are particularly sensitive to climate change, which affects their stability. Therefore, the trophic structure of the [...] Read more.
The majority of research on food webs has focused on temperate lakes, and little is known about the food web of lakes in polar regions. Subarctic lakes are particularly sensitive to climate change, which affects their stability. Therefore, the trophic structure of the food web in such lakes was considered as the object of this study. We studied a clear-water oligotrophic lake located in the subarctic region of Eurasia, specifically in northern Karelia and the White Sea coast of Russia. The study examined both open water periods (summer–autumn) and ice-covered periods (winter–spring) in this lake. Stable isotope analysis of carbon (13C/12C ratio or δ13C value) and nitrogen (15N/14N, δ15N) in producers and consumers was applied and revealed significant seasonal variations in the structure of the food web. The results indicate the presence of both pelagic and littoral/benthic food web compartments, with a notable contribution of autochthonous carbon derived from benthic sources. Omnivorous fish (perch, Perca fluviatilis; vendace, Coregonus albula; nine-spined sticklebacks, Pungitius pungitius) and some benthic invertebrates (mayfly, Ephemera vulgata; bivalves, Sphaerium corneum) had intermediate δ13C values, integrating these compartments by obtaining resources from both. Planktonic invertebrates had significantly depleted 13C, with the lowest δ13C value reaching −41.7‰, indicating an important contribution of methane-derived carbon. The study also revealed close trophic relationships between lake invertebrates and cyanobacteria, namely with planktonic Dolichospermum lemmermannii and benthic Phormidium sp. Seasonal changes in δ15N values and in trophic position have been observed among predacious omnivorous fish and crustaceans (amphipods, Gammaracanthus loricatus, and copepods, Cyclops scutifer), which are capable of a generalist feeding strategy depending on food availability. Using the example of this lake, it can be concluded that polar lake ecosystems are characterized by different seasonal intakes of allochthonous organic carbon from wetland catchment (humic compounds) and nitrogen because of nitrogen fixation in the air by cyanoprocaryotes. Alternative energy sources, such as carbon derived from methane, can also contribute to the energy balance of lake ecosystems. This study contributes to our understanding of energy flow and connectivity between producers and consumers in high-latitude lakes. Full article
Show Figures

Figure 1

5 pages, 151 KB  
Editorial
Multiple Effects, Pathways, and Potential Health Risks from Environmental Microplastic Exposure
by Lei Su
Toxics 2025, 13(11), 976; https://doi.org/10.3390/toxics13110976 - 13 Nov 2025
Viewed by 435
Abstract
After nearly two decades of extensive research, microplastics (MPs) have been documented in virtually all ecosystems and across diverse environmental compartments [...] Full article
17 pages, 681 KB  
Article
Maternal and Environmental Drivers of Trace Mineral Dynamics in Camel Dams and Neonates Across Regions and Seasons in Saudi Arabia
by Mutassim M. Abdelrahman, Ibrahim A. Alhidary, Ahmad A. Aboragah, Mohammed M. Qaid, Mohammed A. Al-Badwi, Abdulkareem M. Matar, Mohsen M. Alobre, Ramzi A. Amran and Riyadh S. Aljumaah
Life 2025, 15(11), 1730; https://doi.org/10.3390/life15111730 - 10 Nov 2025
Viewed by 494
Abstract
Background: Dromedary camel in Saudi Arabia thrive across diverse desert ecosystems where trace minerals are vital for key physiological functions, yet data on how regional and seasonal factors affect these minerals in dams and neonates are limited. Aim: This study investigated the effects [...] Read more.
Background: Dromedary camel in Saudi Arabia thrive across diverse desert ecosystems where trace minerals are vital for key physiological functions, yet data on how regional and seasonal factors affect these minerals in dams and neonates are limited. Aim: This study investigated the effects of regional and seasonal variability on trace mineral status in dam serum (DS), dam milk (DM), and neonatal serum (NS) across major camel-rearing regions of Saudi Arabia. We hypothesized that environmental factors—particularly heat stress and local feed resources—drive regional and seasonal differences in mineral profiles and maternal–neonatal transfer. Methods: Samples of serum, milk, feed, water, and soil were collected from five major regions during three seasons. Concentrations of selenium (Se), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and iodine (I) were quantified, and correlations among biological compartments were analyzed. Meteorological data were used to compute the temperature-humidity index (THI). Results: The THI ranged from thermoneutral levels in the Northern winter (17.4) to severe heat stress in Eastern summer (33.8). Milk minerals exhibited strong seasonal and regional effects, with selenium peaking in summer and zinc in spring. Western dams showed elevated iron and iodine, whereas northern dams had higher zinc. Serum minerals in dams varied moderately with season but differed regionally for zinc, selenium, and iron. Neonatal serum reflected maternal and regional influences, showing significant season-by-region interactions for selenium and iodine. Positive correlations indicated coordinated maternal–neonatal mineral transfer, particularly for selenium, iodine, and zinc. Feed represented the main environmental source of Cu and Se. In conclusion, camel trace mineral status is mainly driven by environmental factors but regulated through maternal transfer, with selenium and iodine emerging as key heat-stress markers supporting targeted, region- and season-specific supplementation to improve health and productivity in arid regions. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

