Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (410)

Search Parameters:
Keywords = ecological water transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2022 KiB  
Article
A Practical Method for Ecological Flow Calculation to Support Integrated Ecological Functions of the Lower Yellow River, China
by Xinyuan Chen, Lixin Zhang and Lei Tang
Water 2025, 17(15), 2326; https://doi.org/10.3390/w17152326 - 5 Aug 2025
Viewed by 27
Abstract
The lower Yellow River is characterized by low water discharge and a high sediment load, resulting in a fragile aquatic ecosystem. It is important to develop a reasonable method of ecological flow calculation that can be applied to the water-scarce rivers like the [...] Read more.
The lower Yellow River is characterized by low water discharge and a high sediment load, resulting in a fragile aquatic ecosystem. It is important to develop a reasonable method of ecological flow calculation that can be applied to the water-scarce rivers like the Yellow River. In this paper, we selected the Huayuankou hydrological station in the lower Yellow River as our study site and assessed the ecological flow using several methodologies including the monthly frequency calculation method, the sediment transportation method, the habitat simulation method, and the improved annual distribution method. Based on the seasonal applicability of the four methods across months of the year, we established an ecological flow calculation method that considers the integrated ecological functions of the lower Yellow River. In this method, ecological flow in the lower Yellow River during the dry season (November to March) can be determined by using the improved annual distribution method, ecological flow in the fish spawning period (April to June) can be calculated using the habitat simulation method, and the ecological flow during the flood season (July to October) can be calculated using the sediment transportation method. The optimal ecological flow regime for the Huayuankou section was determined using the established method. The ecological flow regimes derived in our study ranged from 310 m3/s to 1532 m3/s. However, we also observed that the ecological flow has a relatively low assurance rate during the flood season in the lower Yellow River, with the assurance rate not exceeding 63%. This highlights the fact that more attention should be given in reservoir regulations to facilitating sediment transport downstream. Full article
Show Figures

Figure 1

28 pages, 2266 KiB  
Review
Uncovering Plastic Pollution: A Scoping Review of Urban Waterways, Technologies, and Interdisciplinary Approaches
by Peter Cleveland, Donna Cleveland, Ann Morrison, Khoi Hoang Dinh, An Nguyen Pham Hai, Luca Freitas Ribeiro and Khanh Tran Duy
Sustainability 2025, 17(15), 7009; https://doi.org/10.3390/su17157009 - 1 Aug 2025
Viewed by 264
Abstract
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, [...] Read more.
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, addressed, and reconceptualized. Drawing from the literature across environmental science, technology, and social studies, we identify four interconnected areas of focus: urban pollution pathways, innovations in monitoring and methods, community-based interventions, and interdisciplinary perspectives. Our analysis combines qualitative synthesis with visual mapping techniques, including keyword co-occurrence networks, to explore how real-time tools, such as IoT sensors, multi-sensor systems, and geospatial technologies, are transforming the ways plastic waste is tracked and analyzed. The review also considers the growing use of novel theoretical frameworks, such as post-phenomenology and ecological materialism, to better understand the role of plastics as both pollutants and ecological agents. Despite progress, the literature reveals persistent gaps in longitudinal studies, regional representation, and policy translation, particularly across the Global South. We emphasize the value of participatory models and community-led research in bridging these gaps and advancing more inclusive and responsive solutions. These insights inform the development of plastic tracker technologies currently being piloted in Vietnam and contribute to broader sustainability goals, including SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production), and SDG 14 (Life Below Water). Full article
Show Figures

