Tapio-Z Decoupling of the Valuation of Energy Sources, CO2 Emissions, and GDP Growth in the United States and China Using a Fuzzy Logic Model
Abstract
1. Introduction
2. Literature Review
2.1. Energy Sources and CO2 Emissions
2.2. Industrial Sectors, Economic Growth, and CO2 Emissions
3. Methodology
3.1. The Tapio-Z Decoupling (T-ZDP) Method and Energy Sources
3.2. Data Estimation
3.3. Fuzzy Logic Models
4. Results and Discussion
4.1. Economic Growth in Environmental Factor
4.2. Energy Source and Utilization
5. Conclusions and Recommendation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Model and Methods Specification
Study | Datasets | Econometric Techniques | Outcomes |
[80,81,92] | Data on China’s gross domestic product, carbon dioxide emissions, energy consumption, and other related factors on an annual basis | ARDL’s bounds testing methodology | A robust, long-term cointegration relationship between GDP and CO2 emissions was identified in China. |
[89,93] | Data for China’s provinces regarding gross domestic product, carbon dioxide emissions, energy intensity, and other control variables | Panel data analysis | Examined the influence of energy intensity and industrial structure on CO2 emissions in various provinces of China. |
[81,94,95] | Data on China’s gross domestic product, carbon dioxide emissions, energy consumption, and technical advance-ments at the national level | Time series analysis | Investigated the role of technological advancements in the decoupling of economic growth from CO2 emissions in China. |
[96] | Annual data from the USA and China on their GDP, CO2 emissions, and energy usage | Panel data analysis | China and the USA were compared in terms of the dynamic link between GDP and CO2 emissions. |
[97] | China’s GDP, CO2 emissions, energy intensity, and other control factors at the provincial level | Spatial econometric models | Assessed the spatial spillover effects of carbon dioxide emissions across the provinces of China. |
[98,99] | Annual data for China’s gross domestic product, carbon dioxide emissions, and energy consumption | Time series analysis | Investigated the environmental Kuznets curve theory and the impact of the industrial structure on carbon dioxide emissions in China. |
[100] | Data on GDP, CO2 emissions, and energy consumption at the national level for both China and the USA | System GMM | A dynamic panel data model was utilized to compare the impact of economic expansion on CO2 emissions in China and the USA. |
[101] | Information on China’s GDP, CO2 emissions, energy in-tensity, and other control factors at the provincial level | Durbin model | Assessed the spatial dependency of carbon dioxide emissions and the factors that determine them across the provinces of China. |
[102] | Specific information regarding China’s gross domestic product, carbon dioxide emissions, energy consumption, and technological innovation | Time series analysis | Investigated the impact that technical advancement has on the reduction in carbon dioxide emissions in China. |
[103] | Chinese province-level data on gross domestic product, carbon dioxide emissions, and energy consumption | Time series analysis | Investigated how upgrading industrial structures in China affected the amount of carbon dioxide emissions. |
References
- Rajabi Kouyakhi, N. CO2 emissions in the Middle East: Decoupling and decomposition analysis of carbon emissions, and projection of its future trajectory. Sci. Total Environ. 2022, 845, 157182. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Z.; Wu, T.; Wu, S.; Yin, T. The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector. Energy 2022, 255, 124488. [Google Scholar] [CrossRef]
- Li, W.; Ji, Z.; Dong, F. Spatio-temporal analysis of decoupling and spatial clustering decomposition of CO2 emissions in 335 Chinese cities. Sustain. Cities Soc. 2022, 86, 104156. [Google Scholar] [CrossRef]
- Liu, X.; Zhong, S.; Yang, M. Study on the decoupling relationship of energy-related CO2 emissions and economic growth in China: Using the new two-dimensional decoupling model. Ecol. Indic. 2022, 143, 109405. [Google Scholar] [CrossRef]
- Qian, Y.; Zhao, J.; Lyu, Y.; Liu, Y.; Tian, J.; Chen, L. Uncovering the roadmap of decoupling economic growth and CO2 emissions targeting energy-resource-emission-intensive industrial parks located nearby large river: Practices and implications from China. J. Clean. Prod. 2023, 393, 136306. [Google Scholar] [CrossRef]
- Yang, F.; Shi, L.; Gao, L. Probing CO2 emission in Chengdu based on STRIPAT model and Tapio decoupling. Sustain. Cities Soc. 2023, 89, 104309. [Google Scholar] [CrossRef]
- Cai, J.; Deng, Z.; Li, L. High-resolution mapping of transport CO2 emission in Beijing–Tianjin–Hebei region: Spatial-temporal characteristics and decoupling effects. Int. J. Sustain. Transp. 2024, 18, 301–314. [Google Scholar] [CrossRef]
- Chen, W.; Yan, S. The decoupling relationship between CO2 emissions and economic growth in the Chinese mining industry under the context of carbon neutrality. J. Clean. Prod. 2022, 379, 134692. [Google Scholar] [CrossRef]
- Li, Y.; Zuo, Z.; Cheng, Y.; Cheng, J.; Xu, D. Towards a decoupling between regional economic growth and CO2 emissions in China’s mining industry: A comprehensive decomposition framework. Resour. Policy 2023, 80, 103271. [Google Scholar] [CrossRef]
- Song, H.; Hou, G.; Xu, S. CO2 emissions in China under electricity substitution: Influencing factors and decoupling effects. Urban Clim. 2023, 47, 101365. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, S.; Li, S.; Li, L.; Li, Q. Impact of global value chain embedding on decoupling between China’s CO2 emissions and economic growth: Based on Tapio decoupling and structural decomposition. Sci. Total Environ. 2024, 918, 170172. [Google Scholar] [CrossRef] [PubMed]
