Morpho-Agronomic Characterization of an Unexploited Germplasm Collection of Cauliflower (Brassica oleracea var. botrytis (L.)) from Spain
Abstract
1. Introduction
2. Results
2.1. Seed Viability and Adaptation to the Cultivation Conditions
2.2. Phenotypic Diversity in the COMAV Genebank Collection
2.2.1. Quantitative Descriptors
2.2.2. Qualitative Descriptors
2.3. Associations Among Morpho-Agronomic Traits
2.4. Principal-Component and Multiple Correspondence Analyses
2.5. Multidimensional Analysis
2.5.1. Variable Contribution
2.5.2. Cluster Analysis
3. Discussion
3.1. Germination and Growth Performance
3.2. Phenotypic Diversity and Multidimensional Analysis
3.3. Correlation Amongst Descriptors
4. Materials and Methods
4.1. Plant Material
4.2. Location and Conditions of Cultivation
4.3. Morphological Variables
4.4. Data Analysis
4.4.1. Association Among Traits
4.4.2. Multivariate Analyses by Data Type
- (i)
- PCA was applied to the quantitative traits after centering and scaling to unit variance (z-scores). We computed the proportion of variance explained and the trait loadings on the leading components.
- (ii)
- MCA was applied to the qualitative traits treated as factors (ordinal scales kept as ordered factors without numeric recoding). We computed the contributions of each category to the leading dimensions.
- (iii)
- FAMD was used as an integrative analysis of the mixed dataset (quantitative + qualitative) to visualize joint structure. No numeric recoding was required because FAMD natively handles mixed tables. Global trait contributions were computed as variance-weighted averages over the first ten dimensions and then normalized to sum to 100% across variables.
4.4.3. Clustering
4.4.4. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
COMAV | Instituto Universitario de Conservación y Mejora de la Agro-diversidad Valenciana |
CV | Coefficient of Variation |
F1 | First filial-generation hybrid |
FAMD | Factorial Analysis of Mixed Data |
GVA | Generalitat Valenciana |
IPGRI | International Plant Genetic Resources Institute |
IVIA | Instituto Valenciano de Investigaciones Agrarias |
MCA | Multiple Correspondence Analysis |
PCA | Principal Component Analysis |
R | R Statistical Computing Environment |
SD | Standard Deviation |
SE | Standard Error |
UPGMA | Unweighted Pair Group Method with Arithmetic Mean |
UPV | Universitat Politècnica de València |
Appendix A
Exploratory Dendrogram
References
- Maggioni, L.; von Bothmer, R.; Poulsen, G.; Lipman, E. Domestication, Diversity and Use of Brassica oleracea L., Based on Ancient Greek and Latin Texts. Genet. Resour. Crop Evol. 2018, 65, 137–159. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/ (accessed on 20 May 2025).
- Ministerio de Agricultura Pesca y Alimentación. Anuario de Estadística 2023; Ministerio de Agricultura Pesca y Alimentación: Madrid, Spain, 2023.
- Maggioni, L.; Ban, S.G.; Jani, S.; Jasprica, N.; Treccarichi, S.; Išić, N.; Branca, F. Collecting Mediterranean Wild Species of the Brassica Oleracea Group (Brassica sect. Brassica). Genet. Resour. 2024, 5, 1–16. [Google Scholar] [CrossRef]
- Sciortino, M.; Iapichino, G. Caulifl Ower Hybrids for Spring Production in Southern Mediterranean Area. J. Appl. Hortic. 2009, 11, 73–77. [Google Scholar] [CrossRef]
- Bozkurt, S.; Uygur, V.; Agca, N.; Yalcin, M. Yield Responses of Cauliflower (Brassica oleracea L. var. botrytis) to Different Water and Nitrogen Levels in a Mediterranean Coastal Area. Acta Agric. Scand. B Soil Plant Sci. 2011, 61, 183–194. [Google Scholar] [CrossRef]
- Montemurro, F.; Diacono, M.; Ciaccia, C.; Campanelli, G.; Tittarelli, F.; Leteo, F.; Canali, S. Effectiveness of Living Mulch Strategies for Winter Organic Cauliflower (Brassica oleracea L. var. botrytis) Production in Central and Southern Italy. Renew. Agric. Food Syst. 2017, 32, 263–272. [Google Scholar] [CrossRef]
- Witzel, K.; Kurina, A.B.; Artemyeva, A.M. Opening the Treasure Chest: The Current Status of Research on Brassica Oleracea and B. Rapa Vegetables from Ex Situ Germplasm Collections. Front. Plant Sci. 2021, 12, 643047. [Google Scholar] [CrossRef] [PubMed]
- Manzanares-Dauleux, M.J.; Divaret, I.; Baron, F.; Thomas, G. Evaluation of French Brassica oleracea landraces for resistance to Plasmodiophora brassicae. Euphytica 2000, 113, 211–218. [Google Scholar] [CrossRef]
- INRAE—BrasExplor BrasExplor: A Hub for Brassica Genetic Resources. Available online: https://brasexplor.hub.inrae.fr/ (accessed on 19 July 2024).
