Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,868)

Search Parameters:
Keywords = ecological condition.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 423 KiB  
Article
Pro-Environmental Behavior and Attitudes Towards Recycling in Slovak Republic
by Silvia Lorincová and Mária Osvaldová
Recycling 2025, 10(4), 159; https://doi.org/10.3390/recycling10040159 (registering DOI) - 7 Aug 2025
Abstract
Climate changes have increased interest in the circular economy, an alternative model that seeks to minimize environmental impact and maximize resource reuse. A key element of this model is individuals’ behaviors and attitudes, which determine the overall efficiency of recycling processes. The study [...] Read more.
Climate changes have increased interest in the circular economy, an alternative model that seeks to minimize environmental impact and maximize resource reuse. A key element of this model is individuals’ behaviors and attitudes, which determine the overall efficiency of recycling processes. The study fills the gap by investigating how selected socio-demographic factors affect attitudes and intentions toward recycling and material reuse in the Slovak Republic, by using the Perceived Characteristics of Innovating (PCI) framework. Through a two-way ANOVA, we tested the hypotheses that higher education correlates with stronger recycling attitudes and that women are more willing than men to engage in circular practices. The results show that gender differences in consumer attitudes towards the circular economy do occur, but their magnitude is often conditioned by education level. Education proved to be the strongest predictor of ecological behavior: respondents with higher education reported stronger beliefs in the importance of recycling and a greater willingness to act sustainably. The interaction between gender and education revealed that university-educated women hold the most pronounced pro-environmental attitudes, underscoring the importance of gender-sensitive educational strategies. It is recommended that environmental education and outreach focus on less-educated groups, particularly women, who have high potential to influence their communities. Full article
14 pages, 74879 KiB  
Article
Upscaling In Situ and Airborne Hyperspectral Data for Satellite-Based Chlorophyll Retrieval in Coastal Waters
by Roko Andričević
Water 2025, 17(15), 2356; https://doi.org/10.3390/w17152356 (registering DOI) - 7 Aug 2025
Abstract
Monitoring water quality parameters in coastal and estuarine environments is critical for assessing their ecological status and addressing environmental challenges. However, traditional in situ sampling programs are often constrained by limited spatial and temporal coverage, making it difficult to capture the complex variability [...] Read more.
Monitoring water quality parameters in coastal and estuarine environments is critical for assessing their ecological status and addressing environmental challenges. However, traditional in situ sampling programs are often constrained by limited spatial and temporal coverage, making it difficult to capture the complex variability in these dynamic systems. This study introduces a novel upscaling framework that leverages limited in situ measurements and airborne hyperspectral data to generate multiple conditional realizations of water quality parameter fields. These pseudo-measurements are statistically consistent with the original data and are used to calibrate inversion algorithms that relate satellite-derived reflectance data to water quality parameters. The approach was applied to Kaštela Bay, a semi-enclosed coastal area in the eastern Adriatic Sea, to map seasonal variations in water quality parameters such as Chlorophyll-a. The upscaling framework captured spatial patterns that were absent in sparse in situ observations and enabled regional mapping using Sentinel-2A satellite data at the appropriate spatial scale. By generating realistic pseudo-measurements, the method improved the stability and performance of satellite-based retrieval algorithms, particularly in periods of high productivity. Overall, this methodology addresses data scarcity challenges in coastal water monitoring and its application could benefit the implementation of European water quality directives through enhanced regional-scale mapping capabilities. Full article
(This article belongs to the Section Oceans and Coastal Zones)
14 pages, 871 KiB  
Article
Low-Cost Production of Brazilian Mahogany Clones Based on Indole-3-Butyric Acid Use, Clonal Mini-Hedge Nutrition and Vegetative Propagule Type
by Rafael Barbosa Diógenes Lienard, Annanda Souza de Campos, Lucas Graciolli Savian, Barbara Valentim de Oliveira, Felippe Coelho de Souza and Paulo André Trazzi
Forests 2025, 16(8), 1292; https://doi.org/10.3390/f16081292 (registering DOI) - 7 Aug 2025
Abstract
Swietenia macrophylla King, commonly known as Brazilian mahogany, is a high-value neotropical tree species currently threatened due to intensive logging in previous decades. Technologies aimed at clonal production are essential for this species’ conservation and sustainable use at times of climate change and [...] Read more.
Swietenia macrophylla King, commonly known as Brazilian mahogany, is a high-value neotropical tree species currently threatened due to intensive logging in previous decades. Technologies aimed at clonal production are essential for this species’ conservation and sustainable use at times of climate change and increasing demand for ecological restoration. The aim of the present study is to develop a low-cost protocol for mahogany clonal propagation through mini-cutting by assessing clonal mini-hedge nutrition, vegetative propagule type and indole-3-butyric acid (IBA) application effects on rooting and early clone growth. The experiment was conducted in nursery under controlled conditions based on using basal and apical mini-cuttings rooted in a low-cost mini-greenhouse subjected to three nutrient solution concentrations (50%, 100%, and 200%) and five IBA doses (0–8000 ppm). The mini-cutting technique proved efficient and led to over 90% survival after the hardening phase. The 200% nutrient solution concentration allowed balanced performance between cutting types and optimized clonal yield. IBA concentration at 4000 ppm accounted for higher root percentages at the bottom of the tube and the trend towards higher dry biomass production at 160 days. The results highlighted mini-cutting’s potential as a viable mahogany conservation and sustainable production technique. It also supported tropical forestry sector adaptation to challenges posed by climate change. Full article
19 pages, 9248 KiB  
Article
Irrigation Suitability and Interaction Between Surface Water and Groundwater Influenced by Agriculture Activities in an Arid Plain of Central Asia
by Chenwei Tu, Wanrui Wang, Weihua Wang, Farong Huang, Minmin Gao, Yanchun Liu, Peiyao Gong and Yuan Yao
Agriculture 2025, 15(15), 1704; https://doi.org/10.3390/agriculture15151704 - 7 Aug 2025
Abstract
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability [...] Read more.
Agricultural activities and dry climatic conditions promote the evaporation and salinization of groundwater in arid areas. Long-term irrigation alters the groundwater circulation and environment in arid plains, as well as its hydraulic connection with surface water. A comprehensive assessment of groundwater irrigation suitability and its interaction with surface water is essential for water–ecology–agriculture security in arid areas. This study evaluates the irrigation water quality and groundwater–surface water interaction influenced by agricultural activities in a typical arid plain region using hydrochemical and stable isotopic data from 51 water samples. The results reveal that the area of cultivated land increases by 658.9 km2 from 2000 to 2023, predominantly resulting from the conversion of bare land. Groundwater TDS (total dissolved solids) value exhibits significant spatial heterogeneity, ranging from 516 to 2684 mg/L. Cl, SO42−, and Na+ are the dominant ions in groundwater, with a widespread distribution of brackish water. Groundwater δ18O values range from −9.4‰ to −5.4‰, with the mean value close to surface water. In total, 86% of the surface water samples are good and suitable for agricultural irrigation, while 60% of shallow groundwater samples are marginally suitable or unsuitable for irrigation at present. Groundwater hydrochemistry is largely controlled by intensive evaporation, water–rock interaction, and agricultural activities (e.g., cultivated land expansion, irrigation, groundwater exploitation, and fertilizers). Agricultural activities could cause shallow groundwater salinization, even confined water deterioration, with an intense and frequent exchange between groundwater and surface water. In order to sustainably manage groundwater and maintain ecosystem stability in arid plain regions, controlling cultivated land area and irrigation water amount, enhancing water utilization efficiency, limiting groundwater exploitation, and fully utilizing floodwater resources would be the viable ways. The findings will help to deepen the understanding of the groundwater quality evolution mechanism in arid irrigated regions and also provide a scientific basis for agricultural water management in the context of extreme climatic events and anthropogenic activities. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