- Gómez, A.P.; Bonilla, D.; Banister, D. Corrigendum to “Decoupling transport-CO2 emissions: Mexico, Spain and the USA: A trend analysis” [Transp. Res. D Trans. Environ. 137 (2024) 104510]. Transp. Res. Part D Transp. Environ. 2024, 139, 104575. [Google Scholar] [CrossRef]
- Rabnawaz, W.J.K. Renewable energy and CO2 emissions in developing and developed nations: A panel estimate approach. Front. Environ. Sci. 2024, 12, 1405001. [Google Scholar] [CrossRef]
- Rabnawaz, K. Beta decoupling relationship between CO2 emissions by GDP, energy consumption, electricity production, value-added industries, and population in China. PLoS ONE 2021, 16, e0249444. [Google Scholar]
- Baajike, F.B.; Oteng-Abayie, E.F.; Dramani, J.B.; Amanor, K. Effects of trade liberalization on the global decoupling and decomposition of CO2 emissions from economic growth. Heliyon 2024, 10, e23470. [Google Scholar] [CrossRef]
- Khan, R. Catch-up growth with alpha and beta decoupling and their relationships between CO2 emissions by GDP, population, energy production, and consumption. Heliyon 2024, 10, e31470. [Google Scholar] [CrossRef]
- Li, L.; Raza, M.Y.; Cucculelli, M. Electricity generation and CO2 emissions in China using index decomposition and decoupling approach. Energy Strateg. Rev. 2024, 51, 101304. [Google Scholar] [CrossRef]
- Zhou, Z.; Zeng, C.; Li, K.; Yang, Y.; Zhao, K.; Wang, Z. Decomposition of the decoupling between electricity CO2 emissions and economic growth: A production and consumption perspective. Energy 2024, 293, 130644. [Google Scholar] [CrossRef]
- Foster, V.; Dim, J.U.; Vollmer, S.; Zhang, F. Understanding the challenge of decoupling transport-related CO2 emissions from economic growth in developing countries. World Dev. Sustain. 2023, 3, 100111. [Google Scholar] [CrossRef]
- Zhang, Z.; Sharifi, A. Analysis of decoupling between CO2 emissions and economic growth in China’s provincial capital cities: A Tapio model approach. Urban Clim. 2024, 55, 101885. [Google Scholar] [CrossRef]
- Jie, W.; Khan, R. Breaking the CO2 Gridlock: Can Renewables Lead the Way for the OECD? Energies 2024, 17, 4511. [Google Scholar] [CrossRef]
- Xu, C.; Qin, Z.; Li, J.; Wang, Q. Recent CO2 emission and projections in Chinese provinces: New drivers and ensemble forecasting. J. Environ. Manag. 2024, 368, 122232. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Zhuang, W. The implications of internet-based Chinese language courses on online classes. Front. Psychol. 2023, 14, 1203136. [Google Scholar] [CrossRef]
- Khan, R. The impact of a new techno-nationalism era on eco-economic decoupling. Resour. Policy 2023, 82, 103452. [Google Scholar] [CrossRef]
- Wang, J.; Shan, Y.; Cui, C.; Zhao, C.; Meng, J.; Wang, S. Investigating the fast energy-related carbon emissions growth in African countries and its drivers. Appl. Energy 2024, 357, 122494. [Google Scholar] [CrossRef]
- Rabnawaz Khan, Y.K. Effects of Energy Consumption on GDP: New Evidence of 24 Countries on Their Natural Resources and Production of Electricity. Ekonomika 2020, 99, 26–49. [Google Scholar] [CrossRef]
- Bi, Z.; Guo, R.; Khan, R. Renewable Adoption, Energy Reliance, and CO2 Emissions: A Comparison of Developed and Developing Economies. Energies 2024, 17, 3111. [Google Scholar] [CrossRef]
- Tang, Z.; Qin, D. Sustainable mining and the role of environmental regulations and incentive policies in BRICS. Resour. Policy 2024, 90, 104718. [Google Scholar] [CrossRef]
- Han, X.; He, X.; Xiong, W.; Shi, W. Effects of urbanization on CO2 emissions, water use and the carbon-water coupling in a typical dual-core urban agglomeration in China. Urban Clim. 2023, 49, 101572. [Google Scholar] [CrossRef]
- Shahnazi, R.; Jamshidi, N.; Shafiei, M. Investigating the effects of crony capitalism on CO2 emissions. J. Clean. Prod. 2024, 438, 140833. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, W.; Ren, Y.; Zhang, Y.; Li, J.; Zheng, S.; Dai, R.; Hu, J.; Cheng, H.; Shen, G.; et al. Role of primary drivers leading to emission reduction of major air pollutants and CO2 from global power plants. Environ. Int. 2024, 190, 108936. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Zhu, L. Drivers of transportation CO2 emissions and their changing patterns: Empirical results from 18 countries. J. Transp. Geogr. 2024, 119, 103957. [Google Scholar] [CrossRef]
- Sohag, K.; Karass, V.; Alam, K. European industrial production in the face of energy dynamics and geopolitical shocks. Energy 2025, 316, 134451. [Google Scholar] [CrossRef]
- Wang, F.; Rani, T.; Razzaq, A. Resource curse, energy consumption, and moderating role of digital governance: Insights from South Asian countries. Resour. Policy 2024, 98, 105329. [Google Scholar] [CrossRef]
- Vogel, J.; Hickel, J. Is green growth happening? An empirical analysis of achieved versus Paris-compliant CO2–GDP decoupling in high-income countries. Lancet Planet. Health 2023, 7, e759–e769. [Google Scholar] [CrossRef]
- Ozdemir, A.C. Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey. Energy 2023, 273, 127264. [Google Scholar] [CrossRef]
- Imran, M.; Tufail, M.; Mo, C.; Wahab, S.; Khan, M.K.; Hoo, W.C.; Ling, Z. From resources to resilience: Understanding the impact of standard of living and energy consumption on natural resource rent in Asia. Energy Strateg. Rev. 2025, 57, 101590. [Google Scholar] [CrossRef]
- Li, L.; Mi, Y.; Lei, Y.; Wu, S.; Li, L.; Hua, E.; Yang, J. The spatial differences of the synergy between CO2 and air pollutant emissions in China’s 296 cities. Sci. Total Environ. 2022, 846, 157323. [Google Scholar] [CrossRef]
