Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (225)

Search Parameters:
Keywords = early-maturing trait

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 951 KB  
Review
Advances in Research on the Biological Characteristics of Weedy Rice
by Xingyi Liang, Can Zhao, Kunlun Liu, Weiling Wang, Zhongyang Huo, Xiaoling Song and Sheng Qiang
Plants 2025, 14(20), 3188; https://doi.org/10.3390/plants14203188 - 17 Oct 2025
Viewed by 110
Abstract
Weedy rice (Oryza spp.) has become one of the most harmful weeds in rice fields worldwide. It is a conspecific plant of cultivated rice (Oryza sativa L.) belonging to the genus Oryza, widely occurring in global rice production systems with [...] Read more.
Weedy rice (Oryza spp.) has become one of the most harmful weeds in rice fields worldwide. It is a conspecific plant of cultivated rice (Oryza sativa L.) belonging to the genus Oryza, widely occurring in global rice production systems with a cosmopolitan distribution across major rice-growing regions. Due to its unique biological characteristics, such as strong environmental adaptability, stress resistance, seed shattering propensity, seed dormancy, and competitive dominance, weedy rice can rapidly proliferate and persist in fields, posing a severe threat to rice production systems. This review summarizes the current research progress on the biological characteristics of weedy rice and introduces the significant differences in biological characteristics between weedy and cultivated rice, such as phenotypic diversity, seed shattering, dormancy, strong competitiveness, stress resistance, and early maturity. These distinct biological traits, which significantly differ from cultivated rice, serve as essential mechanisms in the survival strategy of weedy rice. Our review will provide a theoretical reference for a deeper understanding of weedy rice and its integrated management. Full article
(This article belongs to the Special Issue The Bioecology and Sustainable Management of Weeds)
Show Figures

Figure 1

13 pages, 3300 KB  
Article
Exploring Genetic Variability, Heritability, and Interrelationship in Phenotypic Traits of Recombinant Inbred Lines in Durum Wheat (Triticum turgidum L. ssp. Durum, Desf.)
by Hanan Shiferaw, Faris Hailu, Behailu Mulugeta and Matteo Dell’Acqua
Crops 2025, 5(5), 71; https://doi.org/10.3390/crops5050071 - 15 Oct 2025
Viewed by 517
Abstract
Durum wheat is a vital wheat species cultivated worldwide for human consumption, ranking second to bread wheat. The Ethiopian durum wheat allele pool shows wide gene diversity; however, limited improvement work has been done to exploit this diversity. Thus, this study aimed to [...] Read more.
Durum wheat is a vital wheat species cultivated worldwide for human consumption, ranking second to bread wheat. The Ethiopian durum wheat allele pool shows wide gene diversity; however, limited improvement work has been done to exploit this diversity. Thus, this study aimed to assess the genetic variability, heritability, and interrelationship among different phenotypic traits in 210 recombinant inbred lines (RILs) using an alpha lattice design with two replications. The analysis of variance revealed a significant difference for all the measured traits. The phenotypic coefficient of variation (PCV) was greater than the genotypic coefficient of variation (GCV) for all the characters, which reflects that the existing range of variability within the genotypes was not only due to the varying influence of genotype but also the environment. A correlation analysis disclosed that grain yield was positively related to the traits of plant height and 1000-kernel weight, suggesting that selecting these traits could enhance yield. Path analysis revealed that days to booting, maturity, and 1000-kernel weight directly affect grain yield. Among the measured traits, early developmental traits revealed higher broad-sense heritability. The findings of this study highlight high genetic diversity among Ethiopian durum wheat genotypes, opening up opportunities to integrate these materials into future wheat-breeding programs through introgression with other germplasm sources in Ethiopia and beyond. Full article
Show Figures

