Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,510)

Search Parameters:
Keywords = economic model of sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3001 KiB  
Article
Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
by Meiqing Xu, Zilong Yao, Yuxin Lu and Chunru Xiong
Sustainability 2025, 17(15), 7170; https://doi.org/10.3390/su17157170 (registering DOI) - 7 Aug 2025
Abstract
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that [...] Read more.
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that combines a dynamic food web model with the Eco-Economic Benefit and Sustainability (EEBS) model, utilizing empirical data from Brazil and Ghana. A system of ordinary differential equations solved using the fourth-order Runge–Kutta method was employed to simulate species interactions and energy flows under various land management strategies. Reintroducing key species (e.g., the seven-spot ladybird and ragweed) improved ecosystem stability to over 90%, with soil fertility recovery reaching 95%. In herbicide-free scenarios, introducing natural predators such as bats and birds mitigated disturbances and promoted ecological balance. Using XGBoost (Extreme Gradient Boosting) to analyze 200-day community dynamics, pest control, resource allocation, and chemical disturbance were identified as dominant drivers. EEBS-based multi-scenario optimization revealed that organic farming achieves the highest alignment between ecological restoration and economic benefits. The model demonstrated strong predictive power (R2 = 0.9619, RMSE = 0.0330), offering a quantitative basis for green agricultural transitions and sustainable agroecosystem management. Full article
(This article belongs to the Section Sustainable Agriculture)
111 pages, 6426 KiB  
Article
Economocracy: Global Economic Governance
by Constantinos Challoumis
Economies 2025, 13(8), 230; https://doi.org/10.3390/economies13080230 (registering DOI) - 7 Aug 2025
Abstract
Economic systems face critical challenges, including widening income inequality, unemployment driven by automation, mounting public debt, and environmental degradation. This study introduces Economocracy as a transformative framework aimed at addressing these systemic issues by integrating democratic principles into economic decision-making to achieve social [...] Read more.
Economic systems face critical challenges, including widening income inequality, unemployment driven by automation, mounting public debt, and environmental degradation. This study introduces Economocracy as a transformative framework aimed at addressing these systemic issues by integrating democratic principles into economic decision-making to achieve social equity, economic efficiency, and environmental sustainability. The research focuses on two core mechanisms: Economic Productive Resets (EPRs) and Economic Periodic Injections (EPIs). EPRs facilitate proportional redistribution of resources to reduce income disparities, while EPIs target investments to stimulate job creation, mitigate automion-related job displacement, and support sustainable development. The study employs a theoretical and analytical methodology, developing mathematical models to quantify the impact of EPRs and EPIs on key economic indicators, including the Gini coefficient for inequality, unemployment rates, average wages, and job displacement due to automation. Hypothetical scenarios simulate baseline conditions, EPR implementation, and the combined application of EPRs and EPIs. The methodology is threefold: (1) a mathematical–theoretical validation of the Cycle of Money framework, establishing internal consistency; (2) an econometric analysis using global historical data (2000–2023) to evaluate the correlation between GNI per capita, Gini coefficient, and average wages; and (3) scenario simulations and Difference-in-Differences (DiD) estimates to test the systemic impact of implementing EPR/EPI policies on inequality and labor outcomes. The models are further strengthened through tools such as OLS regression, and Impulse results to assess causality and dynamic interactions. Empirical results confirm that EPR/EPI can substantially reduce income inequality and unemployment, while increasing wage levels, findings supported by both the theoretical architecture and data-driven outcomes. Results demonstrate that Economocracy can significantly lower income inequality, reduce unemployment, increase wages, and mitigate automation’s effects on the labor market. These findings highlight Economocracy’s potential as a viable alternative to traditional economic systems, offering a sustainable pathway that harmonizes growth, social justice, and environmental stewardship in the global economy. Economocracy demonstrates potential to reduce debt per capita by increasing the efficiency of public resource allocation and enhancing average income levels. As EPIs stimulate employment and productivity while EPRs moderate inequality, the resulting economic growth expands the tax base and alleviates fiscal pressures. These dynamics lead to lower per capita debt burdens over time. The analysis is situated within the broader discourse of institutional economics to demonstrate that Economocracy is not merely a policy correction but a new economic system akin to democracy in political life. Full article
Show Figures