16 pages, 4914 KiB  
Article
Drought–Rewatering Cycles: Impact on Non-Structural Carbohydrates and C:N:P Stoichiometry in Pinus yunnanensis Seedlings
by Weisong Zhu, Yuanxi Liu, Zhiqi Li, Jialan Chen and Junwen Wu
Plants 2025, 14(15), 2448; https://doi.org/10.3390/plants14152448 - 7 Aug 2025
Abstract
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly [...] Read more.
The ongoing global climate change has led to an increase in the frequency and complexity of drought events. Pinus yunnanensis, a native tree species in southwest China that possesses significant ecological and economic value, exhibits a high sensitivity to drought stress, particularly in its seedlings. This study investigates the response mechanisms of non-structural carbohydrates (NSCs, defined as the sum of soluble sugars and starch) and the stoichiometric characteristics of carbon (C), nitrogen (N), and phosphorus (P) to repeated drought conditions in Pinus yunnanensis seedlings. We established three treatment groups in a potting water control experiment involving 2-year-old Pinus yunnanensis seedlings: normal water supply (CK), a single drought (D1), and three drought–rewatering cycles (D3). The findings indicated that the frequency of drought occurrences, organ responses, and their interactions significantly influenced the non-structural carbohydrate (NSC) content and its fractions, as well as the C/N/P content and its stoichiometric ratios. Under D3 treatment, stem NSC content increased by 24.97% and 29.08% compared to CK and D1 groups (p < 0.05), respectively, while root NSC content increased by 41.35% and 49.46% versus CK and D1 (p < 0.05). The pronounced accumulation of soluble sugars and starch in stems and roots under D3 suggests a potential stress memory effect. Additionally, NSC content in the stems increased significantly by 77.88%, while the roots enhanced their resource acquisition by dynamically regulating the C/P ratio, which increased by 23.26% (p < 0.05). Needle leaf C content decreased (18.77%) but P uptake increased (8%) to maintain basal metabolism (p < 0.05). Seedling growth was N-limited (needle N/P < 14) and the degree of N limitation was exacerbated by repeated droughts. Phenotypic plasticity indices and principal component analysis revealed that needle nitrogen and phosphorus, soluble sugars in needles, stem C/N ratio (0.61), root C/N ratio (0.53), and stem C/P ratio were crucial for drought adaptation. This study elucidates the physiological mechanisms underlying the resilience of Pinus yunnanensis seedlings to recurrent droughts, as evidenced by their organ-specific strategies for allocating carbon, nitrogen, and phosphorus, alongside the dynamic regulation of nitrogen storage compounds (NSCs). These findings provide a robust theoretical foundation for implementing drought-resistant afforestation and ecological restoration initiatives targeting Pinus yunnanensis in southwestern China. Full article
Show Figures

