Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = earth-moving vehicle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7066 KiB  
Article
A Deep Learning-Based Trajectory and Collision Prediction Framework for Safe Urban Air Mobility
by Junghoon Kim, Hyewon Yoon, Seungwon Yoon, Yongmin Kwon and Kyuchul Lee
Drones 2025, 9(7), 460; https://doi.org/10.3390/drones9070460 - 26 Jun 2025
Viewed by 731
Abstract
As urban air mobility moves rapidly toward real-world deployment, accurate vehicle trajectory prediction and early collision risk detection are vital for safe low-altitude operations. This study presents a deep learning framework based on an LSTM–Attention network that captures both short-term flight dynamics and [...] Read more.
As urban air mobility moves rapidly toward real-world deployment, accurate vehicle trajectory prediction and early collision risk detection are vital for safe low-altitude operations. This study presents a deep learning framework based on an LSTM–Attention network that captures both short-term flight dynamics and long-range dependencies in trajectory data. The model is trained on fifty-six routes generated from a UAM planned commercialization network, sampled at 0.1 s intervals. To unify spatial dimensions, the model uses Earth-Centered Earth-Fixed (ECEF) coordinates, enabling efficient Euclidean distance calculations. The trajectory prediction component achieves an RMSE of 0.2172, MAE of 0.1668, and MSE of 0.0524. The collision classification module built on the LSTM–Attention prediction backbone delivers an accuracy of 0.9881. Analysis of attention weight distributions reveals which temporal segments most influence model outputs, enhancing interpretability and guiding future refinements. Moreover, this model is embedded within the Short-Term Conflict Alert component of the Safety Nets module in the UAM traffic management system to provide continuous trajectory prediction and collision risk assessment, supporting proactive traffic control. The system exhibits robust generalizability on unseen scenarios and offers a scalable foundation for enhancing operational safety. Validation currently excludes environmental disturbances such as wind, physical obstacles, and real-world flight logs. Future work will incorporate atmospheric variability, sensor and communication uncertainties, and obstacle detection inputs to advance toward a fully integrated traffic management solution with comprehensive situational awareness. Full article
(This article belongs to the Special Issue Urban Air Mobility Solutions: UAVs for Smarter Cities)
Show Figures

Figure 1

28 pages, 12000 KiB  
Article
On-Satellite Implementation of Real-Time Multi-Object Moving Vehicle Tracking with Complex Moving Backgrounds
by Jingyi Yu, Siyuan Wei, Yuxiao Wen, Danshu Zhou, Runjiang Dou, Xiuyu Wang, Jiangtao Xu, Jian Liu, Nanjian Wu and Liyuan Liu
Remote Sens. 2025, 17(3), 418; https://doi.org/10.3390/rs17030418 - 26 Jan 2025
Viewed by 1045
Abstract
On-satellite information processing enables all-weather target tracking. The background of videos from satellite sensors exhibits an affine transformation due to their motion relative to the Earth. In complex moving backgrounds, moving vehicles have a small number of pixels and weak texture features. At [...] Read more.
On-satellite information processing enables all-weather target tracking. The background of videos from satellite sensors exhibits an affine transformation due to their motion relative to the Earth. In complex moving backgrounds, moving vehicles have a small number of pixels and weak texture features. At the same time, the resources and performance of on-satellite equipment are limited. To address these issues, we propose a multi-object tracking (MOT) algorithm with a detection–association framework for moving vehicles in complex moving backgrounds and implement the algorithm on a satellite to achieve real-time MOT. We use feature matching to effectively eliminate the effects of background motion and use the neighborhood pixel difference method to extract moving vehicle targets in the detection stage. The accurate extraction of motion targets ensures the effectiveness of target association to achieve MOT of moving vehicles in complex moving backgrounds. Additionally, we use a Field-Programmable Gate Array (FPGA) to implement the algorithm completely on a satellite. We propose a pixel-level stream processing mode and a cache access processing mode, given the characteristics of on-satellite equipment and sensors. According to the experimental results, the prototype on-satellite implementation method proposed in this paper can achieve real-time processing at 1024 × 1024 px@47 fps. Full article
Show Figures