Figure 1

17 pages, 1786 KiB  
Article
Simulation and Control of Water Pollution Load in the Xiaoxingkai Lake Basin Based on a System Dynamics Model
by Yaping Wu, Dan Chen, Fujia Li, Mingming Feng, Ping Wang, Lingang Hao and Chunnuan Deng
Sustainability 2025, 17(15), 7167; https://doi.org/10.3390/su17157167 (registering DOI) - 7 Aug 2025
Abstract
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment [...] Read more.
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment model based on the system dynamics methodology, incorporating subsystems for population, agriculture, and water pollution. The model focuses on four key indicators of pollution severity, namely, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and ammonia nitrogen (NH3-N), and simulates the changes in pollutant loads entering the river under five different scenarios from 2020 to 2030. The results show that agricultural non-point sources are the primary contributors to TN (79.5%) and TP (73.7%), while COD primarily originates from domestic sources (64.2%). NH3-N is mainly influenced by urban domestic activities (44.7%) and agricultural cultivation (41.2%). Under the status quo development scenario, pollutant loads continue to rise, with more pronounced increases under the economic development scenario, thus posing significant sustainability risks. The pollution control enhancement scenario is most effective in controlling pollutants, but it does not promote socio-economic development and has high implementation costs, failing to achieve coordinated socio-economic and environmental development in the region. The dual-reinforcement scenario and moderate-reinforcement scenario achieve a balance between pollution control and economic development, with the moderate-reinforcement scenario being more suitable for long-term regional development. The findings can provide a scientific basis for water resource management and planning in the Xiaoxingkai Lake basin. Full article
31 pages, 891 KiB  
Article
Corporate Digital Transformation and Capacity Utilization Rate: The Functionary Path via Technological Innovation
by Yang Liu, Hongyan Zhang, Xiang Gao and Yanxiang Xie
Int. J. Financial Stud. 2025, 13(3), 144; https://doi.org/10.3390/ijfs13030144 (registering DOI) - 7 Aug 2025
Abstract
The rapid development of digital technology is reshaping the global economic landscape. However, its impact on firms’ capacity utilization rate (CUR), particularly through technological innovation, remains unclear. This study investigates this issue by developing an endogenous growth model that connects digital technology to [...] Read more.
The rapid development of digital technology is reshaping the global economic landscape. However, its impact on firms’ capacity utilization rate (CUR), particularly through technological innovation, remains unclear. This study investigates this issue by developing an endogenous growth model that connects digital technology to CUR. The empirical analysis is based on data from Chinese A-share manufacturing firms. The methods employed include quantile regression, instrumental variable techniques, and various tests to explore underlying mechanisms. CUR is calculated using a special model that looks at random variations, and digital transformation is assessed using text analysis powered by machine learning. The findings indicate that digital transformation significantly enhances CUR, especially for firms with average capacity utilization levels, but has a limited effect on low- and high-end firms. Moreover, technological innovation mediates this relationship; however, factors like “double arbitrage” (involving policy and capital markets) and “herd effects” tend to prioritize quantity over quality, which constrains innovation potential. Improvements in CUR lead to enhanced firm performance and productivity, generating industry spillovers and demonstrating the broader economic externalities of digitalization. This study uniquely applies endogenous growth theory to examine the role of digital transformation in optimizing CUR. It introduces the “quantity-quality” technology innovation paradox as a crucial mechanism and highlights industry spillovers to address overcapacity while offering insights for fostering sustainable economic and social development in emerging markets. Full article
Show Figures