Figure 1

37 pages, 2030 KiB  
Article
Open Competency Optimization with Combinatorial Operators for the Dynamic Green Traveling Salesman Problem
by Rim Benjelloun, Mouna Tarik and Khalid Jebari
Information 2025, 16(8), 675; https://doi.org/10.3390/info16080675 - 7 Aug 2025
Abstract
This paper proposes the Open Competency Optimization (OCO) approach, based on adaptive combinatorial operators, to solve the Dynamic Green Traveling Salesman Problem (DG-TSP), which extends the classical TSP by incorporating dynamic travel conditions, realistic road gradients, and energy consumption considerations. The objective is [...] Read more.
This paper proposes the Open Competency Optimization (OCO) approach, based on adaptive combinatorial operators, to solve the Dynamic Green Traveling Salesman Problem (DG-TSP), which extends the classical TSP by incorporating dynamic travel conditions, realistic road gradients, and energy consumption considerations. The objective is to minimize fuel consumption and emissions by reducing the total tour length under varying conditions. Unlike conventional metaheuristics based on real-coded representations, our method directly operates on combinatorial structures, ensuring efficient adaptation without costly transformations. Embedded within a dynamic metaheuristic framework, our operators continuously refine the routing decisions in response to environmental and demand changes. Experimental assessments conducted in practical contexts reveal that our algorithm attains a tour length of 21,059, which is indicative of a 36.16% reduction in fuel consumption relative to Ant Colony Optimization (ACO) (32,994), a 4.06% decrease when compared to Grey Wolf Optimizer (GWO) (21,949), a 2.95% reduction in relation to Particle Swarm Optimization (PSO) (21,701), and a 0.90% decline when juxtaposed with Genetic Algorithm (GA) (21,251). In terms of overall offline performance, our approach achieves the best score (21,290.9), significantly outperforming ACO (36,957.6), GWO (122,881.04), GA (59,296.5), and PSO (36,744.29), confirming both solution quality and stability over time. These findings underscore the resilience and scalability of the proposed approach for sustainable logistics, presenting a pragmatic resolution to enhance transportation operations within dynamic and ecologically sensitive environments. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