Figure 1

25 pages, 7465 KiB  
Article
Influence of Horizontal Distance Between Earthmoving Vehicle Load and Deep Excavation on Support Structure Response
by Ping Zhao, Zhanqi Wang, Youqiang Qiu and Panpan Guo
Buildings 2024, 14(11), 3604; https://doi.org/10.3390/buildings14113604 - 13 Nov 2024
Cited by 1 | Viewed by 918
Abstract
The objective of this paper is to investigate the influence of earthmoving vehicle load position on the deformation and internal force characteristics of a deep excavation (DE) support structure. The position of the earthmoving vehicle load near a DE is described by the [...] Read more.
The objective of this paper is to investigate the influence of earthmoving vehicle load position on the deformation and internal force characteristics of a deep excavation (DE) support structure. The position of the earthmoving vehicle load near a DE is described by the horizontal distance between the earthmoving vehicle load and the DE. A two-dimensional finite element model is established for simulating DE engineering under the earthmoving vehicle load. The load of the earthmoving vehicle is treated as the static load, and the influence of the earthmoving vehicle load on the excavation support structure is considered from the static point of view. The numerical results of the finite element model agree well with the measured data from the field, which verifies the validity of the model. On the basis of this model, multiple models are established by changing the horizontal distance (D) between the earthmoving vehicle and the DE. The influence of D on the support structure and its critical magnitude for ensuring safety were studied. The results show that the underground diaphragm wall (UDW) is the main component for which horizontal displacement occurs under the earthmoving vehicle load. The horizontal displacements of the support structure exhibit an asymmetric distribution. When D decreases from 20 m to 0.5 m, the horizontal displacement of the UDW near the loading side increases, and the maximum horizontal displacement occurs at the top of the excavation support structure. The critical magnitude of D for ensuring safety is found to be 1 m. When D is less than 1 m, the DE is in an unsafe state. The UDW is the main component subject to the bending component. The bending moment distribution exhibits an “S” shape. The maximum bending moment increases with the decrease in D, and it occurs at the intersection of the second support and the UDW. As D decreases, the axial force in the first internal support changes from pressure to tension. The axial forces in the second and third internal supports are both pressures. The axial force in the third internal support is the largest. The research results have a positive effect on the design and optimization of DE support structures under the earthmoving vehicle load. Full article
Show Figures

Figure 1

18 pages, 1277 KiB  
Article
Near Real-Time Remote Sensing Based on Satellite Internet: Architectures, Key Techniques, and Experimental Progress
by Peng Zhang, Qin Qin, Shijie Zhang, Xiangtian Zhao, Xiaoliang Yan, Wei Wang and Hongbin Zhang
Aerospace 2024, 11(2), 167; https://doi.org/10.3390/aerospace11020167 - 19 Feb 2024
Cited by 4 | Viewed by 4222
Abstract
Remote sensing has become an essential tool for geological exploration, disaster monitoring, emergency rescue, and environmental supervision, while the limited number of remote sensing satellites and ground stations restricts the timeliness of remote sensing services. Satellite Internet has features of large bandwidth, low [...] Read more.
Remote sensing has become an essential tool for geological exploration, disaster monitoring, emergency rescue, and environmental supervision, while the limited number of remote sensing satellites and ground stations restricts the timeliness of remote sensing services. Satellite Internet has features of large bandwidth, low latency, and wide coverage, which can provide ubiquitous high-speed access for time-sensitive remote sensing users. This study proposes a near real-time remote sensing (NRRS) architecture, which allows satellites to transmit remote sensing data via inter-satellite links and offload to the Earth Stations from the satellite that moves overhead. The NRRS architecture has the advantages of instant response, ubiquitous access, and intelligent integration. Based on a test communication constellation, a vehicle-mounted Satcom on-the-move experiment was conducted to validate the presented NRRS architecture. The results show that the whole process from demand collection to image acquisition takes no more than 25 min, which provides an engineering reference for the subsequent implementation of near real-time remote sensing. Full article
Show Figures