Figure 1

17 pages, 2999 KB  
Article
Evaluation of Yield-Related Morphological, Physiological, Agronomic, and Nutrient Uptake Traits of Grain Sorghum Varieties in the Kerala Region (India)
by Swathy Anija Hari Kumar, Usha Chacko Thomas, Yazen Al-Salman, Francisco Javier Cano, Roy Stephen, P. Shalini Pillai and Oula Ghannoum
Agronomy 2025, 15(10), 2320; https://doi.org/10.3390/agronomy15102320 - 30 Sep 2025
Viewed by 361
Abstract
Climate change poses a significant threat to crop production, particularly in tropical and semi-arid regions. Sorghum (Sorghum bicolor (L.) Moench), a resilient C4 cereal, has high photosynthetic efficiency and abiotic stress tolerance, making it a key crop for food, fodder, and [...] Read more.
Climate change poses a significant threat to crop production, particularly in tropical and semi-arid regions. Sorghum (Sorghum bicolor (L.) Moench), a resilient C4 cereal, has high photosynthetic efficiency and abiotic stress tolerance, making it a key crop for food, fodder, and feed security. This study evaluated agronomic and physiological traits influencing the yield performance of 20 sorghum varieties under field conditions in Kerala, India. The data were analyzed using a randomized block design (RBD) in GRAPES software, and a principal component analysis was performed in R. Variety CSV 17 exhibited the highest grain yield (GY) (3760 kg ha−1) and harvest index (HI) (43), with early flowering, early maturity, a high chlorophyll content (CHL), and minimal nitrogen (N), phosphorus (P), and potassium uptake. Conversely, CSV 20 produced the highest stover yield (22.5 t ha−1), associated with greater leaf thickness (LT), lower canopy temperature, taller plant height (PH), increased leaf number (LN), and extended maturity. Leaf temperature (Tleaf) was negatively correlated with the quantum yield of photosystem II (ΦPSII) and panicle length (PL), which were strong predictors of grain weight. The principal component analysis revealed that PC1 and PC2 explained 21% and 19% of the variation in the grain and stover yield, respectively. Hierarchical partitioning identified the potassium content (K%), CHL, Tleaf, leaf area index (LAI), ΦPSII, and LT as key contributors to the GY, while the SY was primarily influenced by the LN, nitrogen content (N%), maturity duration, PH, and ΦPSII. These findings highlight the potential of exploiting physiological traits for enhancing sorghum productivity under summer conditions in Kerala and similar environments. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

24 pages, 5259 KB  
Article
Morpho-Agronomic Characterization of an Unexploited Germplasm Collection of Cauliflower (Brassica oleracea var. botrytis (L.)) from Spain
by Eric Prendes-Rodríguez, Alicia Iborra, Carla Guijarro-Real, Adrián Rodríguez-Burruezo and Ana Fita
Plants 2025, 14(18), 2919; https://doi.org/10.3390/plants14182919 - 19 Sep 2025
Viewed by 572
Abstract
Cauliflower landraces (Brassica oleracea var. botrytis) safeguard allelic diversity for adaptation, yet their phenotypic breadth under winter field conditions remains under-documented. We evaluated 69 Spanish landraces and two commercial checks from the COMAV-UPV genebank using 15 quantitative and 21 qualitative descriptors. [...] Read more.
Cauliflower landraces (Brassica oleracea var. botrytis) safeguard allelic diversity for adaptation, yet their phenotypic breadth under winter field conditions remains under-documented. We evaluated 69 Spanish landraces and two commercial checks from the COMAV-UPV genebank using 15 quantitative and 21 qualitative descriptors. Seed viability ranged from 0 to 92%, and mature plants showed wide ranges in stem length (coefficient of variation ≈ 72%), leaf size, and head weight (100–723 g). Six curd-colour classes—including uncommon purple and Romanesco green—were recorded. Most accessions (>88%) required more than 120 days from sowing to harvest, but a distinct subset (12%) matured within 60–120 days. Plant stature tended to be positively associated with head mass, whereas highly branched inflorescences matured earlier. Variation was dominated by curd size and plant architecture. Multivariate analyses—principal component analysis for quantitative traits, multiple correspondence analysis for qualitative traits, factor analysis of mixed data, and clustering of FAMD scores by k-means—resolved three phenotypic clusters spanning a gradient of curd size/architecture and plant stature. The collection includes accessions with compact curds, earliness, or distinctive pigmentation that are immediately useful for breeding and for prioritizing regeneration. These results provide a phenotypic baseline for future genomic association studies and the development of cultivars adapted to winter production. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Figure 1