- Bauer, N.; Tkalec, M.; Major, N.; Talanga Vasari, A.; Tokić, M.; Vitko, S.; Ban, D.; Ban, S.G.; Salopek-Sondi, B. Mechanisms of Kale (Brassica Oleracea Var. Acephala) Tolerance to Individual and Combined Stresses of Drought and Elevated Temperature. Int. J. Mol. Sci. 2022, 23, 11494. [Google Scholar] [CrossRef]
- Gray, A.R. Taxonomy and Evolution of Broccoli (Brassica oleracea var. italica). Econ. Bot. 1982, 36, 397–410. [Google Scholar] [CrossRef]
- Ciancaleoni, S.; Chiarenza, G.L.; Raggi, L.; Branca, F.; Negri, V. Diversity Characterisation of Broccoli (Brassica oleracea L. var. italica Plenck) Landraces for Their on-Farm (in Situ) Safeguard and Use in Breeding Programs. Genet. Resour. Crop Evol. 2014, 61, 451–464. [Google Scholar] [CrossRef]
- Cuevas, H.E.; Rosa-Valentin, G.; Hayes, C.M.; Rooney, W.L.; Hoffmann, L. Genomic Characterization of a Core Set of the USDA-NPGS Ethiopian Sorghum Germplasm Collection: Implications for Germplasm Conservation, Evaluation, and Utilization in Crop Improvement. BMC Genom. 2017, 18, 108. [Google Scholar] [CrossRef]
- Migicovsky, Z.; Warschefsky, E.; Klein, L.L.; Miller, A.J. Using Living Germplasm Collections to Characterize, Improve, and Conserve Woody Perennials. Crop Sci. 2019, 59, 2365–2380. [Google Scholar] [CrossRef]
- Subramanian, P.; Kim, S.-H.; Hahn, B.-S. Brassica biodiversity conservation: Prevailing constraints and future avenues for sustainable distribution of plant genetic resources. Front. Plant Sci. 2023, 14, 1220134. [Google Scholar] [CrossRef]
- Lei, J.; Chen, G.; Chen, C.; Cao, B. Germplasm Diversity of Chinese Kale in China. Hortic. Plant J. 2017, 3, 101–104. [Google Scholar] [CrossRef]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives. Genet. Res. Int. 2015, 2015, 431487. [Google Scholar] [CrossRef]
- Swarup, S.; Cargill, E.J.; Crosby, K.; Flagel, L.; Kniskern, J.; Glenn, K.C. Genetic Diversity Is Indispensable for Plant Breeding to Improve Crops. Crop Sci. 2021, 61, 839–852. [Google Scholar] [CrossRef]
- Razzaq, A.; Kaur, P.; Akhter, N.; Wani, S.H.; Saleem, F. Next-Generation Breeding Strategies for Climate-Ready Crops. Front. Plant Sci. 2021, 12, 620420. [Google Scholar] [CrossRef] [PubMed]
- Hagos Abraha, R.; Shaibu, A.S.; Liang, J.; Wu, J.; Lin, R.; Wang, X. Characterization and Evaluation of the Morphological Attributes of Ethiopian Mustard (Brassica carinata A. Braun) Landraces. Euphytica 2024, 220, 30. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Mohammad, F.; Khan, M.N. Morphological and Physio-Biochemical Characterization of Brassica juncea L. Czern. & Coss. Genotypes under Salt Stress. J. Plant Interact. 2009, 4, 67–80. [Google Scholar] [CrossRef]
- Ali, F.; Ali, F.; Bibi, A.; Dessoky, E.S.; Almowallad, S.; AlShaqhaa, M.A.; AL-Balawi, S.M.; Darwish, D.B.E.; Allohibi, A.; Omara, M.Y.; et al. Morphological, Biochemical, and Molecular Characterization of Exotic Brassica Germplasm. ACS Omega 2023, 8, 44773–44783. [Google Scholar] [CrossRef]