Figure 1

16 pages, 2460 KiB  
Article
Continuous Chamber Gangue Storage for Sustainable Mining in Coal Mines: Principles, Methods, and Environmental Benefits
by Jinhai Liu, Yuanhang Wang, Jiajie Li, Desire Ntokoma, Zhengxing Yu, Sitao Zhu and Michael Hitch
Sustainability 2025, 17(15), 6865; https://doi.org/10.3390/su17156865 - 28 Jul 2025
Viewed by 277
Abstract
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution [...] Read more.
Coal gangue, a major by-product of coal mining, poses significant environmental challenges due to its large-scale accumulation, land occupation, and potential for air and water pollution. This manuscript presents a comprehensive overview of continuous chamber gangue storage technology as a sustainable mining solution for coal mines. The principles of this approach emphasize minimizing disturbance to overlying strata, enabling uninterrupted mining operations, and reducing both production costs and environmental risks. By storing the surface or underground gangue in continuous chambers, the proposed method ensures the roof stability, maximizes the waste storage, and prevents the interaction between mining and waste management processes. Detailed storage sequences and excavation methods are discussed, including continuous and jump-back excavation strategies tailored to varying roof conditions. The process flows for both underground and ground-based chamber storage are described, highlighting the integration of gangue crushing, paste preparation, and pipeline transport for efficient underground storage. In a case study with annual storage of 500,000 t gangue, the annual economic benefit reached CNY 1,111,425,000. This technology not only addresses the urgent need for sustainable coal gangue management, but also aligns with the goals of resource conservation, ecological protection, and the advancement of green mining practices in the coal industry. Full article
Show Figures

Figure 1

25 pages, 5543 KiB  
Article
Geospatial Drivers of China’s Nature Reserves: Implications for Sustainable Agricultural Development
by Shasha Ouyang and Jun Wen
Agriculture 2025, 15(15), 1596; https://doi.org/10.3390/agriculture15151596 - 24 Jul 2025
Viewed by 289
Abstract
The establishment and management of nature reserves play a crucial role in protecting biodiversity and supporting sustainable agriculture. This study focuses on 2538 nature reserves in 22 provinces, 5 autonomous regions and 4 municipalities directly under the central government in mainland China. Integrating [...] Read more.
The establishment and management of nature reserves play a crucial role in protecting biodiversity and supporting sustainable agriculture. This study focuses on 2538 nature reserves in 22 provinces, 5 autonomous regions and 4 municipalities directly under the central government in mainland China. Integrating GIS spatial statistics, imbalance index, and geodetector models, we reveal critical insights: (1) Pronounced spatial inequity is observed, where a small number of eastern provinces dominate the total reserve count, highlighting significant regional disparities in ecological resource allocation. The sparse kernel density in western regions, indicating sparse reserve coverage. The Standard Deviation Ellipse highlights directional dispersion and human-ecological conflicts in high-density zones. (2) Key sustainability indicators driving reserve distribution include: total water resources, water resources per capita, forest area. (3) The spatial distribution of China’s nature reserves, along with factors such as altitude, river distribution, and transportation infrastructure, plays a crucial role in their development. This research provides theoretical support for the scientific planning and policy-making of nature reserves in China and offers practical guidance for optimizing and adjusting sustainable agricultural development. The study emphasizes the vital functions of nature reserves in maintaining ecosystem balance, enhancing regional climate resilience, and serving as biodiversity reservoirs. This research offers strategic insights for integrating nature reserve spatial planning with sustainable agricultural development policies, providing a scientific basis for optimizing the eco-agricultural interface in China. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

41 pages, 4553 KiB  
Review
Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review
by Yue Li, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang and Fengqi Yang
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616 - 24 Jul 2025
Viewed by 771
Abstract
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist [...] Read more.
With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice. Full article
Show Figures