15 pages, 23303 KB  
Article
BSA-Seq-Based Discovery of Functional InDel Markers for Seed Size Selection in Litchi (Litchi chinensis Sonn.)
by Tingting Yan, Yutong Ju, Zhe Chen, Mingchao Yang, Xianghe Wang, Lin Wang, Yiwei Zhou and Fuchu Hu
Horticulturae 2025, 11(9), 1079; https://doi.org/10.3390/horticulturae11091079 - 7 Sep 2025
Viewed by 583
Abstract
As a globally significant fruit crop, litchi (Litchi chinensis Sonn.) exhibits substantial variation in seed size, which is a key determinant of fruit quality. However, the lack of molecular markers closely associated with seed-related traits has hindered targeted breeding efforts. In this [...] Read more.
As a globally significant fruit crop, litchi (Litchi chinensis Sonn.) exhibits substantial variation in seed size, which is a key determinant of fruit quality. However, the lack of molecular markers closely associated with seed-related traits has hindered targeted breeding efforts. In this study, we systematically evaluated six critical traits—single fruit weight, seed weight, seed length, seed width, edible rate, and seed-to-fruit weight ratio—across 131 early-maturing litchi accessions. Hierarchical clustering analysis (HCA) and principal component analysis (PCA) revealed a clear bifurcation of these accessions into two distinct groups based on seed size-related traits. Using bulked segregant analysis sequencing (BSA-seq), we identified a candidate genomic region (24.93–25.69 Mb) on chromosome 5, potentially regulating litchi seed size. Within this region, 1600 single-nucleotide polymorphisms (SNPs) and 314 insertion/deletion mutations (InDels) exhibited significant divergences between the extreme pools. To validate these findings, we performed PCR-based screening on 87 litchi accessions. Two InDel markers demonstrated strong phenotypic associations: Chr5_25610680_InDel showed highly significant correlations with seed weight, edible rate, seed length, seed width, and seed-to-fruit weight ratio, explaining 22.60–35.54% of phenotypic variation. Meanwhile, Chr5_25585686_InDel was significantly associated with seed weight and edible rate, accounting for 18.66% and 18.94% of the phenotypic variation, respectively. These findings provide valuable molecular markers for marker-assisted breeding of litchi seed size, offering a promising avenue to advance precision breeding in this economically important crop. Full article
(This article belongs to the Special Issue Latest Advances and Prospects in Germplasm of Tropical Fruits)
Show Figures

Figure 1

17 pages, 826 KB  
Review
Mechanisms and Impact of Acacia mearnsii Invasion
by Hisashi Kato-Noguchi and Midori Kato
Diversity 2025, 17(8), 553; https://doi.org/10.3390/d17080553 - 4 Aug 2025
Viewed by 1035
Abstract
Acacia mearnsii De Wild. has been introduced to over 150 countries for its economic value. However, it easily escapes from plantations and establishes monospecific stands across plains, hills, valleys, and riparian habitats, including protected areas such as national parks and forest reserves. Due [...] Read more.
Acacia mearnsii De Wild. has been introduced to over 150 countries for its economic value. However, it easily escapes from plantations and establishes monospecific stands across plains, hills, valleys, and riparian habitats, including protected areas such as national parks and forest reserves. Due to its negative ecological impact, A. mearnsii has been listed among the world’s 100 worst invasive alien species. This species exhibits rapid stem growth in its sapling stage and reaches reproductive maturity early. It produces a large quantity of long-lived seeds, establishing a substantial seed bank. A. mearnsii can grow in different environmental conditions and tolerates various adverse conditions, such as low temperatures and drought. Its invasive populations are unlikely to be seriously damaged by herbivores and pathogens. Additionally, A. mearnsii exhibits allelopathic activity, though its ecological significance remains unclear. These characteristics of A. mearnsii may contribute to its expansion in introduced ranges. The presence of A. mearnsii affects abiotic processes in ecosystems by reducing water availability, increasing the risk of soil erosion and flooding, altering soil chemical composition, and obstructing solar light irradiation. The invasion negatively affects biotic processes as well, reducing the diversity and abundance of native plants and arthropods, including protective species. Eradicating invasive populations of A. mearnsii requires an integrated, long-term management approach based on an understanding of its invasive mechanisms. Early detection of invasive populations and the promotion of public awareness about their impact are also important. More attention must be given to its invasive traits because it easily escapes from cultivation. Full article
(This article belongs to the Special Issue Plant Adaptation and Survival Under Global Environmental Change)
Show Figures