- Yousef, E.A.A.; Müller, T.; Börner, A.; Schmid, K.J. Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks. PLoS ONE 2018, 13, e0192062. [Google Scholar] [CrossRef]
- Kundu, P.; Murkhejee, A.; Adhikary, A.; Ghosal, A.; Sahu, N.C. Morpho-chemical characterization of broccoli (Brassica oleracea var. italica). Ann. Plant Soil Res. 2022, 24, 110–115. [Google Scholar] [CrossRef]
- Singh, S.; Bhatia, R.; Kumar, R.; Das, A.; Ghemeray, H.; Behera, T.K.; Dey, S.S. Characterization and genetic analysis of OguCMS and doubled haploid based large genetic arsenal of indian cauliflowers (Brassica oleracea var. botrytis L.) for morphological, reproductive and seed yield traits revealed their breeding potential. Genet. Resour. Crop Evol. 2021, 68, 1603–1623. [Google Scholar] [CrossRef]
- Lotti, C.; Iovieno, P.; Centomani, I.; Marcotrigiano, A.R.; Fanelli, V.; Mimiola, G.; Summo, C.; Pavan, S.; Ricciardi, L. Genetic, Bio-Agronomic, and Nutritional Characterization of Kale (Brassica oleracea L. var. acephala) Diversity in Apulia, Southern Italy. Diversity 2018, 10, 25. [Google Scholar] [CrossRef]
- Díez, M.J.; De la Rosa, L.; Martín, I.; Guasch, L.; Cartea, M.E.; Mallor, C.; Casals, J.; Simó, J.; Rivera, A.; Anastasio, G.; et al. Plant Genebanks: Present Situation and Proposals for Their Improvement. The Case of the Spanish Network. Front. Plant Sci. 2018, 871, 1794. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.N.; Norton, S.L. Genebank Phenomics: A Strategic Approach to Enhance Value and Utilization of Crop Germplasm. Plants 2020, 9, 817. [Google Scholar] [CrossRef] [PubMed]
- El Bakkali, A.; Essalouh, L.; Tollon, C.; Rivallan, R.; Mournet, P.; Moukhli, A.; Zaher, H.; Mekkaoui, A.; Hadidou, A.; Sikaoui, L.; et al. Characterization of Worldwide Olive Germplasm Banks of Marrakech (Morocco) and Córdoba (Spain): Towards Management and Use of Olive Germplasm in Breeding Programs. PLoS ONE 2019, 14, e0223716. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, G.L.; de Souza, A.P.; de Oliveira, F.A.; Zucchi, M.I.; de Souza, L.M.; Moura, M.F. Genetic Structure and Molecular Diversity of Brazilian Grapevine Germplasm: Management and Use in Breeding Programs. PLoS ONE 2020, 15, e0240665. [Google Scholar] [CrossRef] [PubMed]
- Jacques, A.; Duclos, D.; Danchin-Burge, C. Assessing the Potential of Germplasm Collections for the Management of Genetic Diversity: The Case of the French National Cryobank. Peer Community J. 2024, 4, e13. [Google Scholar] [CrossRef]
- Centro Nacional de Recursos Fitogenéticos Conjunto de Accesiones de Coliflor. Available online: https://www.inia.es/unidades/Institutos%20y%20Centros/CRF/Paginas/Home.aspx (accessed on 14 October 2024).