Figure 1

23 pages, 23360 KiB  
Article
High-Resolution Gravity Measurements on Board an Autonomous Underwater Vehicle: Data Reduction and Accuracy Assessment
by Dinh Toan Vu, Jérôme Verdun, José Cali, Marcia Maia, Charles Poitou, Jérôme Ammann, Clément Roussel, Jean-François D’Eu and Marie-Édith Bouhier
Remote Sens. 2024, 16(3), 461; https://doi.org/10.3390/rs16030461 - 25 Jan 2024
Cited by 3 | Viewed by 2642
Abstract
Gravity on Earth is of great interest in geodesy, geophysics, and natural resource exploration. Ship-based gravimeters are a widely used instrument for the collection of surface gravity field data in marine regions. However, due to the considerable distance from the sea surface to [...] Read more.
Gravity on Earth is of great interest in geodesy, geophysics, and natural resource exploration. Ship-based gravimeters are a widely used instrument for the collection of surface gravity field data in marine regions. However, due to the considerable distance from the sea surface to the seafloor, the spatial resolution of surface gravity data collected from ships is often insufficient to image the detail of seafloor geological structures and to explore offshore natural minerals. Therefore, the development of a mobile underwater gravimetry system is necessary. The GraviMob gravimeter, developed for a moving underwater platform by Geo-Ocean (UMR 6538 CNRS-Ifremer-UBO-UBS), GeF (UR4630, Cnam) and MAPPEM Geophysics, has been tested over the last few years. In this study, we report on the high-resolution gravity measurements from the GraviMob system mounted on an Autonomous Underwater Vehicle, which can measure at depths of up to several kilometres. The dedicated GraviMob underwater gravity measurements were conducted in the Mediterranean Sea in March 2016, with a total of 26 underwater measurement profiles. All these measurement profiles were processed and validated. In a first step, the GraviMob gravity measurements were corrected for temperature based on a linear relationship between temperature and gravity differences. Through repeated profiles, we acquired GraviMob gravity measurements with an estimated error varying from 0.8 to 2.6 mGal with standard deviation after applying the proposed temperature correction. In a second step, the shipborne gravity data were downward continued to the measurement depth to validate the GraviMob measurements. Comparisons between the corrected GraviMob gravity anomalies and downward continued surface shipborne gravity data revealed a standard deviation varying from 0.8 to 3.2 mGal and a mean bias value varying from −0.6 to 0.6 mGal. These results highlight the great potential of the GraviMob system in measuring underwater gravity. Full article
Show Figures

Figure 1

20 pages, 3883 KiB  
Article
Using a SPATIAL INS/GNSS MEMS Unit to Detect Local Gravity Variations in Static and Mobile Experiments: First Results
by Benjamin Beirens, José Darrozes, Guillaume Ramillien, Lucia Seoane, Patrice Médina and Pierre Durand
Sensors 2023, 23(16), 7060; https://doi.org/10.3390/s23167060 - 9 Aug 2023
Cited by 2 | Viewed by 1763
Abstract
In this study, we present the feasibility of using gravity measurements made with a small inertial navigation system (INS) during in situ experiments, and also mounted on an unmanned aerial vehicle (UAV), to recover local gravity field variations. The INS operated is the [...] Read more.
In this study, we present the feasibility of using gravity measurements made with a small inertial navigation system (INS) during in situ experiments, and also mounted on an unmanned aerial vehicle (UAV), to recover local gravity field variations. The INS operated is the SPATIAL one developed by Advanced Navigation, which has three-axis accelerometers. When the temperature bias is corrected, these types of INS are powerful enough to present the periodic signal corresponding to the solid Earth tides. There is also a clear correlation with the data measured at different altitudes by a CG5 gravimeter. However, these data were recorded on static points, so we also studied the INS in a moving platform on a UAV. Because there are a lot of vibrations recorded by the INS (wind, motor, on-board computer), the GPS and accelerometric data need to be filtered extensively. Once the data are corrected so they do not show thermal bias and low-pass filtered, we take the second derivative of the altitude (GPS) data to find the radial accelerometry of the drone and compare it to the radial accelerometry measured directly by the INS, in order to isolate the accelerometric signal that is related to the area that is being studied and the altitude. With a high enough precision, this method could be used to obtain the gravity variations due to the topography and density variations in the ground. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