Figure 1

23 pages, 7494 KiB  
Article
Temporal and Spatial Evolution of Grey Water Footprint in the Huai River Basin and Its Influencing Factors
by Xi Wang, Yushuo Zhang, Qi Wang, Jing Xu, Fuju Xie and Weiying Xu
Sustainability 2025, 17(15), 7157; https://doi.org/10.3390/su17157157 (registering DOI) - 7 Aug 2025
Abstract
To evaluate water pollution status and sustainable development potential in the Huai River Basin, this study focused on the spatiotemporal evolution and influencing factors of the grey water footprint (GWF) across 35 cities in the basin from 2005 to 2020. This study quantifies [...] Read more.
To evaluate water pollution status and sustainable development potential in the Huai River Basin, this study focused on the spatiotemporal evolution and influencing factors of the grey water footprint (GWF) across 35 cities in the basin from 2005 to 2020. This study quantifies the GWF from agricultural, industrial, and domestic perspectives and analyzes its spatial disparities by incorporating spatial autocorrelation analysis. The Tapio decoupling model was applied to explore the relationship between pollution and economic growth, and geographic detectors along with the STIRPAT model were utilized to identify driving factors. The results revealed no significant global spatial clustering of GWF in the basin, but a pattern of “high in the east and west, low in the north and south” emerged, with high-value areas concentrated in southern Henan and northern Jiangsu. By 2020, 85.7% of cities achieved strong decoupling, indicating improved coordination between the environment and economy. Key driving factors included primary industry output, crop sown area, and grey water footprint intensity, with a notable interaction between agricultural output and grey water footprint intensity. The quantitative analysis based on the STIRPAT model demonstrated that seven factors, including grey water footprint intensity and total crop sown area, exhibited significant contributions to influencing variations. Ranked by importance, these factors were grey water footprint intensity > total crop sown area > urbanization rate > population size > secondary industry output > primary industry output > industrial wastewater discharge, collectively explaining 90.2% of the variability in GWF. The study provides a robust scientific basis for water pollution control and differentiated management in the river basin and holds significant importance for promoting sustainable development of the basin. Full article
Show Figures

Figure 1

44 pages, 4978 KiB  
Review
Performance of Continuous Electrocoagulation Processes (CEPs) as an Efficient Approach for the Treatment of Industrial Organic Pollutants: A Comprehensive Review
by Zakaria Al-Qodah, Maha Mohammad AL-Rajabi, Hiba H. Al Amayreh, Eman Assirey, Khalid Bani-Melhem and Mohammad Al-Shannag
Water 2025, 17(15), 2351; https://doi.org/10.3390/w17152351 (registering DOI) - 7 Aug 2025
Abstract
Electrocoagulation (EC) processes have emerged as an efficient solution for different inorganic and organic effluents. The main characteristics of this versatile process are its ease of operation and low sludge production. The literature indicates that EC can be successfully used as a single [...] Read more.
Electrocoagulation (EC) processes have emerged as an efficient solution for different inorganic and organic effluents. The main characteristics of this versatile process are its ease of operation and low sludge production. The literature indicates that EC can be successfully used as a single process or a step within a combined treatment system. If used in a combined system, this process could be employed as a pre-, a post-, or middle treatment step. Additionally, the EC process has been used in both continuous and batch modes. In most studies, EC has achieved significant improvements in the treated water quality and relatively low total energy consumption. This review presents a comprehensive evaluation and analysis of standalone and combined continuous EC processes. The influence of key operational parameters on continuous EC performance is thoroughly discussed. Furthermore, recent advancements in reactor design, modeling, and process optimization are addressed. The benefits of integrating other treatment processes with the EC process, such as advanced oxidation, membranes, chemical coagulation, and adsorption, are also evaluated. The performance of most standalone and combined EC processes used for organic pollutant treatment and published in the last 25 years is critically analyzed. This review is expected to give researchers many insights to improve their treatment scenario with recent and efficient environmental experiences, sustainability, and circular economy. The clearly presented information is expected to guide researchers in selecting efficient, cost-effective, and time-saving treatment alternatives. The findings ensure the considerable potential of continuous EC treatment processes for organic pollutants. However, more research is warranted to enhance process design, operational efficiency, scale-up, and economic viability. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