Graphical abstract

21 pages, 9479 KiB  
Review
Major Intrinsic Proteins in Fungi: A Special Emphasis on the XIP Subfamily
by Jean-Stéphane Venisse, Gisèle Bronner, Mouadh Saadaoui, Patricia Roeckel-Drevet, Mohamed Faize and Boris Fumanal
J. Fungi 2025, 11(7), 543; https://doi.org/10.3390/jof11070543 - 21 Jul 2025
Viewed by 349
Abstract
The fungal kingdom, with an estimated five million species, has undergone extensive diversification over the past billion years and now occupies a wide array of ecological niches from terrestrial to aquatic ecosystems. To thrive in such diverse environments, fungi must exhibit finely tuned [...] Read more.
The fungal kingdom, with an estimated five million species, has undergone extensive diversification over the past billion years and now occupies a wide array of ecological niches from terrestrial to aquatic ecosystems. To thrive in such diverse environments, fungi must exhibit finely tuned physiological and morphological responses orchestrated by conserved molecular pathways. Increasing evidence suggests that aquaporins (AQPs) play a key role in mediating these adaptive responses, particularly under varying abiotic and biotic stress conditions. However, despite notable advances in recent decades, the precise functional roles of AQPs within the fungal kingdom remains largely unresolved in the field of cell biology. AQPs are transmembrane proteins belonging to the major intrinsic proteins (MIPs) superfamily, which is characterized by remarkable sequence and structural diversity. Beyond their established function in facilitating water transport, MIPs mediated the bidirectional diffusion of a range of small inorganic and organic solutes, ions, and gases across cellular membranes. In fungi, MIPs are classified into three main subfamilies: orthodox (i.e., classical) AQPs, aquaglyceroporins (AQGP), and X-intrinsic proteins (XIPs). This review provides a concise summary of the fundamental structural and functional characteristics of fungal aquaporins, including their structure, classification, and known physiological roles. While the majority of the current literature has focused on the aquaporin and aquaglyceroporin subfamilies, this review also aims to offer a comprehensive and original overview of the relatively understudied X-intrinsic protein subfamily, highlighting its potential implication in fungal biology. Full article
Show Figures

Figure 1

19 pages, 2285 KiB  
Review
Aquatic Pollution in the Bay of Bengal: Impacts on Fisheries and Ecosystems
by Nowrin Akter Shaika, Saleha Khan, Sadiqul Awal, Md. Mahfuzul Haque, Abul Bashar and Halis Simsek
Hydrology 2025, 12(7), 191; https://doi.org/10.3390/hydrology12070191 - 11 Jul 2025
Viewed by 884
Abstract
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as [...] Read more.
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and microplastics have been reported at concerning levels in the soil and water in aquatic ecosystems. Rivers act as key routes, transporting pollutants from inland sources to the Bay of Bengal. These contaminants disrupt metabolic and physiological functions in fish and other aquatic species and pose serious threats to food safety and public health through bioaccumulation. Harmful algal blooms (HABs), caused by nutrient enrichment, further exacerbate ecosystem degradation in the Bay of Bengal. The review highlights the immediate need for strengthened pollution control regulations, real-time water quality monitoring, sustainable farming practices, and community-based policy interventions to preserve biodiversity and safeguard fisheries. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

32 pages, 3854 KiB  
Review
Danube River: Hydrological Features and Risk Assessment with a Focus on Navigation and Monitoring Frameworks
by Victor-Ionut Popa, Eugen Rusu, Ana-Maria Chirosca and Maxim Arseni
Earth 2025, 6(3), 70; https://doi.org/10.3390/earth6030070 - 2 Jul 2025
Viewed by 993
Abstract
Danube River represents a critical axis of ecological and economic importance for the countries along its course. From this perspective, this paper aims to assess the most significant characteristics of the river and of its main tributaries, as well as its impact on [...] Read more.
Danube River represents a critical axis of ecological and economic importance for the countries along its course. From this perspective, this paper aims to assess the most significant characteristics of the river and of its main tributaries, as well as its impact on the environmental sustainability and socio-economic development. Navigation and the economic contribution of the Danube River are the key issues of this work, emphasizing its importance as an international transport artery that facilitates trade and tourism, and develops the energy industry through hydropower plants. The study includes an analysis of the volume of goods transported from 2019 to 2023, as well as an analysis of the goods traffic in the busiest port on the Danube. Furthermore, climate change affects the hydrological regime of the Danube, as well as the ecosystems, economy, and energy security of the riparian countries. Main impacts include changes in the hydrological regime, increased frequency of droughts and floods, reduced water quality, deterioration of biodiversity, and disruption of the economic activities dependent on the river, such as navigation, agriculture, and hydropower production. Thus, hydrological risks and challenges are investigated, focusing on the extreme events of the last two decades and the awareness of their repercussions. In this context, the national and international institutions responsible for monitoring and managing the Danube are presented, and their role in promoting a sustainable river policy is explored. Methods and technologies are shown to be essential tools for monitoring and prediction studies. The Danube includes an extensive network of hydrometric stations that help to prevent and manage the most significant risks. Finally, a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis of the development of the hydrological studies was conducted, highlighting the potential of the river. Full article
Show Figures