14 pages, 1372 KiB  
Article
A Novel Finite Element Model for the Study of Harmful Vibrations on the Aging Spine
by Shivam Verma, Gurpreet Singh and Arnab Chanda
Computation 2023, 11(5), 93; https://doi.org/10.3390/computation11050093 - 5 May 2023
Cited by 2 | Viewed by 1821
Abstract
The human spine is susceptible to a wide variety of adverse consequences from vibrations, including lower back discomfort. These effects are often seen in the drivers of vehicles, earth-moving equipment, and trucks, and also in those who drive for long hours in general. [...] Read more.
The human spine is susceptible to a wide variety of adverse consequences from vibrations, including lower back discomfort. These effects are often seen in the drivers of vehicles, earth-moving equipment, and trucks, and also in those who drive for long hours in general. The human spine is composed of vertebrae, discs, and tissues that work together to provide it with a wide range of movements and significant load-carrying capability needed for daily physical exercise. However, there is a limited understanding of vibration characteristics in different age groups and the effect of vibration transmission in the spinal column, which may be harmful to the different sections. In this work, a novel finite element model (FEM) was developed to study the variation of vibration absorption capacity due to the aging effect of the different sections of the human spine. These variations were observed from the first three natural frequencies of the human spine structure, which were obtained by solving the eigenvalue problem of the novel finite element model for different ages. From the results, aging was observed to lead to an increase in the natural frequencies of all three spinal segments. As the age increased beyond 30 years, the natural frequency significantly increased for the thoracic segment, compared to lumber and cervical segments. A range of such novel findings indicated the harmful frequencies at which resonance may occur, causing spinal pain and possible injuries. This information would be indispensable for spinal surgeons for the prognosis of spinal column injury (SCI) patients affected by harmful vibrations from workplaces, as well as manufacturers of automotive and aerospace equipment for designing effective dampers for better whole-body vibration mitigation. Full article
(This article belongs to the Special Issue Application of Finite Element Methods)
Show Figures

Figure 1

17 pages, 1191 KiB  
Article
A Single-Launch Deployment Strategy for Lunar Constellations
by Stefano Carletta
Appl. Sci. 2023, 13(8), 5104; https://doi.org/10.3390/app13085104 - 19 Apr 2023
Cited by 5 | Viewed by 2161
Abstract
Satellite constellations can provide communication and navigation services to support future lunar missions, and are attracting growing interest from both the scientific community and industry. The deployment of satellites in orbital planes that can have significantly different inclinations and right ascension of the [...] Read more.
Satellite constellations can provide communication and navigation services to support future lunar missions, and are attracting growing interest from both the scientific community and industry. The deployment of satellites in orbital planes that can have significantly different inclinations and right ascension of the ascending node requires dedicated launches and represents a non-trivial issue for lunar constellations, due to the complexity and low accessibility of launches to the Moon. In this work, a strategy to deploy multiple satellites in different orbital planes around the Moon in a single launch is examined. The launch vehicle moves along a conventional lunar escape trajectory, with parameters selected to take advantage of gravity-braking upon encountering the Moon. A maneuver at the periselenium allows the transfer of the spacecraft along a trajectory converging to the equilibrium region about the Earth–Moon libration point L1, where the satellites are deployed. Providing a small ΔV, each satellite is transferred into a low-energy trajectory with the desired inclination, right ascension of the ascending node, and periselenium radius. A final maneuver, if required, allows the adjustment of the semimajor axis and the eccentricity. The method is verified using numerical integration using high-fidelity orbit propagators. The results indicate that the deployment could be accomplished within one sidereal month with a modest ΔV budget. Full article
(This article belongs to the Special Issue Astrodynamics and Celestial Mechanics)
Show Figures