- Fu, Y.B. Will a Plant Germplasm Accession Conserved in a Genebank Change Genetically over Time? Front. Plant Sci. 2024, 15, 1437541. [Google Scholar] [CrossRef]
- Guzzon, F.; Gianella, M.; Velazquez Juarez, J.A.; Sanchez Cano, C.; Costich, D.E. Seed Longevity of Maize Conserved under Germplasm Bank Conditions for up to 60 Years. Ann. Bot. 2021, 127, 775–785. [Google Scholar] [CrossRef]
- Van Treuren, R.; Bas, N.; Kodde, J.; Groot, S.P.C.; Kik, C. Rapid Loss of Seed Viability in Ex Situ Conserved Wheat and Barley at 4 °C as Compared to −20 °C Storage. Conserv. Physiol. 2018, 6, coy033. [Google Scholar] [CrossRef]
- Rajjou, L.; Debeaujon, I. Seed Longevity: Survival and Maintenance of High Germination Ability of Dry Seeds. Comptes Rendus Biol. 2008, 331, 796–805. [Google Scholar] [CrossRef]
- Walters, C.; Wheeler, L.M.; Grotenhuis, J.M. Longevity of Seeds Stored in a Genebank: Species Characteristics. Seed Sci. Res. 2005, 15, 1–20. [Google Scholar] [CrossRef]
- Solberg, S.Ø.; Yndgaard, F.; Andreasen, C.; von Bothmer, R.; Loskutov, I.G.; Asdal, Å. Long-Term Storage and Longevity of Orthodox Seeds: A Systematic Review. Front. Plant Sci. 2020, 11, 1007. [Google Scholar] [CrossRef]
- Mira, S.; Estrelles, E.; González-Benito, M.E. Effect of Water Content and Temperature on Seed Longevity of Seven Brassicaceae Species after 5 Years of Storage. Plant Biol. 2015, 17, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.B.; Verma, S.S.; Tomer, U.P.S. Studies on Seed Quality Parameters in Deteriorating Seeds in Brassica (Brassica campestris); International Seed Testing Association: Zurich, Switzerland, 2003; Volume 31. [Google Scholar]
- Sinniah, U.R.; Ellis, R.H.; John, P. Irrigation and Seed Quality Development in Rapid-Cycling Brassica: Seed Germination and Longevity. Ann. Bot. 1998, 82, 309–314. [Google Scholar] [CrossRef]
- Leeks, C.R.F. Determining Seed Vigour in Selected Bras Sica Species. Master Thesis, Lincoln University, Lincoln, UK, 2006. [Google Scholar]
- Lasithiotaki, L. Organic Plant Breeding: Seeds for Agro-Biodiversity. Biodiversity 2017, 18, 196–197. [Google Scholar] [CrossRef]
- McMichael, B.L.; Burke, J.J. Soil Temperature and Root Growth. HortScience 1998, 33, 947–951. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Bassel, G.W. Seed Vigour and Crop Establishment: Extending Performance beyond Adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef]
- Islam, S.; Reza, M.N.; Ahmed, S.; Samsuzzaman; Cho, Y.J.; Noh, D.H.; Chung, S.O. Seedling Growth Stress Quantification Based on Environmental Factors Using Sensor Fusion and Image Processing. Horticulturae 2024, 10, 186. [Google Scholar] [CrossRef]
- Oyundelger, K.; Herklotz, V.; Harpke, D.; Oyuntsetseg, B.; Wesche, K.; Ritz, C.M. Contrasting Effects of Local Environment and Grazing Pressure on the Genetic Diversity and Structure of Artemisia frigida. Conserv. Genet. 2021, 22, 947–962. [Google Scholar] [CrossRef]
- FAO. Normas Para Bancos de Germoplasma de Recursos Fitogenéticos para la Alimentación y la Agricultura; FAO: Rome, Italy, 2013; ISBN 9789253078554. [Google Scholar]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- IBPGR. Descriptors for Brassica and Raphanus; International Board for Plant Genetic Resources: Rome, Italy, 1990. [Google Scholar]
- Rakshita, K.N.; Singh, S.; Verma, V.K.; Sharma, B.B.; Saini, N.; Iquebal, M.A.; Sharma, A.; Dey, S.S.; Behera, T.K. Agro-Morphological and Molecular Diversity in Different Maturity Groups of Indian Cauliflower (Brassica oleracea var. Botrytis L.). PLoS ONE 2021, 16, e0260246. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, X.; Liu, Q.; Luo, T.; Tang, Z.; Zhou, Y. The Genetic Diversity and Relationships of Cauliflower (Brassica oleracea var. botrytis) Inbred Lines Assessed by Using SSR Markers. PLoS ONE 2018, 13, e0208551. [Google Scholar] [CrossRef]
- Stansell, Z.; Björkman, T. From Landrace to Modern Hybrid Broccoli: The Genomic and Morphological Domestication Syndrome within a Diverse B. Oleracea Collection. Hortic. Res. 2020, 7, 159. [Google Scholar] [CrossRef]
- Chen, R.; Chen, K.; Yao, X.; Zhang, X.; Yang, Y.; Su, X.; Lyu, M.; Wang, Q.; Zhang, G.; Wang, M.; et al. Genomic Analyses Reveal the Stepwise Domestication and Genetic Mechanism of Curd Biogenesis in Cauliflower. Nat. Genet. 2024, 56, 1235–1244. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, W.; Li, X.; Ren, W.; Chen, L.; Han, F.; Fang, Z.; Yang, L.; Zhuang, M.; Lv, H.; et al. Map-Based Cloning and Promoter Variation Analysis of the Lobed Leaf Gene BoLMI1a in Ornamental Kale (Brassica oleracea L. var. acephala). BMC Plant Biol. 2021, 21, 456. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Zhao, Z.; Gu, H.; Sheng, X.; Yu, H.; Wang, J.; Zhao, J.; Cao, J. Genetic Diversity and Relationships among Loose-Curd Cauliflower and Related Varieties as Revealed by Microsatellite Markers. Sci. Hortic. 2014, 166, 105–110. [Google Scholar] [CrossRef]