Graphical abstract

15 pages, 1081 KB  
Article
More Similar than Different: The Cold Resistance and Yield Responses of the Yangmai23 Wheat Variety to Different Sowing Dates and Early Spring Low Temperatures
by Yangyang Zhu, Yun Gao, Yueping Zhou, Zeyang Zhang, Jingxian Wu, Siqi Yang, Min Zhu, Jinfeng Ding, Xinkai Zhu, Chunyan Li and Wenshan Guo
Agronomy 2025, 15(8), 1773; https://doi.org/10.3390/agronomy15081773 - 23 Jul 2025
Viewed by 421
Abstract
Late sowing and spring low temperatures have a great impact on the growth and maturation of wheat in the rice–wheat rotation region. In order to analyze the impacts of cold stress in February in early spring on yield formation and agronomic traits of [...] Read more.
Late sowing and spring low temperatures have a great impact on the growth and maturation of wheat in the rice–wheat rotation region. In order to analyze the impacts of cold stress in February in early spring on yield formation and agronomic traits of wheat on different sowing dates, a controlled pot experiment was performed using the widely promoted and applied spring-type wheat variety Yangmai23 (YM23). The yield of wheat treated with late sowing date II (SDII, 21 November) and overly late sowing date III (SDIII, 9 December) were both lower than that of wheat sown on the suitable date I (SDI, 1 November). The yield of late-sown wheat decreased by 40.82% for SDII and by 66.77% for SDIII, compared with SDI, and these three treatments of wheat all grew under the natural conditions as the control treatments. The plant height, stem diameter of the internode below the ear, flag leaf length and area, and total awn length of the spike, as well as the spike length of late-sown wheat, were all significantly lower than those of wheat in SDI treatment. Early spring low temperatures exacerbated the decline in yield of wheat sown on different dates, to some extent. Despite showing higher net photosynthetic rate, stomatal conductance, and transpiration rate in flag leaves of the SDIII treatment under low-temperature stress than those of the other treatments at anthesis, overly late sowing led to minimal leaf area, shorter plant height, fewer tillers, and smaller ears, ultimately resulting in the lowest yield. Our study suggested that additional focus and some regulation techniques are needed to be studied further to mitigate the combined negative impacts of late sowing and low-temperature stress in early spring on wheat production. Full article
(This article belongs to the Collection Crop Physiology and Stress)
Show Figures

Figure 1

16 pages, 2035 KB  
Article
Optimizing Sunflower Cultivar Selection Under Climate Variability: Evidence from Coupled Meteorological-Growth Modeling in Arid Northwest China
by Jianguo Mu, Jianqin Wang, Ruiying Ma, Zengshuai Lv, Hongye Dong, Yantao Liu, Wei Duan, Shengli Liu, Peng Wang and Xuekun Zhang
Agronomy 2025, 15(7), 1724; https://doi.org/10.3390/agronomy15071724 - 17 Jul 2025
Viewed by 620
Abstract
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield [...] Read more.
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield and quality traits among sunflower cultivars with varying maturation periods. The main findings were: (1) Early-maturing cultivar B1 (RH3146) exhibited superior adaptation at low-temperature station A1, achieving 12% higher plant height and an 18% yield increase compared to regional averages. (2) At thermally variable station A2 (daily average temperature fluctuation ± 8 °C, precipitation CV = 25%), the late-maturing cultivar B3 showed enhanced stress resilience, achieving 35.6% grain crude fat content (15% greater than mid-maturing B2) along with 8–10% increases in seed setting rate and 100-grain weight. These improvements were potentially due to optimized photoassimilated allocation and activation of stress-responsive genes. (3) At station A3, characterized by high thermal-humidity variability (CV > 15%) during grain filling, B3 experienced a 15-day delay in maturation and a 3% reduction in ripeness. Two principal mitigation strategies are recommended: preferential selection of early-to-mid maturing cultivars in regions with thermal-humidity CV > 10%, improving yield stability by 23%, and optimization of sowing schedules based on accumulated temperature-precipitation modeling, reducing meteorological losses by 15%. These evidence-based recommendations provide critical insights for climate-resilient cultivar selection and precision agricultural management in meteorologically vulnerable agroecosystems. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

