CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen
Abstract
:1. Introduction
2. Experimental Test Cases
3. Combustion Modeling
3.1. Methodology
3.2. Mesh Sensitivity Analysis
3.3. Model Tuning
3.4. Hydrogen-Methane Mixtures: Results and Discussion
4. Conclusions
- Under the operating conditions considered, the gaseous fuel did not burn completely and most of the unburned hydrogen was concentrated near the crevice region.
- The comparison between the different dual-fuel cases with the hydrogen–methane mixtures showed that the addition of methane entailed a slowing down of combustion with lower efficiency. By increasing the hydrogen amount up to 100% of the premixed fuel, the thermal and combustion efficiency increased.
- Future numerical studies should focus on NOx reduction by proven EGR systems and reduce unburned hydrogen through hydrogen direct injection to avoid fuel accumulation in crevices.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heywood, J.B. Internal Combustion Engines Fundamentals; McGraw-Hill: Graveport, OH, USA, 2018. [Google Scholar]
- Krishnamoorthi, M.; Malayalamurthi, R.; He, Z.; Kandasamy, S. A review on low temperature combustion engines: Performance, combustion and emission characteristics. Renew. Sustain. Energy Rev. 2019, 116, 109404. [Google Scholar] [CrossRef]
- Pham, Q.; Park, S.; Agarwal, A.K.; Park, S. Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission. Energy 2022, 250, 123778. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, T.; Li, Z.; Chen, Z.; Zhao, J. EGR thermal and chemical effects on combustion and emission of diesel/natural gas dual-fuel engine. Fuel 2021, 302, 121161. [Google Scholar] [CrossRef]
- Xu, M.; Cheng, W.; Zhang, H.; An, T.; Zhang, S. Effect of diesel pre-injection timing on combustion and emission characteristics of compression ignited natural gas engine. Energy Convers. Manag. 2016, 117, 86–94. [Google Scholar] [CrossRef]
- Yang, B.; Wei, X.; Xi, C.; Liu, Y.; Zeng, K.; Lai, M.-C. Experimental study of the effects of natural gas injection timing on the combustion performance and emissions of a turbocharged common rail dual-fuel engine. Energy Convers. Manag. 2014, 87, 297–304. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, J.; Zhao, Z.; Wang, D.; Huang, Z. Effect of equivalence ratio on combustion and emissions of a dual-fuel natural gas engine ignited with diesel. Appl. Therm. Eng. 2018, 146, 738–751. [Google Scholar] [CrossRef]
- Muralidharan, M.; Srivastava, A.; Subramanian, M. A Technical Review on Performance and Emissions of Compressed Natural Gas-Diesel Dual Fuel Engine. SAE Tech. Pap. 2019. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Petersen, E.L. Laminar flame speed correlations for pure-hydrogen and high-hydrogen content syngas blends with various diluents. Int. J. Hydrogen Energy 2012, 37, 19177–19189. [Google Scholar] [CrossRef]
- Akal, D.; Öztuna, S.; Büyükakın, M.K. A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect. Int. J. Hydrogen Energy 2020, 45, 35257–35268. [Google Scholar] [CrossRef]
- Nag, S.; Sharma, P.; Gupta, A.; Dhar, A. Experimental study of engine performance and emissions for hydrogen diesel dual fuel engine with exhaust gas recirculation. Int. J. Hydrogen Energy 2019, 44, 12163–12175. [Google Scholar] [CrossRef]
- Castro, N.; Toledo, M.; Amador, G. An experimental investigation of the performance and emissions of a hydrogen-diesel dual fuel compression ignition internal combustion engine. Appl. Therm. Eng. 2019, 156, 660–667. [Google Scholar] [CrossRef]