- Marra, A.; Colantonio, E.; Cucculelli, M.; Nissi, E. The ‘complex’ transition: Energy intensity and CO2 emissions amidst technological and structural shifts. Evidence from OECD countries. Energy Econ. 2024, 136, 107702. [Google Scholar] [CrossRef]
- Chovancová, J.; Petruška, I.; Rovňák, M.; Barlák, J. Investigating the drivers of CO2 emissions in the EU: Advanced estimation with common correlated effects and common factors models. Energy Rep. 2024, 11, 937–950. [Google Scholar] [CrossRef]
- An, R.; Zhu, G. Clustering of economic efficiency of urban energy carbon emissions based on decoupling theory. Energy Rep. 2022, 8, 9569–9575. [Google Scholar] [CrossRef]
- Khan, R.; Zhuang, W.; Najumddin, O.; Butt, R.S.; Ahmad, I.; Al-Faryan, M.A.S. The impact of agricultural intensification on carbon dioxide emissions and energy consumption: A comparative study of developing and developed nations. Front. Environ. Sci. 2022, 10, 1036300. [Google Scholar] [CrossRef]
- Naz, F.; Tanveer, A.; Karim, S.; Dowling, M. The decoupling dilemma: Examining economic growth and carbon emissions in emerging economic blocs. Energy Econ. 2024, 138, 107848. [Google Scholar] [CrossRef]
- Li, C.; Shah, N.; Li, Z.; Liu, P. Decoupling framework for large-scale energy systems simultaneously addressing carbon emissions and energy flow relationships through sector units: A case study on uncertainty in China’s carbon emission targets. Comput. Chem. Eng. 2024, 191, 108840. [Google Scholar] [CrossRef]
- Guan, Y.; Xiao, Y.; Rong, B.; Kang, L.; Zhang, N.; Chu, C. Heterogeneity and typology of the city-level synergy between CO2 emission, PM2.5, and ozone pollution in China. J. Clean. Prod. 2023, 405, 136871. [Google Scholar] [CrossRef]
- Jain, S.; Rankavat, S. Analysing driving factors of India’s transportation sector CO2 emissions: Based on LMDI decomposition method. Heliyon 2023, 9, e19871. [Google Scholar] [CrossRef]
- Zheng, S.; Khan, R. Performance evaluation of e-commerce firms in China: Using three-stage data envelopment analysis and the Malmquist productivity index. PLoS ONE 2021, 16, e0255851. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Chiu, Y.; Chen, C.-H.; Ji, L. Renewable energy consumption efficiency, greenhouse gas emission efficiency, and climate change in Europe. Geoenergy Sci. Eng. 2025, 247, 213665. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X. Tracking China’s CO2 emissions using Kaya-LMDI for the period 1991–2022. Gondwana Res. 2024, 133, 60–71. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Q.; He, R.; Li, F.; Lu, L. Decomposition analysis and decoupling effects of factors driving carbon emissions produced by electricity generation. Energy Rep. 2024, 11, 2692–2703. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, C.; Song, C.; Meng, D.; Xu, M.; Liu, R.; Yan, Y.; Liu, Z. The impact of regional policy implementation on the decoupling of carbon emissions and economic development. J. Environ. Manag. 2024, 355, 120472. [Google Scholar] [CrossRef] [PubMed]
- Akan, T. Forecasting the future of carbon emissions by business confidence. Appl. Energy 2025, 382, 125146. [Google Scholar] [CrossRef]
- Habib, Y.; Ali, M.; Mehmood, U.; Rahman, N.R.A. Decarbonizing Japan: The Role of Nuclear Energy and Environmental Taxation in Mitigating CO2 Emissions. Environ. Chall. 2025, 18, 101097. [Google Scholar] [CrossRef]
- Xie, Z.; Tan, Z.; Wang, K.; Shao, B.; Zhu, Y.; Li, J.; Mao, Y.; Hu, J. Which will be a promising route among integrated CO2 capture and conversion to valuable chemicals. Energy Convers. Manag. 2025, 323, 119269. [Google Scholar] [CrossRef]
- Wang, S.; Rahman, S.U.; Zulfiqar, M.; Ali, S.; Khalid, S.; Sibt e Ali, M. Sustainable pathways: Decoding the interplay of renewable energy, economic policy uncertainty, infrastructure, and innovation on transport CO2 in QUAD economies. Renew. Energy 2025, 242, 122426. [Google Scholar] [CrossRef]
- Herlina, L.; Rani, D.S.; Susantoro, T.M.; Agustini; Haris, A.; Yenti, E.; Adriany, R.; Herizal; Morina; Hidayati, N.; et al. Indonesia’s country-specific CO2 emission factor based on gas fuels for greenhouse gas inventory in the energy sector. Environ. Pollut. 2025, 368, 125749. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, Z.; Meng, F.; Luo, H.; Yang, M.; Wang, D.; Tan, Q.; Deng, Y.; Gong, Z. Scenario simulation and synergistic effect analysis of CO2 and atmospheric pollutant emission reduction in urban transport sector: A case study of Chengdu, China. J. Clean. Prod. 2024, 438, 140841. [Google Scholar] [CrossRef]
- Chang, T.; Hsu, C.-M.; Chen, S.-T.; Wang, M.-C.; Wu, C.-F. Revisiting economic growth and CO2 emissions nexus in Taiwan using a mixed-frequency VAR model. Econ. Anal. Policy 2023, 79, 319–342. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Zhang, M. Specialized, diversified agglomeration and CO2 emissions—An empirical study based on panel data of Chinese cities. J. Clean. Prod. 2024, 467, 142892. [Google Scholar] [CrossRef]
- Tao, C.; Wang, Y.; Zhou, H. Synchronous suppression of combustion instabilities and NOx emissions with O2/N2/CO2 ternary gases jetting into the unsteady lean-premixed flame. Fuel 2025, 384, 134037. [Google Scholar] [CrossRef]
- Mehmood, K.; Tauseef Hassan, S.; Qiu, X.; Ali, S. Comparative analysis of CO2 emissions and economic performance in the United States and China: Navigating sustainable development in the climate change era. Geosci. Front. 2024, 15, 101843. [Google Scholar] [CrossRef]
- Abam, F.I.; Inah, O.I.; Nwankwojike, B.N. Impact of asset intensity and other energy-associated CO2 emissions drivers in the Nigerian manufacturing sector: A firm-level decomposition (LMDI) analysis. Heliyon 2024, 10, e28197. [Google Scholar] [CrossRef] [PubMed]
- Our world in Data. Available online: https://ourworldindata.org/search?q=energy (accessed on 20 February 2023).