37 pages, 2092 KiB  
Article
Land Use Conflict Under Different Scenarios Based on the PLUS Model: A Case Study of the Development Pilot Zone in Jilin, China
by Shengyue Zhang, Yanjun Zhang, Xiaomeng Wang and Yuefen Li
Sustainability 2025, 17(15), 7161; https://doi.org/10.3390/su17157161 (registering DOI) - 7 Aug 2025
Abstract
In rapidly urbanizing regions, escalating land use conflicts have raised concerns over sustainable development and ecological security. This study focuses on the Chang-Ji-Tu Development and Opening Pilot Zone in Jilin Province, aiming to reveal the spatiotemporal evolution of land use conflicts and identify [...] Read more.
In rapidly urbanizing regions, escalating land use conflicts have raised concerns over sustainable development and ecological security. This study focuses on the Chang-Ji-Tu Development and Opening Pilot Zone in Jilin Province, aiming to reveal the spatiotemporal evolution of land use conflicts and identify their driving factors, based on land use data from 2000 to 2023. The study employs land use data, the PLUS model, SCCI, and the geographic detector to analyze conflict dynamics and influencing factors. Cropland and forest land have steadily declined, while construction land has expanded. Conflicts exhibit a spatial gradient of “western pressure, central alleviation, and eastern stability,” with hotspots in Changchun, Jilin, and Yanji. Conflict evolution is categorized into three phases: intensification (2000–2010), peak (2010–2015), and mitigation (2015–2023), as shaped by industrialization and later policy interventions. Among four simulated scenarios, the Sustainable Development (SD) scenario most effectively postpones conflict escalation. Population density and DEM emerged as dominant driving factors. Natural factors have greater explanatory power for land use conflicts than do socio-economic or locational factors. Strengthening spatial planning coordination and refining conflict governance are key to balancing human–environment interactions in the region. Full article
Show Figures

Figure 1

16 pages, 3724 KiB  
Article
Performance Study on Preparation of Mine Backfill Materials Using Industrial Solid Waste in Combination with Construction Waste
by Yang Cai, Qiumei Liu, Fufei Wu, Shuangkuai Dong, Qiuyue Zhang, Jing Wang, Pengfei Luo and Xin Yang
Materials 2025, 18(15), 3716; https://doi.org/10.3390/ma18153716 - 7 Aug 2025
Abstract
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast [...] Read more.
The resource utilization of construction waste and industrial solid waste is a crucial aspect in promoting global urbanization and sustainable development. This study focuses on the preparation of mine backfill materials using construction waste in combination with various industrial solid wastes—ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF), phosphorus slag (PS), fly ash–phosphorus slag–phosphogypsum composite (FA-PS-PG), and fly ash–phosphorus slag–β-phosphogypsum composite (FA-PS-βPG)—under different substitution rates (50%, 55%, 60%) as control parameters. A total of 19 mix proportions were investigated, evaluating their slump, dry density, compressive strength, uniaxial compressive stress–strain relationship, micromorphology, and phase composition. The results indicate that, compared to backfill materials prepared with pure cement, the incorporation of industrial solid wastes improves the fluidity of the backfill materials. At 56 days, the constitutive model parameter a increased to varying degrees, while parameter b decreased, indicating enhanced ductility. The compressive strength was consistently higher with PS at all substitution rates. The FA-PS-PG mixture with a 50% substitution rate achieved the highest 56-day compressive strength of 8.02 MPa. These findings can facilitate the application of construction waste and industrial solid waste in mine backfilling projects, delivering economic, environmental, and resource-related benefits. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