15 pages, 5141 KiB  
Article
Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives
by Hao-Tong Han, Han-Sheng Zhu, Jin-Tao Zhang, Xin-Yun Tan, Yan-Xin Wu, Chang Liu, Xin-Yu Liu and Meng-Qi Ye
Microorganisms 2025, 13(8), 1839; https://doi.org/10.3390/microorganisms13081839 - 7 Aug 2025
Abstract
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational [...] Read more.
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational efficiency. In our previous research, Rossellomorea sp. ZC255 demonstrated substantial potential for environmental bioremediation applications. This study investigated the removal characteristics and underlying mechanism of strain ZC255 and revealed that the maximum removal capacity was 253.4 mg/g biomass under the optimal conditions (pH 7.0, 28 °C, and 2% inoculum). The assessment of the biosorption process followed pseudo-second-order kinetics, while the adsorption isotherm may fit well with both the Langmuir and Freundlich models. Cell surface alterations on the Cu(II)-treated biomass were observed through scanning electron microscopy (SEM). Cu(II) binding functional groups were determined via Fourier transform infrared spectroscopy (FTIR) analysis. Simultaneously, the genomic analysis of strain ZC255 identified multiple genes potentially involved in heavy metal resistance, transport, and metabolic processes. These studies highlight the significance of strain ZC255 in the context of environmental heavy metal bioremediation research and provide a basis for using strain ZC255 as a copper removal biosorbent. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 2943 KiB  
Article
Overview of a Keystone Small Pelagic Fish in the North-Western Black Sea: Biometry, Age and Stock Status of Horse Mackerel Trachurus mediterraneus (Steindachner, 1868)
by Cătălin Păun, Aurelia Țoțoiu, George Țiganov, Mădălina Galațchi, Magda Nenciu and Victor Niță
Fishes 2025, 10(8), 390; https://doi.org/10.3390/fishes10080390 - 7 Aug 2025
Abstract
As a semi-pelagic fish with commercial value, Mediterranean horse mackerel, Trachurus mediterraneus (Steindachner, 1868), is highly important both for the ecosystem, as a link between trophic levels, and for fisheries and local livelihoods. This study investigates the T. mediterraneus stock along the Romanian [...] Read more.
As a semi-pelagic fish with commercial value, Mediterranean horse mackerel, Trachurus mediterraneus (Steindachner, 1868), is highly important both for the ecosystem, as a link between trophic levels, and for fisheries and local livelihoods. This study investigates the T. mediterraneus stock along the Romanian coast for more than 10 years (2014–2024), reporting the following data on its bio-ecological characteristics and stock status: size, age, sex ratio, and estimated biomass. Horse mackerel at the Romanian coast revealed an initially slower growth rate followed by acceleration in later years, which may reflect local ecological influences such as resource availability, environmental conditions, or selective pressure. The spatial distribution of the species along the Romanian shelf indicates a clear pattern of coastal aggregation, highlighting the need for targeted and precautionary fisheries management measures, aiming to ensure a sustainable stock. Full article
Show Figures