Figure 1

23 pages, 37484 KiB  
Article
Inductive Electrically Excited Synchronous Machine for Electrical Vehicles—Design, Optimization and Measurement
by Samuel Müller, David Maier and Nejila Parspour
Energies 2023, 16(4), 1657; https://doi.org/10.3390/en16041657 - 7 Feb 2023
Cited by 17 | Viewed by 11442
Abstract
The demand for electric machines has been rising steadily for several years—mainly due to the move away from the combustion engine. Synchronous motors with rare earth permanent magnets are widely used due to their high power densities. These magnets are cost-intensive, cost-sensitive and [...] Read more.
The demand for electric machines has been rising steadily for several years—mainly due to the move away from the combustion engine. Synchronous motors with rare earth permanent magnets are widely used due to their high power densities. These magnets are cost-intensive, cost-sensitive and often environmentally harmful. In addition to dispensing with permanent magnets, electrically excited synchronous machines offer the advantage of an adjustable excitation and, thus, a higher efficiency in the partial load range in field weakening operation. Field weakening operation is relevant for the application of vehicle traction drive. The challenge of this machine type is the need for an electrical power transfer system, usually achieved with slip rings. Slip rings wear out, generate dust and are limited in power density and maximum speed due to vibrations. This article addresses an electrically excited synchronous machine with a wireless power transfer onto the rotor. From the outset, the machine is designed with a wireless power transfer system for use in a medium-sized electric vehicle. As an example, the requirements are derived from the BMW’s i3. The wireless power transfer system is integrated into the hollow shaft of the rotor. Unused space is thus utilized. The overall system is optimized for high efficiency, especially for partial load at medium speed, with an operation point-depending optimization method. The results are compared with the reference permanent magnet excited machine. A prototype of the machine is built and measured on the test bench. The measured efficiency of the inductive electrically excited synchronous machine is up to 4% higher than that of the reference machine of the BMW i3. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 1899 KiB  
Article
A Novel Physiological-Based System to Assess Drivers’ Stress during Earth Moving Simulated Activities
by Daniele Bibbo, Moses Mariajoseph, Barbara Gallina and Marco Carli
Electronics 2022, 11(24), 4074; https://doi.org/10.3390/electronics11244074 - 7 Dec 2022
Cited by 1 | Viewed by 2096
Abstract
Earth-moving vehicles (EMVs) are vital in numerous industries, including construction, forestry, mining, cleaning, and agriculture. The changing nature of the off-road environment in which they operate makes situational awareness for readiness and, consequently, mental stress crucial for drivers and requires a high level [...] Read more.
Earth-moving vehicles (EMVs) are vital in numerous industries, including construction, forestry, mining, cleaning, and agriculture. The changing nature of the off-road environment in which they operate makes situational awareness for readiness and, consequently, mental stress crucial for drivers and requires a high level of controllability. Therefore, the monitoring of drivers’ acute stress patterns may be used as an input in identifying various levels of attentiveness. This research presents an experimental evaluation of a physiological-based system that can be useful to evaluate the readiness of a driver in different conditions. For the experimental validation, physiological signals such as electrocardiogram (ECG), galvanic skin response (GSR) and speech data were collected from nine participants throughout driving experiments of increasing complexity on a specific simulator. The experimental results show that the identified parameters derived from the acquired physiological signals can help us understand the driver status when performing different tasks, the engagement of which is related to different road environments. This multi-parameter approach can provide more reliable information compared to single parameter approaches (e.g., eye monitoring with a camera) and identify driver status variations, from relaxed to stressed or drowsy. The use of these signals allows for the development of a smart driving cockpit, which could communicate to the vehicle the driver’s status, to set up an innovative protection system aiming to increase road safety. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

10 pages, 2816 KiB  
Article
Study on the CHZ-II Gravimeter and Its Calibrations along Forward and Reverse Overlapping Survey Lines
by Haibo Tu, Kun Liu, Heng Sun, Qian Cui, Yuan Yuan, Sunjun Liu, Jiangang He and Lintao Liu
Micromachines 2022, 13(12), 2124; https://doi.org/10.3390/mi13122124 - 30 Nov 2022
Cited by 4 | Viewed by 2458
Abstract
The moving-base gravimeter is one of the key instruments used for Earth gravity survey. The accuracy of the survey data is closely related to the calibration precision of several key parameters, such as the damping delay time, the drift coefficient, the gravity scale [...] Read more.
The moving-base gravimeter is one of the key instruments used for Earth gravity survey. The accuracy of the survey data is closely related to the calibration precision of several key parameters, such as the damping delay time, the drift coefficient, the gravity scale factor, and the measurement accuracy. This paper will introduce the development of the CHZ-II gravimeter system in which a cylindrical sampling mass suspended vertically by a zero-length spring acts as a sensitive probe to measure specific force. Meanwhile, a GNSS (Global Navigation Satellite System) positioning system is employed to monitor the carrier motion and to remove the inertia acceleration. In order to achieve high-precision calibrations for the key parameters, a new calibration method performed along forward and reverse overlapping lines is proposed, which is used to calibrate the above parameters and to estimate the measurement accuracy of the instrument used for a normal gravity survey. The calibration principle and the shipboard calibration data processing method are introduced. The calibration was performed for three moving-base gravimeters and the corresponding results are determined, indicating that the method can significantly improve the accuracy of the parameters. For the CHZ-II gravimeter, the measurement accuracy of the survey is 0.471 mGal (1 mGal = 10−5 m/s2), which improved by 19.5% after applying the calibrated parameters. This method is also practical for use with aviation, marine and even vehicle-carried moving-base gravimeters. Full article
(This article belongs to the Special Issue Accelerometer and Magnetometer: From Fundamentals to Applications)
Show Figures