- Zhou, J.H.; Cheung, C.H.; Leung, C.W. Combustion, performance and emissions of a diesel engine with H2, CH4 and H2–CH4 addition. Int. J. Hydrogen Energy 2014, 39, 4611–4621. [Google Scholar] [CrossRef]
- Ouchikh, S.; Lounici, M.S.; Tarabet, L.; Loubar, K.; Tazerout, M. Effect of natural gas enrichment with hydrogen on combustion characteristics of a dual fuel diesel engine. Int. J. Hydrogen Energy 2019, 44, 13974–13987. [Google Scholar] [CrossRef]
- Liu, F.; Kang, Y.; Wu, H.; Lee, C.-F.; Li, Y. Effect of Hydrogen Volume Ratio on the Combustion Characteristics of CNG-Diesel Dual-Fuel Engine. SAE Tech. Pap. 2017. [Google Scholar] [CrossRef]
- Tripathi, G.; Sharma, P.; Dhar, A. Computational study of diesel injection strategies for methane-diesel dual fuel engine. Clean. Eng. Technol. 2022, 6, 100393. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Guo, H.; Li, Y.; Yao, M. A numerical investigation on methane combustion and emissions from a natural gas-diesel dual fuel engine using CFD model. Appl. Energy 2017, 205, 153–162. [Google Scholar] [CrossRef]
- Papagiannakis, R.G.; Hountalas, D.T.; Krishnan, S.R.; Srinivasan, K.K.; Rakopoulos, D.C.; Rakopoulos, C. Numerical evaluation of the effects of compression ratio and diesel fuel injection timing on the performance and emissions of a fumigated natural gas–diesel dual-fuel engine. J. Energy Eng. 2016, 142, E4015015. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Saray, R.K.; Poorghasemi, K.; Maghbouli, A. A numerical investigation on combustion and emission characteristics of a dual fuel engine at part load condition. Fuel 2016, 166, 309–319. [Google Scholar] [CrossRef]
- Jabbr, A.I.; Gaja, H.; Koylu, O. Multi-objective optimization of operating parameters for a H2/Diesel dual-fuel compression-ignition engine. Int. J. Hydrogen Energy 2020, 45, 19965–19975. [Google Scholar] [CrossRef]
- Ramsay, C.J.; Dinesh, K.K.J.R.; Fairney, W.; Vaughan, N. A numerical study on the effects of constant volume combustion phase on performance and emissions characteristics of a diesel-hydrogen dual-fuel engine. Int. J. Hydrogen Energy 2020, 45, 32598–32618. [Google Scholar] [CrossRef]
- Ekin, F.; Ozsoysal, O.A.; Arslan, H. The effect of using hydrogen at partial load in a diesel-natural gas dual fuel engine. Int. J. Hydrogen Energy 2022, 47, 18523–18550. [Google Scholar] [CrossRef]
- Mansor, M.R.A.; Mohamad, T.I.; Sabah, O. Numerical investigation on combustion and emissions in a direct injection compression ignition engine fuelled with various hydrogen–methane–diesel blends at different intake air temperatures. Energy Rep. 2021, 7, 403–421. [Google Scholar] [CrossRef]
- Sharma, P.; Dhar, A. Compression ratio influence on combustion and emissions characteristic of hydrogen diesel dual fuel CI engine: Numerical Study. Fuel 2018, 222, 852–858. [Google Scholar] [CrossRef]
- Tripathi, G.; Sharma, P.; Dhar, A.; Sadiki, A. Computational investigation of diesel injection strategies in hydrogen-diesel dual fuel engine. Sustain. Energy Technol. Assess. 2019, 36, 100543. [Google Scholar] [CrossRef]
- Wang, H.; Ra, Y.; Jia, M.; Reitz, R.D. Development of a reduced n-dodecane-PAH mechanism and its application for n-dodecane soot predictions. Fuel 2014, 136, 25–36. [Google Scholar] [CrossRef]