45 pages, 2014 KiB  
Article
Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition
by Aikaterini Papapostolou, Ioanna Andreoulaki, Filippos Anagnostopoulos, Sokratis Divolis, Harris Niavis, Sokratis Vavilis and Vangelis Marinakis
Energies 2025, 18(15), 4191; https://doi.org/10.3390/en18154191 - 7 Aug 2025
Abstract
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy [...] Read more.
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy production, and demand flexibility is of vital importance. Blockchain has the potential to change energy services towards this direction. To optimally exploit blockchain, innovative business models need to be designed, identifying the opportunities emerging from unmet needs, while also considering potential risks so as to take action to overcome them. In this context, the scope of this paper is to examine the opportunities and the risks that emerge from the adoption of blockchain in four innovative business models, while also identifying mitigation strategies to support and accelerate the energy transition, thus proposing optimal approaches of exploitation of blockchain in energy services. The business models concern Energy Performance Contracting with P4P guarantees, improved self-consumption in energy cooperatives, energy efficiency and flexibility services for natural gas boilers, and smart energy management for EV chargers and HVAC appliances. Firstly, the value proposition of the business models is analysed and results in a comprehensive SWOT analysis. Based on the findings of the analysis and consultations with relevant market actors, in combination with the examination of the relevant literature, risks are identified and evaluated through a qualitative assessment approach. Subsequently, specific mitigation strategies are proposed to address the detected risks. This research demonstrates that blockchain integration into these business models can significantly improve energy efficiency, reduce operational costs, enhance security, and support a more decentralised energy system, providing actionable insights for stakeholders to implement blockchain solutions effectively. Furthermore, according to the results, technological and legal risks are the most significant, followed by political, economic, and social risks, while environmental risks of blockchain integration are not as important. Strategies to address risks relevant to blockchain exploitation include ensuring policy alignment, emphasising economic feasibility, facilitating social inclusion, prioritising security and interoperability, consulting with legal experts, and using consensus algorithms with low energy consumption. The findings offer clear guidance for energy service providers, policymakers, and technology developers, assisting in the design, deployment, and risk mitigation of blockchain-enabled business models to accelerate sustainable energy development. Full article
Show Figures

Figure 1

27 pages, 1578 KiB  
Article
Tapio-Z Decoupling of the Valuation of Energy Sources, CO2 Emissions, and GDP Growth in the United States and China Using a Fuzzy Logic Model
by Rabnawaz Khan and Weiqing Zhuang
Energies 2025, 18(15), 4188; https://doi.org/10.3390/en18154188 - 7 Aug 2025
Abstract
Our contemporary society is powered by fossil fuels, which results in environmental catastrophes. The combustion of these materials results in the release of CO2, which accelerates the progression of climate change and its catastrophic consequences. The environmental repercussions of fossil fuel [...] Read more.
Our contemporary society is powered by fossil fuels, which results in environmental catastrophes. The combustion of these materials results in the release of CO2, which accelerates the progression of climate change and its catastrophic consequences. The environmental repercussions of fossil fuel extraction have been highlighted through research into alternative energy sources. This inquiry uses the Tapio-Z decoupling approach to assess energy inputs and emissions. Furthermore, the fuzzy logic model is used to inspect the economic growth of the USA and China, as well as the impact of environmental factors, energy sources, and utilization, through decoupling effects from 1994 to 2023. The findings are substantiated by the individual perspectives of the environmental factors regarding decoupling, which ultimately lead to the acquisition of valuable results. We anticipate a substantial reduction in the total volume of CO2 emissions in both the USA and China. Compared to China, the USA shows a significant increase in CO2 emissions due to its reliance on fossil fuels. It is evident that a comprehensive transition to renewable resources and a broad range of technology is required to mitigate CO2 emissions in high-energy zones. In their pursuit of sustainability, these two nations are making remarkable strides. The percentage change in CO2 emissions indicates that effective changes in economic growth, energy input, and energy utilization, particularly sustainable energy, transmute energy output, as does the sustained implementation of robust environmental protection policies. The percentage change in CO2 emissions indicates a remarkable transformation in energy input, energy consumption, and economic growth. This transition has been most visible in the areas of energy transformation, sustainability, and the maintenance of strong environmental protection measures. Full article
(This article belongs to the Special Issue Energy Transition and Environmental Sustainability: 3rd Edition)
Show Figures