- Aleem, S.; Tahir, M.; Sharif, I.; Aleem, M.; Najeebullah, M.; Nawaz, A.; Batool, A.; Khan, M.I.; Arshad, W. Principal Component and Cluster Analyses as Tools in the Assessment of Genetic Diversity for Late Season Cauliflower Genotypes. Pak. J. Agric. Res. 2021, 34, 176–183. [Google Scholar] [CrossRef]
- Rana, N.; Sharma, A.; Rana, R.S.; Lata, H.; Bansuli; Thakur, A.; Singh, V.; Sood, A. Morphological and Molecular Diversity in Mid-Late and Late Maturity Genotypes of Cauliflower. PLoS ONE 2023, 18, e0290495. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.L.; Alcock, T.D.; Graham, N.S.; Hayden, R.; Matterson, S.; Wilson, L.; Young, S.D.; Dupuy, L.X.; White, P.J.; Hammond, J.P.; et al. Root Morphology and Seed and Leaf Ionomic Traits in a Brassica napus L. Diversity Panel Show Wide Phenotypic Variation and Are Characteristic of Crop Habit. BMC Plant Biol. 2016, 16, 214. [Google Scholar] [CrossRef]
- Chen, B.; Xu, K.; Li, J.; Li, F.; Qiao, J.; Li, H.; Gao, G.; Yan, G.; Wu, X. Evaluation of Yield and Agronomic Traits and Their Genetic Variation in 488 Global Collections of Brassica napus L. Genet. Resour. Crop Evol. 2014, 61, 979–999. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, A.; Sharma, P.; Kumar, N. Genetic Variability and Association Studies in Mid-Late and Late Group of Cauliflower (Brassica oleracea L. var. botrytis). Indian J. Plant Genet. Resour. 2023, 36, 45–51. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, S.; Kalia, P.; Saha, P. Genetic variability and character association for yield and quality traits in early maturing indian cauliflowers. Indian J. Hort. 2011, 68, 206–211. [Google Scholar]
- Alemán-Báez, J.; Qin, J.; Cai, C.; Zou, C.; Bucher, J.; Paulo, M.J.; Voorrips, R.E.; Bonnema, G. Genetic Dissection of Morphological Variation in Rosette Leaves and Leafy Heads in Cabbage (Brassica oleracea var. capitata). Theor. Appl. Genet. 2022, 135, 3611–3628. [Google Scholar] [CrossRef]
- Lan, T.-H.; Paterson, A.H. Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea. Genetics 2000, 155, 1927–1954. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.P.; Broadley, M.R.; White, P.J.; King, G.J.; Bowen, H.C.; Hayden, R.; Meacham, M.C.; Mead, A.; Overs, T.; Spracklen, W.P.; et al. Shoot Yield Drives Phosphorus Use Efficiency in Brassica Oleracea and Correlates with Root Architecture Traits. J. Exp. Bot. 2009, 60, 1953–1968. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Q.; Sheng, X.G.; Yu, H.F.; Wang, J.S.; Shen, Y.S.; Gu, H.H. Identification of QTLs Associated with Curd Architecture in Cauliflower. BMC Plant Biol. 2020, 20, 177. [Google Scholar] [CrossRef]
- Brendolise, C.; Espley, R.V.; Lin-Wang, K.; Laing, W.; Peng, Y.; McGhie, T.; Dejnoprat, S.; Tomes, S.; Hellens, R.P.; Allan, A.C. Multiple Copies of a Simple MYB-Binding Site Confers Trans-Regulation by Specific Flavonoid-Related R2R3 MYBs in Diverse Species. Front. Plant Sci. 2017, 8, 1864. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Niu, G.-B.; Zhou, Q.; Wang, L.-J.; Bai, L.-J.; Gao, W.-Z. Transcriptomic and Metabolomic Profiling Reveal the Role of BoMYB2 in Flavor Regulation Mechanism and Coloration in the Postharvest Purple Cauliflower. Postharvest Biol. Technol. 2023, 197, 112203. [Google Scholar] [CrossRef]
- Azpeitia, E.; Tichtinsky, G.; Le Masson, M.; Serrano-Mislata, A.; Lucas, J.; Gregis, V.; Gimenez, C.; Prunet, N.; Farcot, E.; Kater, M.M.; et al. Cauliflower Fractal Forms Arise from Perturbations of Floral Gene Networks. Science 2021, 373, 192–197. [Google Scholar] [CrossRef]
- Hulbert, S.H.; Orton1, T.J. Genetic and Environmental Effects on Mean Maturity Date and Uniformity in Broccoli. J. Am. Soc. Hortic. Sci. 1984, 109, 487–490. [Google Scholar] [CrossRef]
- Takahashi, M.; Nakano, Y.; Sasaki, H. Increasing the Yield of Broccoli (Brassica oleracea L. var. italica) Cultivar ‘Yumehibiki’ during the off-Crop Season by Limiting the Number of Lateral Branches. Hortic. J. 2018, 87, 508–515. [Google Scholar] [CrossRef]
- Instituto Valenciano de Investigaciones Agrarias Riegos IVIA. Available online: http://riegos.ivia.es/calculo-de-horas-frio (accessed on 30 May 2023).