13 pages, 1149 KB  
Article
Transcriptome Profiling Reveals Differences Between Rainbow Trout Eggs with High and Low Potential for Gynogenesis
by Konrad Ocalewicz, Artur Gurgul, Stefan Dobosz, Igor Jasielczuk, Tomasz Szmatoła, Ewelina Semik-Gurgul, Mirosław Kucharski and Rafał Rożyński
Genes 2025, 16(7), 803; https://doi.org/10.3390/genes16070803 - 8 Jul 2025
Viewed by 684
Abstract
Background/Objectives: Fish eggs activated with UV-irradiated spermatozoa and exposed to the High Hydrostatic Pressure (HHP) shock to inhibit first cell cleavage develop as gynogenetic Doubled Haploids (DHs) that are fully homozygous individuals. Due to the expression of the recessive genes and side effects [...] Read more.
Background/Objectives: Fish eggs activated with UV-irradiated spermatozoa and exposed to the High Hydrostatic Pressure (HHP) shock to inhibit first cell cleavage develop as gynogenetic Doubled Haploids (DHs) that are fully homozygous individuals. Due to the expression of the recessive genes and side effects of the gamete treatment, survival of fish DHs is rather low, and most of the mitotic gynogenotes die before hatching. Nevertheless, as maternal gene products provided during oogenesis control the initial steps of embryonic development in fish, a maternal effect on the survival of gynogenotes needs to be also considered to affect efficiency of gynogenesis. Thus, the objective of this research was to apply an RNA-seq approach to discriminate transcriptional differences between rainbow trout (Oncorhynchus mykiss) eggs with varied abilities to develop after gynogenetic activation. Methods: Gynogenetic development of rainbow trout was induced in eggs originated from eight females. Maternal RNA was isolated and sequenced using RNA-Seq approach. Survival rates of gynogenotes and transcriptome profiles of eggs from different females were compared. Results: RNA-seq analysis revealed substantial transcriptional differences between eggs originated from different females, and a significant correlation between the ability of the eggs for gynogenesis and their transcriptomic profiles was observed. Genes whose expression was altered in eggs with the increased survival of DHs were mostly associated (GO BP) with the following biological processes: development, cell differentiation, cell migration and protein transport. Some of the genes are involved in the oocyte maturation (RASL11b), apoptosis (CASPASE 6, PGAM5) and early embryogenesis, including maternal to zygotic transition (GATA2). Conclusions: Inter-individual variation of the transcription of maternal genes correlated with the competence of eggs for gynogenesis suggest that at least part of the mortality of the rainbow trout DHs appear before activation of zygotic genome and expression of the lethal recessive traits. Full article
Show Figures

Figure 1

24 pages, 5910 KB  
Article
Transcriptome Profiling of Spike Development Reveals Key Genes and Pathways Associated with Early Heading in Wheat–Psathyrstachys huashanica 7Ns Chromosome Addition Line
by Binwen Tan, Yangqiu Xie, Hang Peng, Miaomiao Wang, Wei Zhu, Lili Xu, Yiran Cheng, Yi Wang, Jian Zeng, Xing Fan, Lina Sha, Haiqin Zhang, Peng Qin, Yonghong Zhou, Dandan Wu, Yinghui Li and Houyang Kang
Plants 2025, 14(13), 2077; https://doi.org/10.3390/plants14132077 - 7 Jul 2025
Cited by 1 | Viewed by 683
Abstract
Developing early-heading wheat cultivars is an important breeding strategy to utilize light and heat resources, facilitate multiple-cropping systems, and enhance annual grain yield. Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) possesses numerous agronomically beneficial traits for wheat improvement, such [...] Read more.
Developing early-heading wheat cultivars is an important breeding strategy to utilize light and heat resources, facilitate multiple-cropping systems, and enhance annual grain yield. Psathyrostachys huashanica Keng (2n = 2x = 14, NsNs) possesses numerous agronomically beneficial traits for wheat improvement, such as early maturity and resistance to biotic and abiotic stresses. In this study, we found that a cytogenetically stable wheat–P. huashanica 7Ns disomic addition line showed (9–11 days) earlier heading and (8–10 days) earlier maturation than its wheat parents. Morphological observations of spike differentiation revealed that the 7Ns disomic addition line developed distinctly faster than its wheat parents from the double ridge stage. To explore the potential molecular mechanisms underlying the early heading, we performed transcriptome analysis at four different developmental stages of the 7Ns disomic addition line and its wheat parents. A total of 10,043 differentially expressed genes (DEGs) were identified during spike development. Gene Ontology (GO) enrichment analysis showed that these DEGs were linked to the carbohydrate metabolic process, photosynthesis, response to abscisic acid, and the ethylene-activated signaling pathway. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these DEGs were involved in plant hormone signal transduction (ARF, AUX/IAA, SAUR, DELLA, BRI1, and ETR), starch and sucrose metabolism (SUS1 and TPP), photosynthetic antenna proteins (Lhc), and circadian rhythm (PRR37, FT, Hd3a, COL, and CDF) pathways. In addition, several DEGs annotated as transcription factors (TFs), such as bHLH, bZIP, MADS-box, MYB, NAC, SBP, WRKY, and NF-Y, may be related to flowering time. Our findings reveal spike development-specific gene expression and critical regulatory pathways associated with early heading in the wheat–P. huashanica 7Ns addition line, and provide a new genetic resource for further dissection of the molecular mechanisms underlying the heading date in wheat. Full article
(This article belongs to the Special Issue Biosystematics and Breeding Application in Triticeae Species)
Show Figures