- De Robbio, R.; Cameretti, M.C.; Mancaruso, E.; Tuccillo, R.; Vaglieco, B.M. Combined CFD-Experimental Analysis of the In-Cylinder Combustion Phenomena in a Dual Fuel Optical Compression Ignition Engine. SAE Tech. Pap. 2021. [Google Scholar] [CrossRef]
- De Robbio, R.; Cameretti, M.C.; Mancaruso, E.; Tuccillo, R.; Vaglieco, B.M. CFD Study and Experimental Validation of a Dual Fuel Engine: Effect of Engine Speed. Energies 2021, 14, 4307. [Google Scholar] [CrossRef]
- Mancaruso, E.; Todino, M.; Vaglieco, B.M. Study on dual fuel combustion in an optical research engine by infrared diagnostics varying methane quantity and engine speed. Appl. Therm. Eng. 2020, 178, 115623. [Google Scholar] [CrossRef]
- Mancaruso, E.; Todino, M.; Vaglieco, B.M. Analysis of Dual Fuel Combustion in Single Cylinder Research Engine Fueled with Methane and Diesel by IR Diagnostics. SAE Tech. Pap. 2019. [Google Scholar] [CrossRef]
- Magno, A.; Mancaruso, E.; Vaglieco, B.M. Combustion Analysis of Dual Fuel Operation in Single Cylinder Research Engine Fuelled with Methane and Diesel. SAE Tech. Pap. 2015. [Google Scholar] [CrossRef]
Engine Type | Stroke [mm] | Bore [mm] | Cylinder Volume [cm3] | Bowl [cm3] | Compression Ratio |
---|---|---|---|---|---|
4-stroke single-cylinder 4 valves | 92 | 85 | 522 | 19.7 | 16.5:1 |
EVO | EVC | IVO | IVC |
---|---|---|---|
116°ATDC | 340°BTDC | 344°ATDC | 132°BTDC |
Diesel Injection System | Number of Holes | Cone Angle Axis [deg] | Hole Diameter [mm] | H2/CH4 Injection System | Holes Number of H2/CH4 Injector | Maximum PFI Pressure [bar] |
---|---|---|---|---|---|---|
Common Rail | 7 | 148 | 0.141 | PFI | 1 | 5 |
M1 | M2 | M3 | M4 | |
---|---|---|---|---|
Engine speed [rpm] | 1500 | 1500 | 2000 | 2000 |
IMEP [bar] | 1.9 | 4.8 | 2 | 4.3 |
Pilot SOI [deg] | −16 | −11.6 | −21.2 | −18.6 |
Main SOI [deg] | −6 | 0.3 | −8 | −2.4 |
Dwell [deg] | 10 | 11.9 | 13.2 | 16.2 |
Rail pressure [bar] | 615 | 867 | 700 | 891 |
Pilot and main duration [deg] | 2.6 | 2.4 | 3.4 | 3.1 |
Pilot and main diesel mass injected [mg/cycle] | 0.711 | 0.822 | 0.717 | 0.833 |
Thermal energy from diesel [J] | 61.15 | 70.69 | 61.66 | 71.64 |
Methane mass [mg/cycle] | 7.58 | 11.19 | 7.55 | 10.15 |
Thermal energy from methane [J] | 379 | 559.5 | 377.5 | 507.5 |
Total thermal energy from fuels [J] | 440.15 | 630.19 | 439.16 | 579.16 |
Inlet pressure [bar] | 1.5 | 1.7 | 1.5 | 1.7 |
Inlet temperature [°C] | 44 | 46 | 50 | 51 |
Air mass [mg/cycle] | 750.9 | 802.4 | 679.3 | 741.2 |
Methane/air ER | 0.174 | 0.240 | 0.192 | 0.236 |
RP [%] | 86.10 | 88.78 | 85.97 | 87.62 |
H1 | H2 | H3 | H4 | |
---|---|---|---|---|
Engine speed [rpm] | 1500 | 1500 | 2000 | 2000 |
IMEP [bar] | 0.9 | 3 | 0.9 | 2.7 |
Pilot SOI [deg] | −16 | −11.6 | −21.2 | −18.6 |
Main SOI [deg] | −6 | 0.3 | −8 | −2.4 |
Dwell [deg] | 10 | 11.9 | 13.2 | 16.2 |
Rail pressure [bar] | 615 | 867 | 700 | 891 |
Pilot and main duration [deg] | 2.6 | 2.4 | 3.4 | 3.1 |
Pilot and main diesel mass injected [mg/cycle] | 0.711 | 0.822 | 0.717 | 0.833 |
Thermal energy from diesel [J] | 61.15 | 70.69 | 61.66 | 71.64 |
Hydrogen mass [mg/cycle] | 2.45 | 4.35 | 2.32 | 3.92 |
Thermal energy from hydrogen [J] | 295 | 523 | 279 | 470 |
Total thermal energy from fuels [J] | 356.15 | 593.69 | 340.66 | 541.64 |
Inlet pressure [bar] | 1.5 | 1.7 | 1.5 | 1.7 |
Inlet temperature [°C] | 44 | 51 | 55 | 59 |
Air mass [mg/cycle] | 727.5 | 796 | 672 | 738.6 |
Hydrogen/air ER | 0.115 | 0.187 | 0.118 | 0.181 |
RP [%] | 82.8 | 88.1 | 81.9 | 86.8 |