Figure 1

23 pages, 12735 KiB  
Article
Impacts of Typhoon Tracks on Frontal Changes Modulating Chlorophyll Distribution in the Pearl River Estuary
by Qiyao Zhao, Qibin Lao, Chao Wang, Sihai Liu and Fajin Chen
Remote Sens. 2025, 17(13), 2165; https://doi.org/10.3390/rs17132165 - 24 Jun 2025
Viewed by 373
Abstract
Typhoons can significantly alter ocean hydrodynamic processes through their powerful external forces, greatly affecting marine biogeochemistry and ocean productivity. However, the specific impacts of typhoons with different tracks on coastal dynamics, including frontal activities and phytoplankton lateral transport, are not well understood. This [...] Read more.
Typhoons can significantly alter ocean hydrodynamic processes through their powerful external forces, greatly affecting marine biogeochemistry and ocean productivity. However, the specific impacts of typhoons with different tracks on coastal dynamics, including frontal activities and phytoplankton lateral transport, are not well understood. This study captured two distinct types of typhoons, namely Merbok (2017) and Nuri (2020), which landed from the right and left sides of the Pearl River Estuary (PRE), respectively, utilizing satellite remote sensing data to study their impacts on frontal dynamics and marine productivity. We found that after both typhoons, the southwest monsoon amplified geostrophic currents significantly (increased ~14% after Nuri (2020) and 48% after Merbok (2020)). These stronger currents transported warmer offshore seawater from the South China Sea to the PRE and intensified the frontal activities in nearshore PRE (increased ~47% after Nuri (2020) and ~2.5 times after Merbok (2020)). The ocean fronts limited the transport of high-chlorophyll and eutrophic water from the PRE to the offshore waters due to the barrier effect of the front. This resulted in a sharp drop in chlorophyll concentrations in the offshore-adjacent waters of PER after Typhoon Nuri (2020) (~37%). By contrast, despite the intensified geostrophic current induced by the summer monsoon following Typhoon Merbok (2020), its stronger offshore force, driven by the intense offshore wind stress (characteristic of the left-side typhoon), caused the nearshore front to move offshore. The displacement of fronts lifted the restriction of the front barrier and led more high-chlorophyll (increased ~4 times) and eutrophic water to be transported offshore, thereby stimulating offshore algal blooms. Our findings elucidate the mechanisms by which different track typhoons influence chlorophyll distribution through changes in frontal dynamics, offering new perspectives on the coastal ecological impacts of typhoons and further studies for typhoon impact modeling or longshore management. Full article
Show Figures

Figure 1

23 pages, 5190 KiB  
Article
Spatial Gradient Effects of Landscape Pattern on Ecological Quality Along the Grand Canal
by Yonggeng Xiong and Aibo Jin
Land 2025, 14(6), 1310; https://doi.org/10.3390/land14061310 - 19 Jun 2025
Viewed by 509
Abstract
The Grand Canal serves as a vital water transportation route, a UNESCO World Cultural Heritage site, and an ecological corridor. It is currently undergoing coordinated transformation through infrastructure development, heritage preservation, and ecological restoration. However, existing research has primarily focused on either cultural [...] Read more.
The Grand Canal serves as a vital water transportation route, a UNESCO World Cultural Heritage site, and an ecological corridor. It is currently undergoing coordinated transformation through infrastructure development, heritage preservation, and ecological restoration. However, existing research has primarily focused on either cultural heritage conservation or localized ecological issues, with limited attention to the spatial relationship between landscape patterns and ecological quality along the entire corridor. To address this gap, this study examines eight sections of the Grand Canal and develops a gradient analysis framework based on equidistant buffer zones. The framework integrates the Remote Sensing Ecological Index (RSEI) with landscape pattern indices to assess ecological responses across spatial gradients. A Multi-scale Geographically Weighted Regression (MGWR) model is applied to reveal the spatially heterogeneous effects of landscape patterns on ecological quality. From 2013 to 2023, landscape patterns showed a trend toward increasing agglomeration and regularity. This is indicated by a rise in the Aggregation Index (AI) from 91.24 to 91.38 and declines in both patch density (PD) from 8.45 to 8.20 and Landscape Shape Index (LSI) from 199.74 to 196.72. During the same period, ecological quality slightly declined, with RSEI decreasing from 0.66 to 0.57. The effects of PD and Shannon’s Diversity Index (SHDI) on ecological quality varied across canal sections. In highly urbanized areas such as the Tonghui River, these indices were positively correlated with ecological quality, whereas in less urbanized areas like the Huitong River, negative correlations were observed. Overall, the strength of these correlations tended to weaken with increasing buffer distance. This study provides a scientific foundation for the integrated development of ecological protection and spatial planning along the Grand Canal and offers theoretical insights for the refined management of other major inland waterways. Full article
(This article belongs to the Special Issue Territorial Space and Transportation Coordinated Development)
Show Figures