Graphical abstract

20 pages, 3504 KB  
Article
Integrating Multi-Trait Selection Indices for Climate-Resilient Lentils: A Three-Year Evaluation of Earliness and Yield Stability Under Semi-Arid Conditions
by Mustafa Ceritoglu, Fatih Çığ, Murat Erman and Figen Ceritoglu
Agronomy 2025, 15(7), 1554; https://doi.org/10.3390/agronomy15071554 - 26 Jun 2025
Cited by 1 | Viewed by 660
Abstract
This research assessed 42 lentil genotypes developed by ICARDA along with a local variety over three growing seasons (2019–2022) in Southeastern Türkiye. Phenological, morphological, and yield attributes were determined to observe earliness, yield stability, and adaptation properties. Genotype G3771 showed outstanding performance in [...] Read more.
This research assessed 42 lentil genotypes developed by ICARDA along with a local variety over three growing seasons (2019–2022) in Southeastern Türkiye. Phenological, morphological, and yield attributes were determined to observe earliness, yield stability, and adaptation properties. Genotype G3771 showed outstanding performance in grain yield (2579 kg ha−1), 1000-seed weight (54.9 g), and harvest index (37.3%), although it had lower stability under more severe drought conditions. Early-maturing genotypes like G3744, G3715, and G3716 consistently flowered and matured sooner, making them better suited for escaping terminal drought stress areas. The highest yields were recorded during the 2019–2020 season, which experienced favorable rainfall and soil nutrient levels, while the lowest yields occurred due to changing climatic conditions in the 2020–2021 season, highlighting the crop’s sensitivity to climate. Principal component analysis, hierarchical clustering, the Modified Multi-Trait Stability Index (MTSI), and the Multi-Trait Genotype-Ideotype Distance Index (MGIDI) aided in effective genotype classification. Although G3771 was the most productive, genotypes G3687, G3715, and G3689 proved to be the most stable and early maturing based on MGIDI scores. Strong relationships between grain yield, biological yield, and seed size identified these as key selection criteria. This study underscores the value of multi-trait selection tools like MGIDI and MTSI in consistently pinpointing lentil genotypes that balance earliness, productivity, and adaptability, laying a strong foundation for developing climate-resilient varieties suited to semi-arid climates. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

16 pages, 7142 KB  
Article
Unveiling the Genome of the Diploid Wild Sugarcane Relative Narenga porphyrocoma (Hance) Bor
by Haibi Li, Yiyun Gui, Jinju Wei, Kai Zhu, Hui Zhou, Ronghua Zhang, Dongliang Huang, Sijie Huang, Shuangcai Li, Jisen Zhang, Yangrui Li and Xihui Liu
Int. J. Mol. Sci. 2025, 26(13), 6124; https://doi.org/10.3390/ijms26136124 - 26 Jun 2025
Viewed by 596
Abstract
Narenga porphyrocoma (Hance) Bor is a close relative of sugarcane, with traits such as drought resistance, robustness, early maturity, and disease resistance. In this study, we report the first genome assembly of N. porphyrocoma (Hance) Bor GXN1, a diploid species with a chromosomal [...] Read more.
Narenga porphyrocoma (Hance) Bor is a close relative of sugarcane, with traits such as drought resistance, robustness, early maturity, and disease resistance. In this study, we report the first genome assembly of N. porphyrocoma (Hance) Bor GXN1, a diploid species with a chromosomal count of 2n = 30. We assembled the genome into 15 pseudochromosomes with an N50 of 128.80 Mp, achieving a high level of completeness (99.0%) using benchmarking universal single-copy orthologs (BUSCO) assessment. The genome was approximately 1.8 Gb. Our analysis identified a substantial proportion of repetitive sequences, primarily long terminal repeats (LTRs), contributing to 69.12% of the genome. In total, 70,680 protein-coding genes were predicted and annotated, focusing on genes related to drought resistance. Transcriptome analysis under drought stress revealed the key gene families involved in plant physiological rhythms and hormone signal transduction, including aquaporins, late embryogenesis abundant proteins, and heat shock proteins. This research reveals the genome of the diploid wild sugarcane relative N. porphyrocoma (Hance) Bor, encouraging future studies on gene function, genome evolution, and genetic improvement of sugarcane. Full article
(This article belongs to the Special Issue Crop Stress Biology and Molecular Breeding: 5th Edition)
Show Figures