- Raza, M.Y.; Tang, S. Nuclear energy, economic growth and CO2 emissions in Pakistan: Evidence from extended STRIPAT model. Nucl. Eng. Technol. 2024, 56, 2480–2488. [Google Scholar] [CrossRef]
- Jiang, B.; Tian, Z.; Xia, D.; Nie, B.; Xiong, R. Carbon carrier modeled for CO2 emission assessment in steel industry. Sustain. Energy Technol. Assess. 2024, 72, 104068. [Google Scholar] [CrossRef]
- Leng, P.; Koschorreck, M. Metabolism and carbonate buffering drive seasonal dynamics of CO2 emissions from two German reservoirs. Water Res. 2023, 242, 120302. [Google Scholar] [CrossRef]
- Hoa, P.X.; Xuan, V.N.; Phuong Thu, N.T. Nexus of innovation, renewable consumption, FDI, growth and CO2 emissions: The case of Vietnam. J. Open Innov. Technol. Mark. Complex. 2023, 9, 100100. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Wang, D.; Wu, H.; Li, Y.; Li, Y.; Qiao, Q.; Yin, Z. An evaluation method for synergistic effect of air pollutants and CO2 emission reduction in the Chinese petroleum refining technology. J. Environ. Manag. 2024, 371, 123169. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, F.; Sun, L.; Liu, W.; Du, C.; Wang, C.; Yao, Y. Promote the decarbonization pathways of eco-industrial parks by considering their CO2 emissions structures and characters. J. Clean. Prod. 2024, 450, 141989. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, X.; Wang, X.; Xie, C.; Liu, J.; Cheng, Y.; Yue, Y.; You, X.; Li, Y. Modified biochar affects CO2 and N2O emissions from coastal saline soil by altering soil pH and elemental stoichiometry. Sci. Total Environ. 2024, 954, 176283. [Google Scholar] [CrossRef]
- Pea-Assounga, J.B.B.; Bambi, P.D.R.; Jafarzadeh, E.; Nima Ngapey, J.D. Investigating the impact of crude oil prices, CO2 emissions, renewable energy, population growth, trade openness, and FDI on sustainable economic growth. Renew. Energy 2025, 241, 122353. [Google Scholar] [CrossRef]
- Tello, W.P. Policy interactions and electricity generation sector CO2 emissions: A quasi-experimental analysis. Energy Policy 2025, 198, 114434. [Google Scholar] [CrossRef]
- González-Álvarez, M.A.; Montañés, A. CO2 emissions, energy consumption, and economic growth: Determining the stability of the 3E relationship. Econ. Model. 2023, 121, 106195. [Google Scholar] [CrossRef]
- Zhou, R. Economic growth, energy consumption and CO2 emissions—An empirical study based on the Yangtze River economic belt of China. Heliyon 2023, 9, e19865. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hossain, M.R.; Si Mohammed, K.; Cifuentes-Faura, J.; Cai, X. Heterogenous Effects of Circular Economy, Green energy and Globalization on CO2 emissions: Policy based analysis for sustainable development. Renew. Energy 2023, 211, 789–801. [Google Scholar] [CrossRef]
- Yang, T.-H.J.; Chambefort, I.; Rowe, M.; Mazot, A.; Seward, A.; Werner, C.; Fischer, T.; Seastres, J.; Siega, F.; Macdonald, N.; et al. Variability in surface CO2 flux: Implication for monitoring surface emission from geothermal fields. Geothermics 2024, 120, 102981. [Google Scholar] [CrossRef]
- Wang, X.; Yan, L. Driving factors and decoupling analysis of fossil fuel related-carbon dioxide emissions in China. Fuel 2022, 314, 122869. [Google Scholar] [CrossRef]
- Briglauer, W.; Koeppl-Turyna, M.; Rowsell, J. Special issue editorial “The impact of modern broadband networks on Energy Consumption and CO2 emissions”. Telecomm. Policy 2024, 48, 102822. [Google Scholar] [CrossRef]
- Ratna, T.S.; Akhter, T.; Babu, M.A.; Ahmmed, M.M.; Rahman, M.M.; Mahmud, M. Deep Learning and Econometric Analysis of CO2 Emissions in Bangladesh: A Transition Towards Renewable Energy and Sustainable Practice. Procedia Comput. Sci. 2024, 236, 135–143. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, H.; Xie, K.; Xiao, W.; Bai, C. Toward a low carbon path: Do E-commerce reduce CO2 emissions? Evidence from China. J. Environ. Manag. 2024, 351, 119805. [Google Scholar] [CrossRef]
- Zabirov, A.; Schleser, M.; Schernus, C.; Kayacan, C. LeiMot—Lightweight engine helps reducing CO2 emissions. Transp. Res. Procedia 2023, 72, 1021–1028. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Reducing transport sector CO2 emissions patterns: Environmental technologies and renewable energy. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100217. [Google Scholar] [CrossRef]
- Emodi, N.V.; Inekwe, J.N.; Zakari, A. Transport infrastructure, CO2 emissions, mortality, and life expectancy in the Global South. Transp. Policy 2022, 128, 243–253. [Google Scholar] [CrossRef]
- Qian, F.; Zhu, Y.; Da, C.; Zheng, X.; Liu, Z.; Lu, C.; Cheng, Y.; Yang, C. Deep decarbonization strategy for synergistic reduction of CO2 and air pollutant emissions in metropolises: A case study of Suzhou, China. Energy Sustain. Dev. 2024, 83, 101575. [Google Scholar] [CrossRef]