Figure 1

12 pages, 3013 KiB  
Article
A Robust Tracking Method for Multiple Moving Targets Based on Equivalent Magnetic Force
by Ying Wang, Qiang Fu and Yangyi Sui
Micromachines 2022, 13(11), 2018; https://doi.org/10.3390/mi13112018 - 18 Nov 2022
Cited by 12 | Viewed by 1940
Abstract
A ferromagnetic vehicle, such as a submarine, magnetized by the Earth’s magnetic field produces a magnetic anomaly field, and the tracking of moving targets can be realized through real-time analysis of magnetic data. At present, there are few tracking methods based on magnetic [...] Read more.
A ferromagnetic vehicle, such as a submarine, magnetized by the Earth’s magnetic field produces a magnetic anomaly field, and the tracking of moving targets can be realized through real-time analysis of magnetic data. At present, there are few tracking methods based on magnetic field vectors and their gradient tensor. In this paper, the magnetic field vector and its gradient tensor are used to calculate equivalent magnetic force. It shows the direction of the vector between the detector and the tracking targets for controlling the direction of motion of the detector and achieving the purpose of tracking. Compared with existing positioning methods, the proposed method is relatively less affected by instrument resolution and noise and maintains robustness when the velocity vectors of multiple magnetic targets change randomly. Full article
(This article belongs to the Special Issue Accelerometer and Magnetometer: From Fundamentals to Applications)
Show Figures

Figure 1

13 pages, 1934 KiB  
Article
Calculation of Heat Transfer and Drag Coefficients for Aircraft Geometric Models
by Victor V. Kuzenov, Sergei V. Ryzhkov and Aleksey Yu. Varaksin
Appl. Sci. 2022, 12(21), 11011; https://doi.org/10.3390/app122111011 - 30 Oct 2022
Cited by 21 | Viewed by 4004
Abstract
A numerical model to calculate the heat transfer and resistance coefficients near the bodies of complex geometric shapes moving at high velocity is formulated. The processes of heat and mass transfer and flow around aircraft elements are considered. An algorithm for calculating heat [...] Read more.
A numerical model to calculate the heat transfer and resistance coefficients near the bodies of complex geometric shapes moving at high velocity is formulated. The processes of heat and mass transfer and flow around aircraft elements are considered. An algorithm for calculating heat fluxes and the heat transfer coefficient is proposed. The developed numerical technique can give an idea of the essential features of the flow, heat transfer at the end keels of the wings, and integral layouts of high-speed aircraft. An approximate mathematical model for calculating the heat transfer processes and resistance coefficients near the bodies of complex geometric shapes moving at high speed in the Earth’s atmosphere is formulated. The calculated results for convective heat transfer and friction coefficients for the X-33 and X-43 vehicles are obtained. Full article
(This article belongs to the Special Issue Morphing Enabling Technologies for Aerospace Systems)
Show Figures