- Baixauli Soria, C.; Giner Martorell, A.; Aguilar Olivert, J.M.; Nájera Juan, I. Aspectos Clave para Diseñar un Programa de Producción en Coliflor; Cajamar Caja Rural: Almería, Spain, 2017. [Google Scholar]
- Federer, W.T. Augmented (or Hoonuiaku) Designs; Technical Report BU-74-M; Cornell University: Ithaca, NY, USA, 1956; 33p, Available online: https://ecommons.cornell.edu/items/22e171a6-71d7-422a-9de5-9d7cc372ccd0 (accessed on 15 September 2025).
- Gomes, G.P.; Baba, V.Y.; Dos Santos, O.P.; Sudré, C.P.; Bento, C.D.S.; Rodrigues, R.; Gonçalves, L.S.A. Combinations of Distance Measures and Clustering Algorithms in Pepper Germplasm Characterization. Hortic. Bras. 2019, 37, 172–179. [Google Scholar] [CrossRef]
- Wang, J.C.; Hu, J.; Guan, Y.J.; Zhu, Y.F. Effect of the Scale of Quantitative Trait Data on the Representativeness of a Cotton Germplasm Sub-Core Collection. J. Zhejiang Univ. Sci. B 2013, 14, 162–170. [Google Scholar] [CrossRef][Green Version]
- De Brito, M.V.; Silva, V.B.D.A.; Filho, C.H.A.M.; Ferreira-Gomes, R.L.; Lopes, Â.C.D.A. Univariate and Multivariate Approaches in the Characterization of Lima Bean Genotypes. Rev. Caatinga 2020, 33, 571–578. [Google Scholar] [CrossRef]
- Valcárcel, J.V.; Peiró, R.M.; Pérez-de-Castro, A.; Díez, M.J. Morphological Characterization of the Cucumber (Cucumis sativus L.) Collection of the COMAV’s Genebank. Genet. Resour. Crop Evol. 2018, 65, 1293–1306. [Google Scholar] [CrossRef]
- R Core Team R. A Language and Environment for Statistical Computing; The R Foundation: Vienna, Austria, 2021. [Google Scholar]
Descriptor | Average | SE | CV (%) | Minimum Value | Maximum Value |
---|---|---|---|---|---|
Stem length below the floral head (cm) | 4.11 | 0.35 | 72.04 | 1.43 | 14.25 |
Stem diameter (cm) | 2.14 | 0.07 | 26.95 | 1.06 | 3.62 |
Plant height (cm) | 54.23 | 1.22 | 19.13 | 32.00 | 77.60 |
Plant width (cm) | 81.78 | 1.99 | 20.66 | 40.00 | 121.20 |
Head length (cm) | 8.20 | 0.24 | 24.85 | 4.20 | 13.33 |
Head diameter (cm) | 10.91 | 0.31 | 24.26 | 5.10 | 17.30 |
Head weight (g) | 359.24 | 15.50 | 36.61 | 100.00 | 723.00 |
Leaf length (cm) | 51.68 | 1.42 | 23.26 | 26.30 | 82.10 |
Leaf width (cm) | 22.36 | 0.87 | 33.02 | 10.50 | 49.20 |
Number of leaves and/or scars | 20.01 | 0.38 | 16.12 | 14 | 26 |
Petiole length (cm) | 1.23 | 0.07 | 49.45 | 1.00 | 3.20 |
Petiole width (mm) | 2.76 | 0.11 | 33.44 | 0.94 | 4.80 |
Petiole thickness (mm) | 8.10 | 0.26 | 27.68 | 3.21 | 13.70 |
Head stem length (cm) | 5.87 | 0.17 | 24.79 | 1.20 | 8.40 |
Head stem diameter (cm) | 3.24 | 0.09 | 24.00 | 1.20 | 5.20 |
Descriptor | Category | State | Relative Frequency |
---|---|---|---|
Plant structure | 1 | Erect | 68% |
2 | Semi-erect | 32% | |
3 | Oblique | 0% | |
Leaf colour | 1 | Yellow-green | 0% |
2 | Light-green | 4% | |
3 | Green | 65% | |
4 | Dark-green | 26% | |
5 | Purple-green | 4% | |
6 | Purple | 0% | |
7 | Other | 0% | |
Leaf lobing | 1 | Absent | 81% |
9 | Present | 19% | |
Leaf blistering | 0 | None | 9% |
3 | Low | 74% | |
5 | Intermediate | 12% | |
7 | High | 6% | |
Leaf shape | 1 | Orbicular | 0% |