Graphical abstract

21 pages, 4581 KiB  
Article
Spatiotemporal Variations and Drivers of the Ecological Footprint of Water Resources in the Yangtze River Delta
by Aimin Chen, Lina Chang, Peng Zhao, Xianbin Sun, Guangsheng Zhang, Yuanping Li, Haojun Deng and Xiaoqin Wen
Water 2025, 17(15), 2340; https://doi.org/10.3390/w17152340 - 6 Aug 2025
Abstract
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial [...] Read more.
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial and temporal scales. In this study, we collected the data and information from the 2005–2022 Statistical Yearbook and Water Resources Bulletin of the Yangtze River Delta Urban Agglomeration (YRDUA), and calculated evaluation indicators: WREF, water resources ecological carrying capacity (WRECC), water resources ecological pressure (WREP), and water resources ecological surplus and deficit (WRESD). We primarily analyzed the temporal and spatial variation in the per capita WREF and used the method of Geodetector to explore factors driving its temporal and spatial variation in the YRDUA. The results showed that: (1) From 2005 to 2022, the per capita WREF (total water, agricultural water, and industrial water) of the YRDUA generally showed fluctuating declining trends, while the per capita WREF of domestic water and ecological water showed obvious growth. (2) The per capita WREF and the per capita WRECC were in the order of Jiangsu Province > Anhui Province > Shanghai City > Zhejiang Province. The spatial distribution of the per capita WREF was similar to those of the per capita WRECC, and most areas effectively consume water resources. (3) The explanatory power of the interaction between factors was greater than that of a single factor, indicating that the spatiotemporal variation in the per capita WREF of the YRDUA was affected by the combination of multiple factors and that there were regional differences in the major factors in the case of secondary metropolitan areas. (4) The per capita WREF of YRDUA was affected by natural resources, and the impact of the ecological condition on the per capita WREF increased gradually over time. The impact factors of secondary metropolitan areas also clearly changed over time. Our results showed that the ecological situation of per capita water resources in the YRDUA is generally good, with obvious spatial and temporal differences. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

20 pages, 2088 KiB  
Article
Sustainable Soil Management in Reservoir Riparian Zones: Impacts of Long-Term Water Level Fluctuations on Aggregate Stability and Land Degradation in Southwestern China
by Pengcheng Wang, Zexi Song, Henglin Xiao and Gaoliang Tao
Sustainability 2025, 17(15), 7141; https://doi.org/10.3390/su17157141 - 6 Aug 2025
Abstract
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), [...] Read more.
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), mean weight diameter (MWD), and geometric mean diameter (GMD). The Savinov dry sieving, Yoder wet sieving, and Le Bissonnais (LB) methods were employed for analysis. Results indicated that, with decreasing water levels and increasing soil layer, aggregates larger than 5 mm decreased, while aggregates smaller than 0.25 mm increased. Rising water levels and increasing soil layer corresponded to reductions in soil stability indicators (MWD, GMD, and WSAC), highlighting a trend toward soil structural instability. The LB method revealed the lowest aggregate stability under rapid wetting and the highest under slow wetting conditions. Correlation analysis showed that soil organic matter positively correlated with the relative mechanical breakdown index (RMI) (p < 0.05) and negatively correlated with the relative slaking index (RSI), whereas soil pH was negatively correlated with both RMI and RSI (p < 0.05). Comparative analysis of aggregate stability methods demonstrated that results from the dry sieving method closely resembled those from the SW treatment of the LB method, whereas the wet sieving method closely aligned with the FW (Fast Wetting) treatment of the LB method. The Le Bissonnais method not only reflected the outcomes of dry and wet sieving methods but also effectively distinguished the mechanisms of aggregate breakdown. The study concluded that prolonged flooding intensified aggregate dispersion, with mechanical breakdown influenced by water levels and soil layer. Dispersion and mechanical breakdown represent primary mechanisms of soil aggregate instability, further exacerbated by fluctuating water levels. By elucidating degradation mechanisms, this research provides actionable insights for preserving soil health, safeguarding water resources, and promoting sustainable agricultural in ecologically vulnerable reservoir regions of the Yangtze River Basin. Full article
Show Figures