Figure 1

21 pages, 17676 KiB  
Article
CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen
by Maria Cristina Cameretti, Roberta De Robbio, Ezio Mancaruso and Marco Palomba
Energies 2022, 15(15), 5521; https://doi.org/10.3390/en15155521 - 29 Jul 2022
Cited by 26 | Viewed by 4591
Abstract
Superior fuel economy, higher torque and durability have led to the diesel engine being widely used in a variety of fields of application, such as road transport, agricultural vehicles, earth moving machines and marine propulsion, as well as fixed installations for electrical power [...] Read more.
Superior fuel economy, higher torque and durability have led to the diesel engine being widely used in a variety of fields of application, such as road transport, agricultural vehicles, earth moving machines and marine propulsion, as well as fixed installations for electrical power generation. However, diesel engines are plagued by high emissions of nitrogen oxides (NOx), particulate matter (PM) and carbon dioxide when conventional fuel is used. One possible solution is to use low-carbon gaseous fuel alongside diesel fuel by operating in a dual-fuel (DF) configuration, as this system provides a low implementation cost alternative for the improvement of combustion efficiency in the conventional diesel engine. An initial step in this direction involved the replacement of diesel fuel with natural gas. However, the consequent high levels of unburned hydrocarbons produced due to non-optimized engines led to a shift to carbon-free fuels, such as hydrogen. Hydrogen can be injected into the intake manifold, where it premixes with air, then the addition of a small amount of diesel fuel, auto-igniting easily, provides multiple ignition sources for the gas. To evaluate the efficiency and pollutant emissions in dual-fuel diesel-hydrogen combustion, a numerical CFD analysis was conducted and validated with the aid of experimental measurements on a research engine acquired at the test bench. The process of ignition of diesel fuel and flame propagation through a premixed air-hydrogen charge was represented the Autoignition-Induced Flame Propagation model included ANSYS-Forte software. Because of the inefficient operating conditions associated with the combustion, the methodology was significantly improved by evaluating the laminar flame speed as a function of pressure, temperature and equivalence ratio using Chemkin-Pro software. A numerical comparison was carried out among full hydrogen, full methane and different hydrogen-methane mixtures with the same energy input in each case. The use of full hydrogen was characterized by enhanced combustion, higher thermal efficiency and lower carbon emissions. However, the higher temperatures that occurred for hydrogen combustion led to higher NOx emissions. Full article
Show Figures

Graphical abstract

13 pages, 3800 KiB  
Article
An Accurate UAV Ground Landing Station System Based on BLE-RSSI and Maximum Likelihood Target Position Estimation
by Jaime Avilés-Viñas, Roberto Carrasco-Alvarez, Javier Vázquez-Castillo, Jaime Ortegón-Aguilar, Johan J. Estrada-López, Daniel D. Jensen, Ricardo Peón-Escalante and Alejandro Castillo-Atoche
Appl. Sci. 2022, 12(13), 6618; https://doi.org/10.3390/app12136618 - 30 Jun 2022
Cited by 5 | Viewed by 2422
Abstract
Earth observation with unmanned aerial vehicles (UAVs) offers an extraordinary opportunity to bridge the gap between field observations and traditional air and space-borne remote sensing. In this regard, ground landing stations (GLS) systems play a central role to increase the time and area [...] Read more.
Earth observation with unmanned aerial vehicles (UAVs) offers an extraordinary opportunity to bridge the gap between field observations and traditional air and space-borne remote sensing. In this regard, ground landing stations (GLS) systems play a central role to increase the time and area coverage of UAV missions. Bluetooth low energy (BLE) technology and the received signal strength indicator (RSSI) techniques have been proposed for target location during UAV landing. However, these RSSI-based techniques present a lack of precision due to the propagation medium characteristics, which leads to UAV position vagueness. In this sense, the development of a novel low-cost GLS system for UAV tracking and landing is proposed. The GLS system has been embodied for the purpose of testing the UAV landing navigation capability. The maximum likelihood estimator (MLE) algorithm is addressed on an embedded microcontroller for the position estimation based on the RSSI acquired from an array of BLE devices. Experimental results demonstrate the feasibility and accuracy of the ground landing station system, achieving average errors of less than 0.04 m with the UAV-MLE target position estimation approach. This 0.04 m distance represents an order of magnitude increase in location precision over other currently available solutions. In many cases, this increased precision can enable more innovative docking mechanisms, less likelihood of mishaps in docking, and also quicker docking. It may also facilitate docking procedures where the docking station is itself moving, which may be the case if the docking unit is a mobile ground rover. Full article
Show Figures

Figure 1

Back to TopTop