2 | Elliptic | 55% | |
3 | Obovate | 10% | |
4 | Spathulate | 12% | |
5 | Ovate | 3% | |
6 | Lanceolate | 16% | |
7 | Oblong | 4% | |
Leaf division | 1 | Entire | 14% |
2 | Sinuate | 55% | |
3 | Lyrate | 30% | |
4 | Lacerate | 0% | |
Leaf contour | 0 | Absent | 2% |
3 | Scarce | 84% | |
5 | Intermediate | 14% | |
7 | High | 0% | |
Leaf apex shape | 2 | Acute | 9% |
4 | Intermediate | 64% | |
6 | Rounded | 2% | |
8 | Broadly rounded | 25% | |
Petiole section | 3 | Round | 23% |
5 | Semi-round | 57% | |
7 | Flat | 20% | |
Petiole colour | 1 | White | 0% |
2 | Light-green | 84% | |
3 | Green | 9% | |
4 | Purple | 7% | |
5 | Red | 0% | |
6 | Other | 0% | |
Shape of head longitudinal section | 1 | Concave | 55% |
3 | Flat | 32% | |
5 | Spheric | 14% | |
7 | Elliptic | 0% | |
Head formation habit | 0 | Nonheading | 0% |
5 | Semi-heading | 2% | |
7 | Heading | 98% | |
Head cover by outer leaves | 3 | Exposed | 57% |
5 | Intermediate | 41% | |
7 | Covered | 2% | |
Head surface colour | 1 | White | 55% |
2 | Cream | 11% | |
3 | Yellow | 2% | |
4 | Yellow-green | 26% | |
5 | Green | 2% | |
6 | Pink | 0% | |
7 | Green-red | 0% | |
8 | Purple | 4% | |
9 | Red | 0% | |
10 | Orange | 0% | |
11 | Other | 0% | |
Head solidity | 3 | Low | 3% |
5 | Intermediate | 51% | |
7 | High | 47% | |
Time between sowing and harvesting | 1 | <60 days | 0% |
2 | Between 60 days and 120 days | 12% | |
3 | >120 days | 88% | |
Head size | 1 | Big | 15% |
2 | Medium | 62% | |
3 | Small | 23% | |
Inflorescence branching pattern | 1 | Single flower raceme | 0% |
2 | Enlarged stem with terminally branched raceme | 0% | |
3 | Loosely branched terminal heads | 18% | |
4 | Terminal head with smaller heads on auxiliary shoots | 62% | |
5 | Compact head of regularly packed subheads | 18% | |
6 | Single compact head of irregularly packed subheads | 2% | |
Ratio head/plant | 3 | Small | 29% |
5 | Intermediate | 67% | |
7 | Large | 4% | |
Head stem estimation | 3 | Short | 40% |
5 | Intermediate | 51% | |
7 | Long | 9% | |
Head splitting tendency | 3 | Low | 32% |
5 | Intermediate | 68% | |
6 | High | 0% |
Trait Name (Acronym) | Contribution to Total Variance (%) |
---|---|
Head surface colour (HCOL) | 4.15 |
Leaf Shape (LSHAPE) | 4.02 |
Shape of Head Longitudinal Section (HLONSEC) | 3.05 |
Leaf Blistering (LEAFBLIST) | 2.66 |
Leaf colour (LEAFCOL) | 2.56 |
Leaf apex shape (LAPEX) | 2.28 |
Petiole Colour (PETCOL) | 2.15 |
Head/plant size ratio (RATHPLAN) | 2.08 |
Head stem estimation (STEMHEST) | 1.97 |
Leaf division (LDIV) | 1.91 |
Descriptor | Acronym | IPGRI Descriptor ID | Unit/Scores |
---|---|---|---|
Number of leaves and/or scars | LSCARS_num | 4.2.10 | Counted number of leaves and scars |
Leaf length | LLENGTH_num | 4.2.12 | Measured (in cm) largest leave including the petiole |
Leaf blade width | LWIDTH_num | 4.2.13 | Measured (in cm) the largest point of largest leave |
Leaf shape | LSHAPE | 4.2.16 | Leaf blade shape in outline, including lobes |
Leaf division | LDIV | 4.2.18 | 1. Entire 2. Sinuate 3. Lyrate 4. Lacerate |