Figure 1

21 pages, 5095 KiB  
Article
Molecular Adaptations and Quality Enhancements in a Hybrid (Erythroculter ilishaeformis ♀ × Ancherythroculter nigrocauda ♂) Cultured in Saline–Alkali Water
by Lang Zhang, Qiuying Qin, Qing Li, Yali Yu, Ziwei Song, Li He, Yanhong Sun, Liting Ye, Guiying Wang and Jing Xu
Biology 2025, 14(6), 718; https://doi.org/10.3390/biology14060718 - 18 Jun 2025
Viewed by 584
Abstract
Declining freshwater resources have spurred interest in saline–alkali (SA) water aquaculture, with species like tilapia and rainbow trout demonstrating ecological plasticity in such environments. However, the molecular mechanisms underlying fish adaptation and quality impacts remain unclear. This study investigated the hybrid fish “Xianfeng [...] Read more.
Declining freshwater resources have spurred interest in saline–alkali (SA) water aquaculture, with species like tilapia and rainbow trout demonstrating ecological plasticity in such environments. However, the molecular mechanisms underlying fish adaptation and quality impacts remain unclear. This study investigated the hybrid fish “Xianfeng No. 1” (Erythroculter ilishaeformis × Ancherythroculter nigrocauda), a key aquaculture species in China, under 60-day SA exposure. The results showed increased levels of oxidative stress markers (MDA) and antioxidant enzymes (SOD, CAT, GSH-Px), alongside improved quality traits. Transcriptomics revealed differentially expressed genes (DEGs) in muscle tissue associated with oxidative stress (UQCRFS1, UQCR10, CYC1), ion transport (COX5A, COX7C, COX7B), and the immune response (ATG9A, ATG2B, ATG2A, ULK1, ULK2, CFI, CFH). Metabolomics identified increased non-volatile flavors (e.g., glycine, proline) and collagen-related compounds. Integrated analysis highlighted the upregulation of GSR and GGT, and the downregulation of CHDH and GBSA, potentially driving glycine accumulation. These findings suggest that SA stress enhances antioxidant capacity, activates immune pathways, and modulates ion transport, enabling adaptation while improving meat quality. This study elucidates molecular mechanisms of fish acclimation to SA environments, providing insights for sustainable aquaculture development and breeding of stress-tolerant species in SA regions. Full article
(This article belongs to the Special Issue Nutrition, Environment, and Fish Physiology)
Show Figures