Figure 1

22 pages, 2484 KiB  
Article
Urban Land Revenue and Common Prosperity: An Urban Differential Rent Perspective
by Fang He, Yuxuan Si and Yixi Hu
Land 2025, 14(8), 1606; https://doi.org/10.3390/land14081606 - 6 Aug 2025
Abstract
Common prosperity serves as a pivotal condition for achieving sustainable development by fostering social equity, bolstering economic resilience, and promoting environmental stewardship. Differential land revenue, as a crucial form of property based on spatial resource occupation, significantly contributes to the achievement of common [...] Read more.
Common prosperity serves as a pivotal condition for achieving sustainable development by fostering social equity, bolstering economic resilience, and promoting environmental stewardship. Differential land revenue, as a crucial form of property based on spatial resource occupation, significantly contributes to the achievement of common prosperity, though empirical evidence of its impact is limited. This study explores the potential influence of land utilization revenue disparity on common prosperity from the perspective of urban macro differential rent (UMDR). Utilizing panel data from 280 Chinese cities spanning 2007 to 2020, we discover that UMDR and common prosperity levels exhibit strikingly similar spatiotemporal evolution. Further empirical analysis shows that UMDR significantly raises urban common prosperity levels, with a 0.217 standard unit increase in common prosperity for every 1 standard unit rise in UMDR. This boost stems from enhanced urban prosperity and the sharing of development achievements, encompassing economic growth, improved public services, enhanced ecological civilization, and more equitable distribution of development gains between urban and rural areas and among individuals. Additionally, we observe that UMDR has a more pronounced effect on common prosperity in eastern cities and those with a predominant service industry. This study enhances the comprehension of the relationship between urban land revenue disparities, prosperity, and equitable sharing, presenting a new perspective for the administration to contemplate the utilization of land-based policy tools in pursuit of the common prosperity goal and ultimately achieve sustainable development. Full article
Show Figures

Figure 1

19 pages, 1080 KiB  
Article
Microplastic Bioaccumulation and Oxidative Stress in Key Species of the Bulgarian Black Sea: Ecosystem Risk Early Warning
by Albena Alexandrova, Svetlana Mihova, Elina Tsvetanova, Madlena Andreeva, Georgi Pramatarov, Georgi Petrov, Nesho Chipev, Valentina Doncheva, Kremena Stefanova, Maria Grandova, Hristiyana Stamatova, Elitsa Hineva, Dimitar Dimitrov, Violin Raykov and Petya Ivanova
Microplastics 2025, 4(3), 50; https://doi.org/10.3390/microplastics4030050 - 6 Aug 2025
Abstract
Plastic pollution in marine environments poses a new global threat. Microplastics (MPs) can bioaccumulate in marine organisms, leading to oxidative stress (OS). This study investigates MP accumulation and associated OS responses in six invertebrate species (Bivalvia, Gastropoda, and Malacostraca) and three key fish [...] Read more.
Plastic pollution in marine environments poses a new global threat. Microplastics (MPs) can bioaccumulate in marine organisms, leading to oxidative stress (OS). This study investigates MP accumulation and associated OS responses in six invertebrate species (Bivalvia, Gastropoda, and Malacostraca) and three key fish species of the Bulgarian Black Sea ecosystems. The target hydrobionts were collected from nine representative coastal habitats of the northern and southern aquatory. MPs were quantified microscopically, and OS biomarkers (lipid peroxidation, glutathione, and antioxidant enzymes) were analyzed spectrometrically in fish liver and gills and invertebrate soft tissues (STs). The specific OS (SOS) index was calculated as a composite indicator of the ecological impact, incl. MP effects. The results revealed species-specific MP bioaccumulation, with the highest concentrations in Palaemon adspersus, Rathke (1837) (0.99 ± 1.09 particles/g ST) and the least abundance in Bittium reticulatum (da Costa, 1778) (0.0033 ± 0.0025 particles/g ST). In Sprattus sprattus (Linnaeus, 1758), the highest accumulation of MPs was present (2.01 ± 2.56 particles/g muscle). The correlation analyses demonstrated a significant association between MP counts and catalase activity in all examined species. The SOS index varied among species, reflecting different stress responses, and this indicated that OS levels were linked to ecological conditions of the habitat and the species-specific antioxidant defense potential to overcome multiple stressors. These findings confirmed the importance of environmental conditions, including MP pollution and the evolutionarily developed capacity of marine organisms to tolerate and adapt to environmental stress. This study emphasizes the need for novel approaches in monitoring MPs and OS to better assess potential ecological risks. Full article
Show Figures