#Mesh | Average Size of Cells at TDC [mm] | Number of Cells at TDC |
---|---|---|
1 | 0.730 | 12,516 |
2 | 0.543 | 30,336 |
3 | 0.535 | 31,776 |
4 | 0.514 | 35,748 |
5 | 0.486 | 42,368 |
6 | 0.424 | 63,693 |
7 | 0.401 | 75,488 |
Parameter | Data |
---|---|
Engine speed [rpm] | 2000 |
SOI pilot [deg] | 15°BTDC |
SOI main [deg] | 1.2°ATDC |
Duration of pilot injection [deg] | 7 |
Duration of main injection [deg] | 10 |
Pilot and main diesel mass [mg/cycle] | 12 |
Pilot and main injection duration [deg] | 3.1° |
Pilot and main mass injected [mg/cycle] | 0.83 |
Turbulent kinetic energy [cm2/s2] | 3.42 × 104 |
Turbulent length scale [cm] | 0.2378 |
Size constant of KH breakup | 1 |
Time constant of KH breakup | 40 |
Size constant of RT breakup | 0.15 |
Time constant of RT breakup | 1 |
HES100 | HES75 | HES50 | HES25 | HES0 | |
---|---|---|---|---|---|
470 | 352.5 | 235 | 2.27 | 0 | |
0 | 117.5 | 235 | 2.60 | 470 | |
3.92 | 2.94 | 1.96 | 0.98 | 0 | |
0 | 2.35 | 4.70 | 7.05 | 9.4 | |
0.00527 | 0.00395 | 0.00263 | 0.00131 | 0 | |
0 | 0.00316 | 0.00631 | 0.00944 | 0.01256 | |
Initial pressure [bar] | 1.591 | 1.591 | 1.591 | 1.591 | 1.591 |
Initial temperature [K] | 346.4 | 346.4 | 346.4 | 346.4 | 346.4 |
Mass [mg] | 742.6 | 753.2 | 764.2 | 775.4 | 786.9 |
Gaseous fuel/airER | 0.184 | 0.203 | 0.212 | 0.221 | 0.184 |
RP [%] | 86.8 | 86.8 | 86.8 | 86.8 | 86.8 |
HES100 | HES75 | HES50 | HES25 | HES0 | |
---|---|---|---|---|---|
Gross power [kW] | 2.61 | 2.27 | 2.07 | 2.07 | 1.88 |
IMEP [bar] | 3.0 | 2.60 | 2.38 | 2.21 | 2.16 |
Combustion efficiency | 0.66 | 0.60 | 0.56 | 0.56 | 0.58 |
Thermal efficiency | 0.29 | 0.25 | 0.24 | 0.24 | 0.22 |
Total chemical heat release [J] | 361 | 323 | 294 | 294 | 296 |
Total wall heat transfer loss [J] | 52 | 47 | 45 | 45 | 42 |
Total net heat [J] | 309 | 276 | 249 | 249 | 254 |
Total net heat (from PV with variable Gamma) [J] | 215 | 186 | 165 | 165 | 168 |
Max. pressure [bar] | 55.8 | 54.8 | 53.4 | 53.4 | 52.8 |
Max. temperature [K] | 1179 | 1066 | 1035 | 1035 | 983 |
Max. pressure rise rate [bar/deg] | 1.44 | 1.44 | 1.74 | 1.74 | 2.36 |
HRR10 [deg ATDC] | 2 | 2 | 4 | 4 | 5 |
HRR50 [deg ATDC] | 12 | 14 | 13 | 13 | 16 |
HRR90 [deg ATDC] | 27 | 39 | 38 | 38 | 60 |
HRR10-HRR90 Duration [deg] | 25 | 37 | 34 | 34 | 55 |
HES100 | HES75 | HES50 | HES25 | HES0 | |
---|---|---|---|---|---|
H2 | 1877 | 1731 | 1342 | 690 | 0 |
CH4 | 0 | 1403 | 3244 | 4984 | 6404 |
n-C12H26 | 18.30 | 33.98 | 45.65 | 66.42 | 78.58 |
CO2 | 32,648 | 28,082 | 24,590 | 21,502 | 17,649 |
O2 | 193,871 | 196,419 | 198,408 | 197,990 | 195,845 |
CO | 226 | 569 | 818 | 888 | 860 |
NOx | 2.66 | 2.16 | 1.50 | 1.96 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cameretti, M.C.; De Robbio, R.; Mancaruso, E.; Palomba, M. CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen. Energies 2022, 15, 5521. https://doi.org/10.3390/en15155521
Cameretti MC, De Robbio R, Mancaruso E, Palomba M. CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen. Energies. 2022; 15(15):5521. https://doi.org/10.3390/en15155521
Chicago/Turabian StyleCameretti, Maria Cristina, Roberta De Robbio, Ezio Mancaruso, and Marco Palomba. 2022. "CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen" Energies 15, no. 15: 5521. https://doi.org/10.3390/en15155521
APA StyleCameretti, M. C., De Robbio, R., Mancaruso, E., & Palomba, M. (2022). CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen. Energies, 15(15), 5521. https://doi.org/10.3390/en15155521