- Luo, X.; Liu, C.; Zhao, H. Modeling and spatio-temporal analysis on CO2 emissions in the Guangdong-Hong Kong-Macao greater bay area and surrounding cities based on neural network and autoencoder. Sustain. Cities Soc. 2024, 103, 105254. [Google Scholar] [CrossRef]
- Yasmeen, R.; Padda, I.U.H.; Shah, W.U.H. Untangling the forces behind carbon emissions in China’s industrial sector—A pre and post 12th energy climate plan analysis. Urban Clim. 2024, 55, 101895. [Google Scholar] [CrossRef]
- Naseem, S.; Hu, X.; Sarfraz, M.; Mohsin, M. Strategic assessment of energy resources, economic growth, and CO2 emissions in G-20 countries for a sustainable future. Energy Strateg. Rev. 2024, 52, 101301. [Google Scholar] [CrossRef]
- Quak, H.; Kin, B. Reorganizing city logistics to reduce urban movements—Experiences with hubs and decoupling inner and outer urban transport. Transp. Res. Procedia 2024, 79, 36–43. [Google Scholar] [CrossRef]
- Wen, T.; Liu, Y.; Bai, Y.; Liu, H. Modeling and forecasting CO2 emissions in China and its regions using a novel ARIMA-LSTM model. Heliyon 2023, 9, e21241. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, G.; Xiong, L.; Li, S.; Han, Y. Changes and potential drivers of CO2 emissions from inland waters in the Yangtze River Basin. J. Hydrol. 2025, 650, 132491. [Google Scholar] [CrossRef]
- Yao, H.; Ding, H.; Li, Z.; Shoukat, A. The criticality of exports sophistication and CO2 emissions: A new path towards sustainable environmental management. J. Environ. Manag. 2025, 373, 123542. [Google Scholar] [CrossRef]
- Cai, X.; Zheng, S.; Zhang, X.; Ye, Z.; Liu, C.; Tan, Z. The impact of CO2 emission synergy on PM2.5 emissions and a dynamic analysis of health and economic benefits: A case study of China’s transportation industry. J. Clean. Prod. 2024, 471, 143405. [Google Scholar] [CrossRef]
- Dinçer, H.; Yüksel, S.; Mikhaylov, A.; Muyeen, S.M.; Chang, T.; Barykin, S.; Kalinina, O. CO2 emissions integrated fuzzy model: A case of seven emerging economies. Energy Rep. 2023, 9, 5741–5751. [Google Scholar] [CrossRef]
- Huang, Y.; Ou, J.; Deng, Z.; Zhou, W.; Liang, Y.; Huang, X. Peak patterns and drivers of city-level daily CO2 emissions in China. J. Clean. Prod. 2024, 469, 143206. [Google Scholar] [CrossRef]
- Xin, Y.; Zhang, W.; Chen, F.; Xing, X.; Han, D.; Hong, H. Integrating solar-driven biomass gasification and PV-electrolysis for sustainable fuel production: Thermodynamic performance, economic assessment, and CO2 emission analysis. Chem. Eng. J. 2024, 497, 153941. [Google Scholar] [CrossRef]
- Yue, X.; Byrne, J. Identifying the determinants of carbon emissions of individual airlines around the world. J. Air Transp. Manag. 2024, 115, 102521. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, W.; Wang, S.; Yao, Z.; Lv, L.; Teng, Y.; Li, X.; Shen, X. Insights into the spatiotemporal heterogeneity, sectoral contributions and drivers of provincial CO2 emissions in China from 2019 to 2022. J. Environ. Sci. 2024; in press. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.P.; Huang, G.H.; Gong, J.W.; Li, Y.F.; Zhang, Q. A factorial-analysis-based Bayesian neural network method for quantifying China’s CO2 emissions under dual-carbon target. Sci. Total Environ. 2024, 920, 170698. [Google Scholar] [CrossRef]
- Yadav, A.; Gyamfi, B.A.; Asongu, S.A.; Behera, D.K. The role of green finance and governance effectiveness in the impact of renewable energy investment on CO2 emissions in BRICS economies. J. Environ. Manag. 2024, 358, 120906. [Google Scholar] [CrossRef]
- Tang, L.; Luo, M.; Li, K.; Zhang, F. Driving factors and peaking of CO2 emissions: An empirical analysis of Hunan Province. Energy 2024, 289, 129931. [Google Scholar] [CrossRef]
- Zhou, Q.; Qu, S.; Hou, W. Do tourism clusters contribute to low-carbon destinations? The spillover effect of tourism agglomerations on urban residential CO2 emissions. J. Environ. Manag. 2023, 330, 117160. [Google Scholar] [CrossRef]
- Warlenius, R.H. The limits to degrowth: Economic and climatic consequences of pessimist assumptions on decoupling. Ecol. Econ. 2023, 213, 107937. [Google Scholar] [CrossRef]
- Namahoro, J.P.; Wu, Q.; Su, H. Wind energy, industrial-economic development and CO2 emissions nexus: Do droughts matter? Energy 2023, 278, 127869. [Google Scholar] [CrossRef]
Variables | Code | F-LGM | Description |
---|---|---|---|
CO2 emissions | CO2 | Environment factors | Based on utilization, per capita CO2 emissions. |
Gross domestic product | GDP | Purchasing power parity (PPP) is used to calculate the per capita GDP. The gross domestic product is converted to international dollars and divided by the total population. | |
Hydrocarbon extraction (TWh) | HDP | Energy source and utilization | The quantity of energy that is emitted during various combustion processes. |
Hydrocarbon utilization (EJ) | HDC | ||
Natural gas extraction (TWh) | NGE | A long-term transformation in the extraction and utilization of gas. It illustrates the rapidity with which countries increase the extraction level through various processes. | |