Figure 1

19 pages, 12670 KiB  
Article
Risk Assessment of Flood Disasters with Multi-Source Data and Its Spatial Differentiation Characteristics
by Wenxia Jing, Yinghua Song, Wei Lv and Junyi Yang
Sustainability 2025, 17(15), 7149; https://doi.org/10.3390/su17157149 - 7 Aug 2025
Abstract
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight [...] Read more.
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight calculation method of traditional risk assessment model is single and ignores the difference of multi-dimensional information space involved in risk analysis. This study constructs a flood risk assessment model by incorporating natural, social, and economic factors into an indicator system structured around four dimensions: hazard, exposure, vulnerability, and disaster prevention and mitigation capacity. A combination of the Analytic Hierarchy Process (AHP) and the entropy weight method is employed to optimize both subjective and objective weights. Taking the central urban area of Wuhan with a high flood risk as an example, based on the risk assessment values, spatial autocorrelation analysis, cluster analysis, outlier analysis, and hotspot analysis are applied to explore the spatial clustering characteristics of risks. The results show that the overall assessment level of flood hazard in central urban area of Wuhan is medium, the overall assessment level of exposure and vulnerability is low, and the overall disaster prevention and mitigation capability is medium. The overall flood risk levels in Wuchang and Jianghan are the highest, while some areas in Qingshan and Hanyang have the lowest levels. The spatial characteristics of each dimension evaluation index show obvious autocorrelation and spatial differentiation. These findings aim to provide valuable suggestions and references for reducing urban disaster risks and achieving sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

18 pages, 1891 KiB  
Systematic Review
Circular Agriculture Models: A Systematic Review of Academic Contributions
by Wilma Guerrero-Villegas, Maribel Rosero-Rosero, Eleonora-Melissa Layana-Bajana and Héctor Villares-Villafuerte
Sustainability 2025, 17(15), 7146; https://doi.org/10.3390/su17157146 - 7 Aug 2025
Abstract
This study contributes to scientific theory by analyzing the models proposed within the framework of circular agriculture to determine how the three dimensions of sustainability—environmental, economic, and social—are integrated into their implementation. A systematic review was conducted on articles published between 2016 and [...] Read more.
This study contributes to scientific theory by analyzing the models proposed within the framework of circular agriculture to determine how the three dimensions of sustainability—environmental, economic, and social—are integrated into their implementation. A systematic review was conducted on articles published between 2016 and 2025, indexed in the Scopus and Web of Science databases, as well as the relevant grey literature. The methodology employed an extensive content analysis designed to minimize bias, applying filters related to specific knowledge areas to delimitate the search scope and enhance the precision of the research. The findings reveal that the research on circular agriculture models is predominantly grounded in the principles of the circular economy and its associated indicators. Moreover, these models tend to focus on environmental metrics, often neglecting a comprehensive exploration of the social and economic dimensions of sustainable development. It can be concluded that a significant gap persists in the literature regarding the circularity of agriculture and its socio-economic impacts and the role of regulatory frameworks, aspects that future research must address in order to achieve sustainability in circular agriculture. Full article
(This article belongs to the Special Issue Resource Management and Circular Economy Sustainability)
Show Figures

Figure 1

39 pages, 5974 KiB  
Article
Metamodeling Approach to Sociotechnical Systems’ External Context Digital Twins Building: A Higher Education Case Study
by Ana Perisic, Ines Perisic, Marko Lazic and Branko Perisic
Appl. Sci. 2025, 15(15), 8708; https://doi.org/10.3390/app15158708 - 6 Aug 2025
Abstract
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of [...] Read more.
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of the underlying technical system. The fact that the relevant social concepts are more mature than the supporting technologies qualifies the digital transformation of sociotechnical systems as a reengineering rather than an engineering endeavor. Preserving the social mission throughout the digital transformation process in varying social contexts is mandatory, making the digital twins (DT) methodology application a contemporary research hotspot. In this research, we combined continuous transformation STS theory principles, an observer-based system-of-sociotechnical-systems (SoSTS) architecture model, and digital twinning methods to address common STS context representation challenges. Additionally, based on model-driven systems engineering methodology and meta-object-facility principles, the research specifies the universal meta-concepts and meta-modeling templates, supporting the creation of arbitrary sociotechnical systems’ external context digital twins. Due to the inherent diversity, significantly influenced by geopolitical, economic, and cultural influencers, a higher education external context specialization illustrates the reusability potentials of the proposed universal meta-concepts. Substituting higher-education-related meta-concepts and meta-models with arbitrary domain-dependent specializations further fosters the proposed universal meta-concepts’ reusability. Full article
Show Figures