Graphical abstract

31 pages, 2910 KiB  
Review
Tyre Wear Particles in the Environment: Sources, Toxicity, and Remediation Approaches
by Jie Kang, Xintong Liu, Bing Dai, Tianhao Liu, Fasih Ullah Haider, Peng Zhang, Habiba and Jian Cai
Sustainability 2025, 17(12), 5433; https://doi.org/10.3390/su17125433 - 12 Jun 2025
Viewed by 1238
Abstract
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, [...] Read more.
Tyre wear particles (TWPs), generated from tyre-road abrasion, are a pervasive and under-regulated environmental pollutant, accounting for a significant share of global microplastic contamination. Recent estimates indicate that 1.3 million metric tons of TWPs are released annually in Europe, dispersing via atmospheric transport, stormwater runoff, and sedimentation to contaminate air, water, and soil. TWPs are composed of synthetic rubber polymers, reinforcing fillers, and chemical additives, including heavy metals such as zinc (Zn) and copper (Cu) and organic compounds like polycyclic aromatic hydrocarbons (PAHs) and N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD). These constituents confer persistence and bioaccumulative potential. While TWP toxicity in aquatic systems is well-documented, its ecological impacts on terrestrial environments, particularly in agricultural soils, remain less understood despite global soil loading rates exceeding 6.1 million metric tons annually. This review synthesizes global research on TWP sources, environmental fate, and ecotoxicological effects, with a focus on soil–plant systems. TWPs have been shown to alter key soil properties, including a 25% reduction in porosity and a 20–35% decrease in organic matter decomposition, disrupt microbial communities (with a 40–60% reduction in nitrogen-fixing bacteria), and induce phytotoxicity through both physical blockage of roots and Zn-induced oxidative stress. Human exposure occurs through inhalation (estimated at 3200 particles per day in urban areas), ingestion, and dermal contact, with epidemiological evidence linking TWPs to increased risks of respiratory, cardiovascular, and developmental disorders. Emerging remediation strategies are critically evaluated across three tiers: (1) source reduction using advanced tyre materials (up to 40% wear reduction in laboratory tests); (2) environmental interception through bioengineered filtration systems (60–80% capture efficiency in pilot trials); and (3) contaminant degradation via novel bioremediation techniques (up to 85% removal in recent studies). Key research gaps remain, including the need for long-term field studies, standardized mitigation protocols, and integrated risk assessments. This review emphasizes the importance of interdisciplinary collaboration in addressing TWP pollution and offers guidance on sustainable solutions to protect ecosystems and public health through science-driven policy recommendations. Full article
Show Figures

Figure 1

36 pages, 4500 KiB  
Article
Evaluation of Personal Ecological Footprints for Climate Change Mitigation and Adaptation: A Case Study in the UK
by Ahmed Abugabal, Mawada Abdellatif, Ana Armada Bras and Laurence Brady
Sustainability 2025, 17(12), 5415; https://doi.org/10.3390/su17125415 - 12 Jun 2025
Viewed by 692
Abstract
Climate change is one of our most critical challenges, requiring urgent and comprehensive action across all levels of society. Individual actions and their roles in mitigating and adapting to climate change remain underexplored, despite global efforts. Under this context, this study was conducted [...] Read more.
Climate change is one of our most critical challenges, requiring urgent and comprehensive action across all levels of society. Individual actions and their roles in mitigating and adapting to climate change remain underexplored, despite global efforts. Under this context, this study was conducted to evaluate the ecological footprint of individuals for climate change mitigation. A structured online survey was designed and distributed through email lists, social media platforms, and community organisations to over 200 potential participants in the northwest of the UK. Due to the anonymous nature of the survey, only 83 individuals from diverse demographics completed the questionnaire. A carbon footprint calculator using conversion factors has been employed, based on energy consumption, travel, and material goods use. Participants are categorised into four groups based on their annual CO2 emissions, ranging from less than 2 tonnes to over 10 tonnes. Personalised recommendations provided by the calculator focus on practical strategies, including adopting renewable energy, minimising unnecessary consumption, and opting for sustainable transportation. Results showed that only 5.5% of participants who employed advanced technologies and smart home technologies, 1.8% were implementing water-saving practices and 65.4% preferred to use their own car over other modes of transportation. In addition, the study found that 67.3% of participants had no or only a very limited knowledge of renewable energy technologies, indicating a need for education and awareness campaigns. The findings also highlight the importance of addressing demographic differences in ecological footprints, as these variations can provide insights into tailored policy interventions. Overall, despite the study’s limited sample size, this research contributes to the growing body of evidence on the importance of individual action in combating climate change and provides actionable insights for policymakers and educators aiming to foster a more sustainable lifestyle. Future studies with larger samples are recommended to validate and expand upon these findings. Full article
Show Figures