Natural gas utilization (EJ) | NGU | ||
Coal extraction (TWh) | CPR | Utilized in the iron and steel industries to generate electricity and is a highly significant element. | |
Coal utilization (EJ) | CCS |
T-ZDP Decoupling | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Groups | No | Years | GDP | One Percent Change in CO2 Emissions of USA | Percentage Change in GDP of USA | One Percent Change in CO2 Emissions of China | Percentage Change in GDP of China | |||||||||
USA | China | GDP | HDP | HDC | HDP | HDC | GDP | HDC | NGU | HDC | NGU | |||||
Group A | 1 | 1994 | Environmental Factors | Energy Source and Utilization | ||||||||||||
2 | 1995 | 0.014 | −0.009 | 0.014 | 0.016 | 0.012 | 0.892 | 1.279 | −0.009 | −0.075 | 0.014 | 0.117 | −5.534 | |||
3 | 1996 | 0.011 | 0.061 | 0.011 | 0.008 | 0.003 | 1.399 | 2.633 | 0.061 | 0.035 | 0.093 | 1.759 | 0.376 | |||
4 | 1997 | 0.030 | −0.026 | 0.030 | 0.003 | 0.016 | 8.624 | 0.219 | −0.026 | −0.012 | 0.047 | 2.290 | −0.248 | |||
5 | 1998 | 0.011 | 0.009 | 0.011 | −0.004 | 0.006 | −2.603 | −0.705 | 0.009 | −0.040 | −0.011 | −0.226 | 3.652 | |||
Group B | 6 | 1999 | 0.022 | 0.038 | 0.022 | 0.007 | 0.013 | 3.074 | 0.571 | 0.038 | −0.021 | −0.005 | −1.827 | 4.404 | ||
7 | 2000 | 0.023 | 0.240 | 0.023 | 0.008 | 0.013 | 2.929 | 0.611 | 0.240 | 0.012 | 0.057 | 20.338 | 0.209 | |||
8 | 2001 | −0.020 | 0.150 | −0.020 | 0.013 | 0.011 | −1.550 | 1.151 | 0.150 | 0.027 | 0.055 | 5.541 | 0.494 | |||
9 | 2002 | −0.002 | 0.084 | −0.002 | −0.020 | −0.014 | 0.107 | 1.396 | 0.084 | 0.058 | 0.024 | 1.466 | 2.385 | |||
10 | 2003 | 0.022 | 0.436 | 0.022 | 0.009 | 0.010 | 2.364 | 0.985 | 0.436 | 0.076 | 0.080 | 5.720 | 0.956 | |||
Group C | 11 | 2004 | 0.017 | 0.410 | 0.017 | 0.004 | 0.005 | 4.500 | 0.783 | 0.410 | 0.101 | 0.113 | 4.056 | 0.896 | ||
12 | 2005 | 0.038 | 0.484 | 0.038 | 0.021 | 0.020 | 1.790 | 1.072 | 0.484 | 0.130 | 0.105 | 3.721 | 1.242 | |||
13 | 2006 | 0.011 | 0.183 | 0.011 | −0.003 | 0.003 | −3.856 | −1.052 | 0.183 | 0.026 | 0.033 | 6.943 | 0.800 | |||
14 | 2007 | −0.006 | −0.119 | −0.006 | −0.017 | −0.008 | 0.378 | 1.976 | −0.119 | −0.017 | −0.007 | 6.851 | 2.554 | |||
15 | 2008 | 0.015 | −0.145 | 0.015 | −0.005 | −0.003 | −3.136 | 1.699 | −0.145 | −0.003 | 0.010 | 54.343 | −0.268 | |||
Group D | 16 | 2009 | −0.022 | −0.085 | −0.022 | −0.031 | −0.044 | 0.713 | 0.704 | −0.085 | 0.014 | 0.011 | −5.941 | 1.321 | ||
17 | 2010 | −0.058 | −0.046 | −0.058 | −0.052 | −0.079 | 1.123 | 0.656 | −0.046 | 0.022 | 0.007 | −2.138 | 2.945 | |||
18 | 2011 | 0.051 | −0.076 | 0.051 | 0.040 | 0.022 | 1.260 | 1.861 | −0.076 | −0.009 | −0.012 | 8.669 | 0.699 | |||
19 | 2012 | 0.004 | −0.042 | 0.004 | −0.002 | −0.019 | −1.763 | 0.117 | −0.042 | −0.001 | −0.002 | 66.166 | 0.329 | |||
20 | 2013 | −0.012 | 0.125 | −0.012 | −0.016 | −0.039 | 0.726 | 0.421 | 0.125 | −0.054 | −0.051 | −2.329 | 1.063 | |||
Group E | 21 | 2014 | 0.037 | 0.176 | 0.037 | 0.020 | 0.012 | 1.859 | 1.674 | 0.176 | −0.049 | −0.042 | −3.561 | 1.168 | ||
22 | 2015 | 0.022 | 0.169 | 0.022 | −0.009 | 0.004 | −2.441 | −2.459 | 0.169 | −0.032 | −0.019 | −5.233 | 1.677 | |||
23 | 2016 | −0.029 | 0.264 | −0.029 | 0.000 | −0.010 | 57.739 | 0.011 | 0.264 | −0.058 | −0.128 | −4.572 | 0.451 | |||
24 | 2017 | −0.017 | 0.173 | −0.017 | 0.000 | −0.003 | 88.303 | 0.055 | 0.173 | −0.008 | −0.010 | −20.756 | 0.799 | |||
25 | 2018 | −0.004 | 0.100 | −0.004 | 0.012 | 0.000 | −0.328 | −51.549 | 0.100 | 0.008 | 0.001 | 12.415 | 12.302 | |||
Group F | 26 | 2019 | 0.072 | −0.112 | 0.072 | 0.045 | 0.043 | 1.595 | 1.035 | −0.112 | 0.016 | 0.004 | −7.124 | 3.709 | ||
27 | 2020 | −0.108 | 0.306 | −0.108 | −0.076 | −0.034 | 1.430 | 2.202 | 0.306 | 0.371 | 0.560 | 0.825 | 0.662 | |||
28 | 2021 | 0.007 | −0.259 | 0.007 | 0.033 | 0.072 | 0.225 | 0.453 | −0.259 | −0.302 | 0.518 | 0.858 | −0.583 | |||
29 | 2022 | 0.001 | −0.262 | 0.001 | 0.060 | 0.073 | 0.025 | 0.826 | −0.262 | −0.315 | 1.868 | 0.832 | −0.169 | |||
30 | 2023 | 0.004 | −0.359 | 0.004 | 0.239 | 0.073 | 0.019 | 3.268 | −0.359 | −0.302 | 1.174 | 1.189 | −0.257 |
T-ZDP Decoupling | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Groups | No | Years | GDP | One Percent Change in CO2 Emissions of USA | Percentage Change in GDP of USA | One Percent Change in CO2 Emissions of China | Percentage Change in GDP of China | One Percent Change in CO2 Emissions of USA | Percentage Change in GDP of USA | One Percent Change in CO2 Emissions of China | Percentage Change in GDP of China | |||||||||||||||
USA | China | GDP | NGE | NGU | NGE | NGU | GDP | NGE | NGU | NGE | NGU | GDP | CPR | CCS | CPR | CCS | GDP | CPR | CCS | CPR | CCS | |||||
Group A | 1 | 1994 | Environmental Factors | Energy Source and Utilization | ||||||||||||||||||||||