Figure 1

24 pages, 14787 KB  
Article
Metabolomic and Transcriptomic Insights into Quality Formation of Orange-Red Carrot (Daucus carota L.) During Maturation
by Chongzhen Gao, Hongtao Zhang, Jiayu Wang, Ziqing Guo, Ruixue Shen, Weilong Zhu, Tianyue Song and Hongxia Song
Horticulturae 2025, 11(5), 542; https://doi.org/10.3390/horticulturae11050542 - 17 May 2025
Viewed by 925
Abstract
Carrots, a multi-nutrient dietary source rich in natural bioactive compounds, have gained broad recognition due to their nutritional properties and potential health-promoting effects. Studying metabolic changes during carrot maturation can provide deeper insights into the formation of their nutritional value and quality. Using [...] Read more.
Carrots, a multi-nutrient dietary source rich in natural bioactive compounds, have gained broad recognition due to their nutritional properties and potential health-promoting effects. Studying metabolic changes during carrot maturation can provide deeper insights into the formation of their nutritional value and quality. Using Liquid Chromatograph Mass Spectrometer (LC-MS) metabolomics, we systematically profiled metabolic dynamics during orange-red carrot maturation, with large-scale compound detection, structural identification, and absolute quantification. The results showed that a total of 607 metabolites were detected. Further analysis of three distinct stages of taproot swelling and maturation revealed the following: Most sugars in primary metabolites exhibited an increasing accumulation trend across the three stages. Organic acids (including TCA cycle intermediates) displayed a pronounced decreasing accumulation pattern. Transcriptomic analysis revealed significantly upregulated expression of differentially expressed genes (DEGs) involved in the TCA cycle from the fleshy root formation stage (30 days after sowing, DAS), expansion stage (50 DAS), and maturation stage (115 DAS) in carrots. Phytochemical profiling identified 206 secondary metabolites (92 phenolic acids and 114 non-phenolic compounds). Notably, many phenolic acids maintained relatively high levels during early carrot development but exhibited a rapid decline in subsequent stages. The extensive downregulation of genes involved in phenolic acid biosynthesis pathways likely drives the rapid decline in phenolic acid content during early developmental stages. Correlation analysis further revealed significant crosstalk between primary and secondary metabolites during carrot maturation, with a pronounced negative correlation between sugars and secondary metabolites. These data provide a global perspective of carrot metabolomics and a comprehensive analysis of metabolic variations during development, establishing a molecular and metabolic basis for a deeper and more systematic understanding of carrot quality traits. Full article
Show Figures