Figure 1

26 pages, 3194 KiB  
Article
Evolution Trends, Spatial Differentiation, and Convergence Characteristics of Urban Ecological Economic Resilience in China
by Xiaofeng Ran, Rui Ding and Bowen Zhang
Systems 2025, 13(8), 666; https://doi.org/10.3390/systems13080666 - 6 Aug 2025
Abstract
Achieving a win-win situation for both economy and ecology is crucial for promoting sustainable social development and shaping new advantages in high-quality developments. This article constructs an ecological economic resilience (EER) analysis framework by integrating both ecological and economic dimensions from a resilience [...] Read more.
Achieving a win-win situation for both economy and ecology is crucial for promoting sustainable social development and shaping new advantages in high-quality developments. This article constructs an ecological economic resilience (EER) analysis framework by integrating both ecological and economic dimensions from a resilience perspective. Based on panel data from 290 cities in China, it explores the dynamic evolution characteristics, regional differences, and convergence trends of EER. The findings indicate that the EER has weakened nationwide and in the four major economic regions, overall tending towards stability. Significant disparities exist in EER, particularly pronounced in the northeast. There is σ convergence in the nation as well as in the northeast and east regions. Additionally, both absolute and conditional β convergence is evident nationwide and in all regions, with conditional convergence occurring at a faster pace. The research findings in this paper provide solid theoretical support for promoting regional coordinated development and constructing a new development paradigm. Full article
Show Figures

Figure 1

14 pages, 5479 KiB  
Article
Assessment of Three Provenances of Juglans neotropica Diels to Identify Optimal Seed Sources in the Northern Ecuadorian Andes
by Jorge-Luis Ramírez-López, Mario Añazco, Hugo Vallejos, Carlos Arcos and Kelly Estrada
Int. J. Plant Biol. 2025, 16(3), 87; https://doi.org/10.3390/ijpb16030087 - 6 Aug 2025
Abstract
Identifying optimal seed sources is critical for the propagation and restoration of Juglans neotropica Diels in the northern Ecuadorian Andes, where populations are declining due to habitat loss and overexploitation. This study evaluated the seed quality and germination performance of Juglans neotropica from [...] Read more.
Identifying optimal seed sources is critical for the propagation and restoration of Juglans neotropica Diels in the northern Ecuadorian Andes, where populations are declining due to habitat loss and overexploitation. This study evaluated the seed quality and germination performance of Juglans neotropica from three ecologically distinct provenances: a natural regeneration site (Cuyuja), a pure plantation (Natabuela), and an agroforestry system (Pimampiro). Five phenotypically superior trees were selected from each site, and germination was assessed under controlled nursery conditions over a 150-day period using a completely randomized design. Initial viability tests confirmed the physiological integrity of the seeds across all provenances. Germination onset ranged from day 55 to day 73, with significant differences in germination percentage, speed, and uniformity. The agroforestry provenance showed the highest germination rate (69%) and superior performance in all physiological indices, while natural regeneration had the lowest (15%). Post-trial viability assessments indicated that a substantial proportion of non-germinated seeds from Cuyuja remained dormant or deteriorated. These findings underscore the role of agroforestry systems in enhancing seed physiological quality and support their prioritization for large-scale propagation and ecological restoration initiatives involving Juglans neotropica. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Graphical abstract

8 pages, 569 KiB  
Article
A Different Statistical Perspective on the Evaluation of Ecological Data Sets
by Soner Yigit
Diversity 2025, 17(8), 555; https://doi.org/10.3390/d17080555 - 5 Aug 2025
Abstract
Statistical significance varies depending on the sample size. Therefore, when the sample size is sufficient, even differences that affect the total variation very little may be statistically significant. For this reason, it is very important to report effect size measures that estimate the [...] Read more.
Statistical significance varies depending on the sample size. Therefore, when the sample size is sufficient, even differences that affect the total variation very little may be statistically significant. For this reason, it is very important to report effect size measures that estimate the share of the difference between groups of samples in the total variation. This study aims to determine the most reliable effect size measures that can be used when evaluating data obtained from ecological studies. The three most popular effect size measures used in practice were compared in terms of their performance in 2700 different experimental conditions. For this purpose, random numbers generated from the multivariate Poisson distribution were used with the Monte Carlo simulation technique. As a result of the simulations, it was determined that Epsilon-squared and Omega-squared were quite unbiased estimators. Therefore, it was concluded that one of these two effect size measures should be reported in addition to the p-value when evaluating ecological studies. Full article
(This article belongs to the Section Biogeography and Macroecology)
Show Figures

Figure 1

Back to TopTop