17 pages, 12883 KB  
Article
Rhizosphere Bacterial Diversity and Community Structure of Kobresia humilis in the Alpine Meadow of Eastern Qinghai–Tibetan Plateau and Its Response to Environmental Variables
by Qingqing Peng, Jing Guo, Zengzeng Yang, Xianbin Hou, Zhengzhou Yang and Zhengjie Zhu
Diversity 2025, 17(10), 723; https://doi.org/10.3390/d17100723 - 17 Oct 2025
Viewed by 760
Abstract
Kobresia humilis, an alpine meadow-constructive species, has significant ecological and economic importance on the Qinghai–Tibetan Plateau (QTP). Understanding the diversity and structure of the rhizosphere microbiota associated with K. humilis is essential for advancing microbiome engineering aimed at promoting sustainable ecosystem functioning [...] Read more.
Kobresia humilis, an alpine meadow-constructive species, has significant ecological and economic importance on the Qinghai–Tibetan Plateau (QTP). Understanding the diversity and structure of the rhizosphere microbiota associated with K. humilis is essential for advancing microbiome engineering aimed at promoting sustainable ecosystem functioning in alpine meadows. However, little is known about the composition of bacterial community associated with K. humilis and the environmental drivers affecting microbiota assembly on a larger scale. This study revealed that bacterial communities inhabiting the rhizosphere exhibited greater diversity and higher compositional dissimilarity than those within the root compartment (ANOSIM, R = 0.86, p = 0.001). The bacterial genus Sphingomonas was identified as the predominant taxon in both microbial niches. A total of 196 and 176 core genera were detected in the roots and rhizosphere, respectively, with chemoheterotrophy and aerobic chemoheterotrophy representing the dominant functional groups. Co-occurrence network analysis identified hub genera, including Sphingomonas, Rhodomicrobium, Rhizobacter, and Phyllobacterium within root, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Acidibacter, RB41, and Sphingomonas in the rhizosphere. Among the sampling sites, Haiyan (HY) emerged as the central hub (EICHY = 1), followed by Tianjun (EICroot = 0.98; EICsoil = 0.99) and Xinghai (EICroot = 0.97; EICsoil = 0.95). Redundancy analysis indicated that bacterial abundance in roots was significantly influenced by geographic variables, temperature, and edaphic factors, whereas bacterial communities in the rhizosphere were primarily affected by latitude, altitude, pH, and climatic conditions (p < 0.05). Furthermore, the core bacterial genera exhibited stronger correlations with geographic and edaphic parameters than with climatic factors (p < 0.05). Collectively, these results enhance the current understanding of K. humilis–microbe–environment interactions within the alpine meadow ecosystems of the QTP. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Graphical abstract