2 | 1995 | 0.014 | −0.009 | 0.014 | 0.043 | 0.009 | 0.327 | 4.990 | −0.009 | 0.009 | −0.055 | −1.015 | −0.158 | 0.014 | 0.006 | 0.009 | 2.453 | 0.660 | −0.009 | −0.055 | −0.088 | 0.160 | 0.623 | |||
3 | 1996 | 0.011 | 0.061 | 0.011 | 0.003 | 0.001 | 3.044 | 2.691 | 0.061 | 0.001 | 0.038 | 47.522 | 0.034 | 0.011 | −0.002 | 0.001 | −4.676 | −2.452 | 0.061 | 0.040 | −0.013 | 1.550 | −3.105 | |||
4 | 1997 | 0.030 | −0.026 | 0.030 | 0.004 | 0.009 | 7.729 | 0.444 | −0.026 | 0.009 | −0.010 | −3.066 | −0.868 | 0.030 | 0.008 | 0.007 | 3.799 | 1.058 | −0.026 | −0.011 | −0.055 | 2.479 | 0.194 | |||
5 | 1998 | 0.011 | 0.009 | 0.011 | −0.004 | 0.001 | −3.166 | −6.815 | 0.009 | 0.001 | −0.028 | 17.164 | −0.018 | 0.011 | 0.000 | 0.003 | 168.922 | 0.019 | 0.009 | −0.028 | −0.041 | −0.317 | 0.689 | |||
Group B | 6 | 1999 | 0.022 | 0.038 | 0.022 | 0.003 | 0.006 | 6.533 | 0.538 | 0.038 | 0.006 | −0.019 | 5.958 | −0.330 | 0.022 | 0.007 | 0.010 | 3.012 | 0.760 | 0.038 | −0.024 | −0.035 | −1.590 | 0.677 | ||
7 | 2000 | 0.023 | 0.240 | 0.023 | 0.005 | 0.005 | 5.106 | 0.917 | 0.240 | 0.005 | 0.031 | 48.147 | 0.161 | 0.023 | 0.005 | 0.006 | 4.715 | 0.774 | 0.240 | 0.013 | 0.008 | 18.338 | 1.721 | |||
8 | 2001 | −0.020 | 0.150 | −0.020 | 0.014 | 0.011 | −1.418 | 1.277 | 0.150 | 0.011 | 0.066 | 13.650 | 0.167 | −0.020 | 0.012 | 0.017 | −1.716 | 0.671 | 0.150 | 0.019 | 0.025 | 7.687 | 0.784 | |||
9 | 2002 | −0.002 | 0.084 | −0.002 | −0.026 | −0.029 | 0.084 | 0.879 | 0.084 | −0.029 | 0.101 | −2.897 | −0.288 | −0.002 | −0.033 | −0.025 | 0.066 | 1.323 | 0.084 | 0.051 | 0.053 | 1.656 | 0.964 | |||
10 | 2003 | 0.022 | 0.436 | 0.022 | 0.000 | −0.001 | −90.880 | 0.195 | 0.436 | −0.001 | 0.117 | −349.732 | −0.011 | 0.022 | 0.001 | 0.003 | 19.675 | 0.434 | 0.436 | 0.072 | 0.080 | 6.072 | 0.900 | |||
Group C | 11 | 2004 | 0.017 | 0.410 | 0.017 | −0.004 | −0.004 | −4.909 | 0.879 | 0.410 | −0.004 | 0.126 | −102.268 | −0.032 | 0.017 | 0.005 | 0.000 | 3.734 | −60.388 | 0.410 | 0.105 | 0.102 | 3.918 | 1.027 | ||
12 | 2005 | 0.038 | 0.484 | 0.038 | 0.010 | 0.011 | 3.678 | 0.919 | 0.484 | 0.011 | 0.126 | 43.510 | 0.088 | 0.038 | 0.012 | 0.016 | 3.136 | 0.744 | 0.484 | 0.109 | 0.105 | 4.428 | 1.040 | |||
13 | 2006 | 0.011 | 0.183 | 0.011 | −0.009 | −0.003 | −1.342 | 2.859 | 0.183 | −0.003 | 0.075 | −61.263 | −0.040 | 0.011 | −0.005 | −0.003 | −2.341 | 1.496 | 0.183 | 0.066 | 0.069 | 2.784 | 0.954 | |||
14 | 2007 | −0.006 | −0.119 | −0.006 | −0.015 | −0.012 | 0.415 | 1.221 | −0.119 | −0.012 | 0.043 | 9.577 | −0.290 | −0.006 | −0.013 | −0.011 | 0.503 | 1.104 | −0.119 | 0.025 | 0.043 | −4.702 | 0.586 | |||
15 | 2008 | 0.015 | −0.145 | 0.015 | −0.007 | −0.006 | −2.202 | 1.062 | −0.145 | −0.006 | 0.077 | 22.947 | −0.082 | 0.015 | −0.006 | −0.005 | −2.581 | 1.169 | −0.145 | 0.046 | 0.049 | −3.172 | 0.933 | |||
Group D | 16 | 2009 | −0.022 | −0.085 | −0.022 | −0.038 | −0.035 | 0.580 | 1.095 | −0.085 | −0.035 | 0.061 | 2.429 | −0.576 | −0.022 | −0.033 | −0.038 | 0.678 | 0.874 | −0.085 | 0.029 | 0.016 | −2.890 | 1.802 | ||
17 | 2010 | −0.058 | −0.046 | −0.058 | −0.046 | −0.050 | 1.281 | 0.911 | −0.046 | −0.050 | 0.002 | 0.925 | −32.911 | −0.058 | −0.058 | −0.067 | 1.003 | 0.872 | −0.046 | 0.018 | 0.023 | −2.555 | 0.774 | |||
18 | 2011 | 0.051 | −0.076 | 0.051 | 0.073 | 0.059 | 0.698 | 1.228 | −0.076 | 0.059 | −0.097 | −1.274 | −0.610 | 0.051 | 0.042 | 0.039 | 1.200 | 1.096 | −0.076 | −0.034 | −0.020 | 2.222 | 1.739 | |||
19 | 2012 | 0.004 | −0.042 | 0.004 | 0.055 | 0.025 | 0.071 | 2.239 | −0.042 | 0.025 | −0.025 | −1.689 | −0.971 | 0.004 | 0.001 | −0.004 | 4.820 | −0.217 | −0.042 | −0.006 | 0.005 | 6.572 | −1.155 | |||
20 | 2013 | −0.012 | 0.125 | −0.012 | 0.041 | 0.003 | −0.287 | 14.761 | 0.125 | 0.003 | 0.000 | 44.634 | −10.412 | −0.012 | −0.021 | −0.030 | 0.557 | 0.716 | 0.125 | −0.031 | −0.023 | −4.077 | 1.321 | |||
Group E | 21 | 2014 | 0.037 | 0.176 | 0.037 | 0.071 | 0.047 | 0.512 | 1.534 | 0.176 | 0.047 | 0.035 | 3.777 | 1.316 | 0.037 | 0.004 | 0.011 | 9.443 | 0.363 | 0.176 | −0.020 | −0.006 | −8.737 | 3.471 | ||
22 | 2015 | 0.022 | 0.169 | 0.022 | 0.011 | 0.018 | 2.004 | 0.597 | 0.169 | 0.018 | 0.068 | 9.218 | 0.270 | 0.022 | −0.001 | −0.001 | −18.904 | 0.999 | 0.169 | −0.014 | −0.013 | −12.191 | 1.080 | |||
23 | 2016 | −0.029 | 0.264 | −0.029 | −0.067 | −0.005 | 0.430 | 14.417 | 0.264 | −0.005 | 0.055 | −57.297 | −0.084 | −0.029 | −0.018 | −0.023 | 1.578 | 0.776 | 0.264 | −0.018 | −0.015 | −14.791 | 1.189 | |||
24 | 2017 | −0.017 | 0.173 | −0.017 | −0.025 | −0.004 | 0.677 | 6.543 | 0.173 | −0.004 | 0.018 | −45.525 | −0.212 | −0.017 | −0.020 | −0.022 | 0.860 | 0.870 | 0.173 | −0.013 | −0.009 | −13.476 | 1.429 | |||
25 | 2018 | −0.004 | 0.100 | −0.004 | 0.005 | 0.003 | −0.843 | 1.483 | 0.100 | 0.003 | 0.024 | 30.978 | 0.133 | −0.004 | −0.003 | −0.007 | 1.228 | 0.476 | 0.100 | 0.006 | 0.006 | 17.283 | 0.975 | |||