Figure 1

26 pages, 1838 KB  
Article
Impact of Maternal Parity and Direct-Fed Microbial Supplementation on Reproductive Performance, Digestibility, and Milk Quality from Early Gestation to Lactation in Sows
by Panumas Kongpanna, John A. Doerr, Uttra Jamikorn and Dachrit Nilubol
Animals 2025, 15(9), 1191; https://doi.org/10.3390/ani15091191 - 22 Apr 2025
Cited by 1 | Viewed by 933
Abstract
The experiment was conducted to determine the interaction effects of parity and DFM supplementation from early gestation (G 21) to lactation (L 21) on reproductive performance, apparent total tract digestibility (ATTD), colostrum IgA and IgG, and mature milk composition. Three hundred pregnant sows [...] Read more.
The experiment was conducted to determine the interaction effects of parity and DFM supplementation from early gestation (G 21) to lactation (L 21) on reproductive performance, apparent total tract digestibility (ATTD), colostrum IgA and IgG, and mature milk composition. Three hundred pregnant sows were blocked by parity (2, 3, 4, 5, and 6–9) and randomly assigned to two experimental diets in a randomized complete block design, with a control (CON, n = 150) group and direct-fed microbial (DFM, n = 150) group. The DFM contained 5 × 107 cfu/g of Bacillus subtilis and 2 × 106 cfu/g of Lactobacillus spp. Reproductive traits recorded included total born (TB), born alive (BA), litter weight (LW), piglets born dead (PBD) weaning weight (WW), number of weaning pig (NWP), and PWM. Two separate 14 d ATTD trials were conducted on G86 to G100 and L7 to L21. Colostrum samples were collected at 0, 3, 6, 12, and 24 h post-partum and mature milks were collected at L7 and L14 for Ig and composition analysis, respectively. Total Ig concentrations were measured by an ELISA. The interaction between diet and parity was found on LW, colostrum IgG, milk lactose, and protein (p < 0.05). Regardless of parity, sows fed DFM had greater reproductive performance with higher BA, LS, LW, and lower in PWM (p < 0.05). DFM also improved the ATTD of organic matter (OM), crude protein (CP), and ether extracts (EE) (p < 0.05) at G100 and gross energy (GE), CP, and EE (p < 0.05) at L21. Entire IgG and 3 h post-partum IgA in colostrum were higher in DFM than in the CON diet (p < 0.05). Parity effects were seen on NWP, LW, CP, and EE, colostrum Ig at 12 and 24 post-partum, milk protein, and lactose at L7 (p < 0.05). Moreover, the parity showed linear effect on TB, BA, LW, litter size (LS), WW, total PWM, the ATTD of OM and EE, colostrum IgG at 12 h and IgA at 12 and 24 h post-partum, milk fat at L7 and L21, and milk lactose at L14 (p < 0.05). Stepwise prediction for average colostrum IgG (mg/mL) by using nutrient digestibility = −112.97 + 0.706GE(%) + 0.518CP(%) + 0.267EE(%) (n = 267, R2 = 0.38, RSD = 6.7, p < 0.001). In summary, supplementing dietary DFM during early gestation through weaning had positive effects on production, the lifetime of sows, and better nutrient utilization, resulting in better milk quality and better piglet growth. Full article
(This article belongs to the Special Issue Maternal Nutrition and Neonatal Development of Pigs)
Show Figures

Figure 1

40 pages, 9093 KB  
Review
A Review on Bioactive Compounds and Pharmacological Activities of Citrus unshiu
by Naser A. Alsharairi
Appl. Sci. 2025, 15(8), 4475; https://doi.org/10.3390/app15084475 - 18 Apr 2025
Cited by 1 | Viewed by 1933
Abstract
Citrus constitutes a group of fruit crops that include lemons, limes, mandarins, oranges, and grapefruits. These citrus have a variety of essential nutrients and bioactive compounds that exert several pharmacological properties, including antioxidant, anti-inflammatory, anticancer, anti-diabetic, and anti-obesity. The Satsuma mandarin, also known [...] Read more.
Citrus constitutes a group of fruit crops that include lemons, limes, mandarins, oranges, and grapefruits. These citrus have a variety of essential nutrients and bioactive compounds that exert several pharmacological properties, including antioxidant, anti-inflammatory, anticancer, anti-diabetic, and anti-obesity. The Satsuma mandarin, also known as Citrus unshiu Marc. (C. unshiu), is one of the most popular citrus types. This is mostly due to its seedless nature, early maturity, and highly valued commercial trait in the citrus sector. The pharmacological properties and phytochemicals of the two main citrus fruits—sweet oranges (C. sinensis) and lemons (C. limon)—are given more attention. Satsuma mandarin has not, however, had its therapeutic properties thoroughly examined and explored. Therefore, the purpose of this review is to use multiple databases to compile the information currently available on the pharmacological properties and bioactive compounds of C. unshiu. The findings indicate that C. unshiu bioactives (hesperidin; hesperetin; nobiletin; narirutin; naringin; naringenin; tangeretin; 3,5,6,7,8,3′,4′-heptamethoxyflavone; neoponcirin; synephrine; quercetin; quercetagetin; rutin; β-cryptoxanthin; and pectin) exert in vitro/vivo anticancer, anti-obesity, anti-diabetic, cardioprotective, gastroprotective, neuroprotective, hepatoprotective, skin-protective, nasal airway-protective, lipid-lowering, antioxidant, anti-inflammatory, and anti-microbial activities. Future experimental investigations into the potential health benefits of C. unshiu could contribute to a better understanding of the mechanisms behind its therapeutic activities. Clinical studies are necessary to assess the therapeutic properties of C. unshiu bioactives. The therapeutic potential of C. unshiu bioactives should be determined through preclinical in vivo animal studies before they can be applied in clinical settings. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

Back to TopTop