14 pages, 2494 KB  
Article
Gastrointestinal Survivability of a BSH-Positive Lacticaseibacillus rhamnosus VB4 Strain and Its Effect on Bile Acid Deconjugation in a Dynamic In Vitro Gut Model
by Amanda Vaccalluzzo, Gianluigi Agolino, Alessandra Pino, Marianna Cristofolini, Davide Tagliazucchi, Alice Cattivelli, Cinzia Caggia, Lisa Solieri and Cinzia Lucia Randazzo
Nutrients 2025, 17(19), 3179; https://doi.org/10.3390/nu17193179 - 8 Oct 2025
Viewed by 1031
Abstract
Background: Bile salt hydrolase (BSH) is a key probiotic trait, as it facilitates both host metabolism and bacterial survival into the gastrointestinal tract (GIT), through bile acid (BA) deconjugation, keeping intestinal homeostasis. Objectives: The present study aims to investigate the viability of the [...] Read more.
Background: Bile salt hydrolase (BSH) is a key probiotic trait, as it facilitates both host metabolism and bacterial survival into the gastrointestinal tract (GIT), through bile acid (BA) deconjugation, keeping intestinal homeostasis. Objectives: The present study aims to investigate the viability of the Lacticaseibacillus rhamnosus VB4 strain and its effects on bile acid deconjugation during the gastrointestinal tract (GIT) passage, under a fed condition, using the in vitro SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) model. Methods: Gastric, small intestinal and colonic fractions were monitored and a fecal slurry from a healthy donor was inoculated into the colonic compartment to establish the intestinal microbiota. Samples were collected at the end of stomach, duodenum, jejunum, ileum phases, and colon after 0, 16 and 24 h. Strain survival was assessed by culturing method, and bsh gene expression was revealed by quantitative PCR (qPCR). In addition, UHPLC/HR-MS was performed to reveal the hypothetical changes in BAs profile after strain administration. Results: Good survivability of the VB4 strain in the upper GIT was revealed. Furthermore, VB4-inculated sample showed sustained expression of bsh in both the stomach/small intestine and colon fractions at all sampling times. Analysis of the BAs profile shown that the VB4 strain reduced the levels of the main conjugated BAs in the small intestine under fed condition and improved the deconjugation efficiency during colonic transit compared with the control. Conclusions: These findings highlight the survivability of L. rhamnosus VB4 strain inside the gut and its potential as biotherapeutic BAs-mediator candidate, demonstrating that transcriptomic and metabolomic approaches coupled to a dynamic in vitro gut model represent a robust tool for selection of a BSH-positive probiotic candidate. Full article
(This article belongs to the Topic News and Updates on Probiotics)
Show Figures

Graphical abstract

12 pages, 781 KB  
Article
Assessment of the Effect of PHBV-Based Bioplastic Microparticles on Soil Organisms
by Ewa Liwarska-Bizukojc and Marcin Bizukojc
Sustainability 2025, 17(17), 7778; https://doi.org/10.3390/su17177778 - 29 Aug 2025
Viewed by 764
Abstract
(1) Background: A bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is used in agriculture and in other applications like shopping bags, toys, and containers. Since the production of bio-based plastics, including PHBV-based materials, is expected to increase within the next few years, they are prone to becoming [...] Read more.
(1) Background: A bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is used in agriculture and in other applications like shopping bags, toys, and containers. Since the production of bio-based plastics, including PHBV-based materials, is expected to increase within the next few years, they are prone to becoming ubiquitous pollutants of the soil compartment. (2) Methods: An innovative PHBV-based plastic material was tested for its effect on higher plants and earthworms at the community level in a small-terrestrial model ecosystem (STME). The leachates obtained from PHBV-based plastic were studied with the use of ecotoxicological tests with regard to their impact on the early stages of the growth of higher plants and with the use of LC/MS toward the identification of the released chemical compounds. (3) Results: PHBV-based plastic microparticles at the relatively high but environmentally relevant concentration of 2.5% w/w neither affected the germination of higher plants nor inhibited their growth. The synthesis of chlorophyll and the C:N ratio in the plant biomass did not deteriorate, but the content of dry matter of the plant biomass was reduced at a statistically significant level. PHBV-based microplastics did not contribute to the mortality of Eisenia andrei, whereas they affected the depth distribution of these earthworms in the soil. Their downward movement indicated the avoidance behaviour under unfavourable living conditions. In the leachates from PHBV-based bioplastic, lactic acid and glycerol triacetate, commonly used plastic additives, were identified. These leachates did not inhibit the germination and the early stages of growth of higher plants. (4) Conclusions: PHBV-based bioplastic was studied at a concentration not higher than 2.5% w/w, and its leachates do not pose a threat to soil biota and should not affect the sustainability of the terrestrial ecosystem. Full article
(This article belongs to the Special Issue Soil Pollution, Soil Ecology and Sustainable Land Use)
Show Figures