Figure 1

33 pages, 1443 KiB  
Article
Multi-Stakeholder Risk Assessment of a Waterway Engineering Project During the Decision-Making Stage from the Perspective of Sustainability
by Yongchao Zou, Jinlong Xiao, Hao Zhang, Yanyi Chen, Yao Liu, Bozhong Zhou and Yunpeng Li
Sustainability 2025, 17(12), 5372; https://doi.org/10.3390/su17125372 - 11 Jun 2025
Viewed by 547
Abstract
Serving as critical sustainable transportation infrastructure, inland waterways provide dual socioeconomic and ecological value by (1) facilitating high-efficiency freight logistics through cost-effective bulk cargo transport while stimulating regional economic growth, and (2) delivering essential ecosystem services including flood regulation, water resource preservation, and [...] Read more.
Serving as critical sustainable transportation infrastructure, inland waterways provide dual socioeconomic and ecological value by (1) facilitating high-efficiency freight logistics through cost-effective bulk cargo transport while stimulating regional economic growth, and (2) delivering essential ecosystem services including flood regulation, water resource preservation, and biodiversity conservation. This study establishes a stakeholder-centered risk assessment framework to enhance decision-making of waterway engineering projects and promote the sustainable development of Inland Waterway Transport. We propose a three-layer approach: (1) identifying key stakeholders in the decision-making stage of waterway engineering projects through multi-dimensional criteria; (2) listing and classifying decision-making risks from the perspectives of managers, users, and other stakeholders; (3) applying the Decision-Making Trial and Evaluation Laboratory (DEMATEL) to prioritize key risks and proposing a risk assessment model based on fuzzy reasoning theory to evaluate decision-making risks under uncertain conditions. This framework was applied to the Yangtze River Trunk Line Wuhan–Anqing Waterway Regulation Project. The results show that the risk ranking is managers, users, and other stakeholders, among which the risk of engineering freight demand is particularly prominent. This suggests that we need to pay attention to optimizing material transportation and operational organization, promote the development of large-scale ships, and realize the diversification of ship types and transportation organizations. This study combines fuzzy reasoning with stakeholder theory, providing a replicable tool for the Waterway Management Authority to address the complex sustainability challenges in global waterway development projects. Full article
Show Figures

Figure 1

20 pages, 1118 KiB  
Review
Atmospheric Microplastics: Inputs and Outputs
by Christine C. Gaylarde, José Antônio Baptista Neto and Estefan M. da Fonseca
Micro 2025, 5(2), 27; https://doi.org/10.3390/micro5020027 - 30 May 2025
Viewed by 1546
Abstract
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by [...] Read more.
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by air movements and human activities. Up to 8.6 megatons of MPs per year have been estimated to be in air above the oceans. They are distributed by wind, water and fomites and returned to the Earth’s surface via rainfall and passive deposition, but can escape to the stratosphere, where they may exist for months. Anthropogenic sprays, such as paints, agrochemicals, personal care and cosmetic products, and domestic and industrial procedures (e.g., air conditioning, vacuuming and washing, waste disposal, manufacture of plastic-containing objects) add directly to the airborne MP load, which is higher in internal than external air. Atmospheric MPs are less researched than those on land and in water, but, in spite of the major problem of a lack of standard methods for determining MP levels, the clothing industry is commonly considered the main contributor to the external air pool, while furnishing fabrics, artificial ventilation devices and the presence and movement of human beings are the main source of indoor MPs. The majority of airborne plastic particles are fibers and fragments; air currents enable them to reach remote environments, potentially traveling thousands of kilometers through the air, before being deposited in various forms of precipitation (rain, snow or “dust”). The increasing preoccupation of the populace and greater attention being paid to industrial ecology may help to reduce the concentration and spread of MPs and nanoparticles (plastic particles of less than 100 nm) from domestic and industrial activities in the future. Full article
Show Figures

Figure 1

Back to TopTop