Figure 1

28 pages, 5190 KiB  
Article
Assessing the Coevolution Between Ecosystem Services and Human Well-Being in Ecotourism-Dominated Counties: A Case Study of Chun’an, Zhejiang Province, China
by Weifeng Jiang and Lin Lu
Land 2025, 14(8), 1604; https://doi.org/10.3390/land14081604 - 6 Aug 2025
Abstract
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in [...] Read more.
Investigating the coevolution between ecosystem services (ES) and human well-being (HWB) holds significant implications for achieving the sustainable operation of human–environment systems. However, limited research has focused on ES-HWB interactions in ecotourism-dominated counties. To address this gap, this study takes Chun’an County in Zhejiang Province, China, as a case study, with the research objective of exploring the processes, patterns, and mechanisms of the coevolution between ecosystem services (ES) and human well-being (HWB) in ecotourism-dominated counties. By integrating multi-source heterogeneous data, including land use data, the normalized difference vegetation index (NDVI), and statistical records, and employing methods such as the dynamic equivalent factor method, the PLUS model, the coupling coordination degree model, and comprehensive evaluation, we analyzed the synergistic evolution of ES-HWB in Chun’an County from 2000 to 2020. The results indicate that (1) the ecosystem service value (ESV) fluctuated between 30.15 and 36.85 billion CNY, exhibiting a spatial aggregation pattern centered on the Qiandao Lake waterbody, with distance–decay characteristics. The PLUS model confirms ecological conservation policies optimize ES patterns. (2) The HWB index surged from 0.16 to 0.8, driven by tourism-led economic growth, infrastructure investment, and institutional innovation, facilitating a paradigm shift from low to high well-being at the county level. (3) The ES-HWB interaction evolved through three phases—disordered, antagonism, and coordination—revealing tourism as a key mediator driving coupled human–environment system sustainability via a pressure–adaptation–synergy transmission mechanism. This study not only advances the understanding of ES-HWB coevolution in ecotourism-dominated counties, but also provides a transferable methodological framework for sustainable development in similar regions. Full article
Show Figures

Figure 1

22 pages, 10285 KiB  
Article
Biophysical and Social Constraints of Restoring Ecosystem Services in the Border Regions of Tibet, China
by Lizhi Jia, Silin Liu, Xinjie Zha and Ting Hua
Land 2025, 14(8), 1601; https://doi.org/10.3390/land14081601 - 6 Aug 2025
Abstract
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with [...] Read more.
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with scenario analysis to quantify the ecosystem service potential that could be achieved in China’s Tibetan borderlands under two interacting agendas: ecological restoration and border-strengthening policies. Restoration feasibility was evaluated through combining local biophysical constraints, economic viability (via restoration-induced carbon gains vs. opportunity costs), operational practicality, and simulated infrastructure expansion. The results showed that per-unit-area ecosystem services in border counties (particularly Medog, Cona, and Zayu) exceed that of interior Tibet by a factor of two to four. Combining these various constraints, approximately 4–17% of the border zone remains cost-effective for grassland or forest restoration. Under low carbon pricing (US$10 t−1 CO2), the carbon revenue generated through restoration is insufficient to offset the opportunity cost of agricultural production, constituting a major constraint. Habitat quality, soil conservation, and carbon sequestration increase modestly when induced by restoration, but a pronounced carbon–water trade-off emerges. Planned infrastructure reduces restoration benefits only slightly, whereas raising the carbon price to about US$50 t−1 CO2 substantially expands such benefits. These findings highlight both the opportunities and limits of ecosystem restoration in border regions and point to carbon pricing as the key policy lever for unlocking cost-effective restoration. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Rural Development Outcomes)
Show Figures

Figure 1

Back to TopTop