Figure 1

14 pages, 5954 KB  
Article
Mapping Wet Areas and Drainage Networks of Data-Scarce Catchments Using Topographic Attributes
by Henrique Marinho Leite Chaves, Maria Tereza Leite Montalvão and Maria Rita Souza Fonseca
Water 2025, 17(15), 2298; https://doi.org/10.3390/w17152298 - 2 Aug 2025
Cited by 1 | Viewed by 803
Abstract
Wet areas, which are locations in the landscape that consistently retain moisture, and channel networks are important landscape compartments, with key hydrological and ecological functions. Hence, defining their spatial boundaries is an important step towards sustainable watershed management. In catchments of developing countries, [...] Read more.
Wet areas, which are locations in the landscape that consistently retain moisture, and channel networks are important landscape compartments, with key hydrological and ecological functions. Hence, defining their spatial boundaries is an important step towards sustainable watershed management. In catchments of developing countries, wet areas and small order channels of river networks are rarely mapped, although they represent a crucial component of local livelihoods and ecosystems. In this study, topographic attributes generated with a 30 m SRTM DEM were used to map wet areas and stream networks of two tropical catchments in Central Brazil. The topographic attributes for wet areas were the local slope and the slope curvature, and the Topographic Wetness Index (TWI) was used to delineate the stream networks. Threshold values of the selected topographic attributes were calibrated in the Santa Maria catchment, comparing the synthetically generated wet areas and drainage networks with corresponding reference (map) features, and validated in the nearby Santa Maria basin. Drainage network and wet area delineation accuracies were estimated using random basin transects and multi-criteria and confusion matrix methods. The drainage network accuracies were 67.2% and 70.7%, and wet area accuracies were 72.7% and 73.8%, for the Santa Maria and Gama catchments, respectively, being equivalent or higher than previous studies. The mapping errors resulted from model incompleteness, DEM vertical inaccuracy, and cartographic misrepresentation of the reference topographic maps. The study’s novelty is the use of readily available information to map, with simplicity and robustness, wet areas and channel initiation in data-scarce, tropical environments. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 1628 KB  
Review
Microplastics in Aquatic Ecosystems: A Global Review of Distribution, Ecotoxicological Impacts, and Human Health Risks
by Atiqur Rahman Sunny, Sharif Ahmed Sazzad, Mohammed Ariful Islam, Mahmudul Hasan Mithun, Monayem Hussain, António Raposo and Md Khurshid Alam Bhuiyan
Water 2025, 17(12), 1741; https://doi.org/10.3390/w17121741 - 9 Jun 2025
Cited by 12 | Viewed by 12298
Abstract
Microplastics (MPs), defined as synthetic polymer particles less than 5 mm in diameter, are widely acknowledged as ubiquitous contaminants in aquatic ecosystems, including freshwater, marine, and polar environments. Global concern with MPs has significantly increased; nevertheless, much of the current knowledge remains fragmented [...] Read more.
Microplastics (MPs), defined as synthetic polymer particles less than 5 mm in diameter, are widely acknowledged as ubiquitous contaminants in aquatic ecosystems, including freshwater, marine, and polar environments. Global concern with MPs has significantly increased; nevertheless, much of the current knowledge remains fragmented and, at times, limited to specific regions or ecological compartments. This study emphasizes the necessity of a thorough synthesis by critically analyzing global microplastics’ dispersion patterns, ecological consequences, and associated human health concerns. A systematic approach was employed, integrating specific search terms and establishing inclusion and exclusion criteria across various scientific databases to obtain a representative collection of literature. The study covers important topics such as the classification of MPs, their distribution, environmental impacts, and interactions with other pollutants, including heavy metals, pharmaceuticals and endocrine-disrupting chemicals. Particular emphasis is placed on comparing ecosystem-specific vulnerabilities, such as those found in tropical wetlands, marine gyres, and polar systems. The review examines potential human exposure pathways, via contaminated seafood, water, and air, while also compiling new information about cellular and physiological damage, including oxidative stress, inflammation, hormone disruption, and possible genetic effects. This investigation highlights the value of collaborative monitoring, the adoption of biodegradable alternatives, policy development, and interdisciplinary research by integrating knowledge from ecology and public health. The primary objective is to advance ecosystem-specific mitigation techniques and promote evidence-based policy development in addressing this intricate environmental issue. Full article
(This article belongs to the Special Issue Impact of Microplastic Pollution on Soil and Groundwater Environment)
Show Figures

Figure 1

Back to TopTop