Group F | 26 | 2019 | 0.072 | −0.112 | 0.072 | 0.046 | 0.034 | 1.542 | 1.382 | −0.112 | 0.034 | 0.033 | −3.329 | 1.016 | 0.072 | 0.024 | 0.016 | 2.924 | 1.533 | −0.112 | 0.013 | 0.009 | −8.450 | 1.549 | ||
27 | 2020 | −0.108 | 0.306 | −0.108 | −0.060 | −0.075 | 1.806 | 0.803 | 0.306 | −0.075 | 0.641 | −4.109 | −0.116 | −0.108 | −0.088 | −0.140 | 1.228 | 0.627 | 0.306 | 0.444 | 0.430 | 0.689 | 1.033 | |||
28 | 2021 | 0.007 | −0.259 | 0.007 | 0.048 | 0.035 | 0.153 | 1.393 | −0.259 | 0.035 | 0.056 | −7.479 | 0.616 | 0.007 | 0.022 | −0.039 | 0.336 | −0.570 | −0.259 | −0.125 | −0.077 | 2.067 | 1.633 | |||
29 | 2022 | 0.001 | −0.262 | 0.001 | 0.060 | 0.054 | 0.025 | 1.106 | −0.262 | 0.054 | 0.924 | −4.848 | 0.058 | 0.001 | 0.027 | −0.028 | 0.055 | −0.974 | −0.262 | 0.138 | 0.055 | −1.896 | 2.532 | |||
30 | 2023 | 0.004 | −0.359 | 0.004 | 0.162 | 0.148 | 0.028 | 1.100 | −0.359 | 0.148 | −0.583 | −2.432 | −0.253 | 0.004 | −0.023 | −0.031 | −0.193 | 0.739 | −0.359 | −0.762 | 0.124 | 0.471 | −6.149 |
No. of Groups | Years | Average Value of GDP | Percentage Change in GDP of USA | Percentage Change in GDP of China | Percentage Change in GDP of USA | Percentage Change in GDP of China | Percentage Change in GDP of USA | Percentage Change in GDP of China | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
USA | China | HDP-UG | HDC-UG | HDC-CG | NGU-CG | NGE-UG | NGU-UG | NGE-CG | NGU-CG | CPR-UG | CCS-UG | CPR-CG | CCS-CG | ||
Group A | 1994–1998 | 0.016 | 0.009 | 2.078 | 0.857 | 0.985 | −0.438 | 1.983 | 0.327 | 15.151 | −0.253 | 42.625 | −0.179 | 0.968 | −0.400 |
Group B | 1999–2003 | 0.009 | 0.19 | 1.385 | 0.943 | 6.248 | 1.69 | −16.115 | 0.761 | −56.975 | −0.06 | 5.15 | 0.793 | 6.433 | 1.009 |
Group C | 2004–2008 | 0.015 | 0.163 | −0.065 | 0.896 | 15.183 | 1.045 | −0.872 | 1.388 | −17.5 | −0.071 | 0.49 | −11.175 | 0.651 | 0.908 |
Group D | 2009–2013 | −0.008 | −0.025 | 0.412 | 0.752 | 12.885 | 1.271 | 0.469 | 4.047 | 9.005 | −9.096 | 1.652 | 0.668 | −0.146 | 0.896 |
Group E | 2014–2018 | 0.002 | 0.176 | 19.026 | −10.454 | −4.341 | 3.28 | 0.556 | 4.915 | −11.77 | 0.285 | −1.159 | 0.697 | −6.382 | 1.629 |
Group F | 2019–2023 | −0.005 | −0.137 | 0.659 | 1.557 | −0.684 | 0.673 | 0.711 | 1.157 | −4.439 | 0.264 | 0.87 | 0.271 | −1.424 | 0.12 |
No. of Groups | Years | Average Value of GDP | One Percent Change in CO2 Emissions of USA | One Percent Change in CO2 Emissions of China | One Percent Change in CO2 Emissions of USA | One Percent Change in CO2 Emissions of China | One Percent Change in CO2 Emissions of USA | One Percent Change in CO2 Emissions of China | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
USA | China | GDP-UC | HDP-UC | HDC-UC | GDP-CC | HDC-CC | NGU-CC | GDP-UC | NGE-UC | NGU-UC | GDP-CC | NGE-CC | NGU-CC | GDP-UC | CPR-UC | CCS-UC | GDP-CC | CPR-CC | CCS-CC | ||
Group A | 1994–1998 | 0.016 | 0.009 | 0.016 | 0.006 | 0.009 | 0.009 | −0.023 | 0.036 | 0.016 | 0.012 | 0.005 | 0.009 | 0.005 | −0.014 | 0.016 | 0.003 | 0.005 | 0.009 | −0.014 | −0.049 |
Group B | 1999–2003 | 0.009 | 0.19 | 0.009 | 0.003 | 0.006 | 0.190 | 0.030 | 0.042 | 0.009 | −0.001 | −0.002 | 0.190 | −0.002 | 0.059 | 0.009 | −0.002 | 0.002 | 0.190 | 0.026 | 0.026 |
Group C | 2004–2008 | 0.015 | 0.163 | 0.015 | 0.000 | 0.003 | 0.163 | 0.048 | 0.051 | 0.015 | −0.005 | −0.003 | 0.163 | −0.003 | 0.089 | 0.015 | −0.001 | −0.001 | 0.163 | 0.070 | 0.074 |
Group D | 2009–2013 | −0.008 | −0.025 | −0.008 | −0.012 | −0.032 | −0.025 | −0.005 | −0.009 | −0.008 | 0.017 | 0.000 | −0.025 | 0.000 | −0.012 | −0.008 | −0.014 | −0.020 | −0.025 | −0.005 | 0.000 |
Group E | 2014–2018 | 0.002 | 0.176 | 0.002 | 0.005 | 0.000 | 0.176 | −0.028 | −0.040 | 0.002 | −0.001 | 0.012 | 0.176 | 0.012 | 0.040 | 0.002 | −0.008 | −0.009 | 0.176 | −0.012 | −0.007 |
Group F | 2019–2023 | −0.005 | −0.137 | −0.005 | 0.060 | 0.046 | −0.137 | −0.106 | 0.825 | −0.005 | 0.051 | 0.039 | −0.137 | 0.039 | 0.214 | −0.005 | −0.007 | −0.044 | −0.137 | −0.058 | 0.108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.; Zhuang, W. Tapio-Z Decoupling of the Valuation of Energy Sources, CO2 Emissions, and GDP Growth in the United States and China Using a Fuzzy Logic Model. Energies 2025, 18, 4188. https://doi.org/10.3390/en18154188
Khan R, Zhuang W. Tapio-Z Decoupling of the Valuation of Energy Sources, CO2 Emissions, and GDP Growth in the United States and China Using a Fuzzy Logic Model. Energies. 2025; 18(15):4188. https://doi.org/10.3390/en18154188
Chicago/Turabian StyleKhan, Rabnawaz, and Weiqing Zhuang. 2025. "Tapio-Z Decoupling of the Valuation of Energy Sources, CO2 Emissions, and GDP Growth in the United States and China Using a Fuzzy Logic Model" Energies 18, no. 15: 4188. https://doi.org/10.3390/en18154188
APA StyleKhan, R., & Zhuang, W. (2025). Tapio-Z Decoupling of the Valuation of Energy Sources, CO2 Emissions, and GDP Growth in the United States and China Using a Fuzzy Logic Model. Energies, 18(15), 4188. https://doi.org/10.3390/en18154188