Leaf apex shape | LAPEX | 4.2.19 | 2. Acute 4. Intermediate 6. Rounded 8. Broadly rounded |
Leaf blistering | LEAFBLIST | 4.2.21 | 0. None 3. Low 5. Intermediate 7. High |
Leaf colour | LEAFCOL | 4.2.24 | 1. Yellow-green 2. Light-green 3. Green 4. Dark-green 5. Purple-green 6. Purple 7. Other |
Petiole length | PETLENGTH_num | 4.2.28 | Measured (in cm) where blade intercepts with petiole |
Petiole width | PETWIDTH_num | 4.2.29 | Measured (in mm) in the widest point of the widest leaf, measured in midrib when plant extends to the plant axis |
Plant height | PHEIGTH_num | 4.2.3 | Measured length (in cm) to the extremity of the plant |
Petiole thickness | PETTHICK_num | 4.2.31 | Measured (in mm) in the thickest point of petiole or midrib of largest leaf |
Petiole section | PETSEC | 4.2.32 | 3. Round 5. Semi-round 7. Flat |
Petiole colour | PETCOL | 4.2.33 | Petiole and/or midvein colour 1. White 2. Light-green 3. Green 4. Purple 5. Red 6. Other |
Head formation habit | HHAB | 4.2.34 | Observed at harvest 0. Nonheading 5. Semi-heading 7. Heading |
Head cover by outer leaves | HCOV | 4.2.37 | 3. Exposed 5. Intermediate 7. Covered |
Ratio head/plant | RATHPLAN | 4.2.39 | 3. Small 5. Intermediate 7. Large |
Plant width | PDIAM_num | 4.2.4 | Measured (in cm) width of the plant |
Head length | HLENGTH_num | 4.2.41 | Measured (in cm) median transverse section |
Head diameter | HDIAM_num | 4.2.42 | Measured (in cm) at widest point |
Head stem length | STEMHLEN_num | 4.2.44 | Measured (in cm) stem length in head |
Head stem diameter | STEMHDIAM_num | 4.2.45 | Measured (in cm) stem diameter at head base |
Head stem estimation | STEMHEST | 4.2.47 | Stem length in head estimate |
Head splitting tendency | SPLITTEN | 4.2.49 | 3. Low 5. Intermediate 7. High |
Stem length below the floral head | SLENGTH_num | 4.2.54 | Measured (in cm) from cotyledon to the highest point on vegetative or pre-flowering apex |
Stem diameter | SDIAM_num | 4.2.55 | Measured diameter (in cm) of widest point on stem |
Head weight | HWEIGTH_num | 4.2.6 | Weight (in g) of harvested organ |
Inflorescence branching pattern | HBRAN | 4.2.73 | 1. Single flower raceme 2. Enlarged stem with terminally branched raceme 3. Loosely branched terminal heads 4. Terminal head with smaller heads on auxiliary shoots 5. Compact head of regularly packed subheads 6. Single compact head of irregularly packed subheads |
Shape of head longitudinal section | HLONSEC | 4.2.75 | 1. Concave 3. Flat 5. Spheric 7. Elliptic |
Head solidity | HSOL | 4.2.77 | Flowering head solidity 3. Low (loose) 5. Intermediate 7. High (solid) |
Head surface colour | HCOL | 4.2.78 | Flowering head colour surface 1. White 2. Cream 3. Yellow 4. Yellow-green 5. Green 6. Pink 7. Green-red 8. Purple 9. Red 10. Orange 11. Other |
Time between sowing and harvesting | HARVTIME | NA | 1. <60 days 2. Between 60 and 120 days 3. >120 days |
Head size | HSIZE | NA | G. Big M. Medium P. Small |
Leaf contour | LCONTOUR | NA | Leaf blade contour 0. Absent 3. Scarce 5. Intermediate 7. High |
Leaf lobing | LEAFLOB | NA | 1. Absent 9. Present |
Plant structure | PLANTSTR | NA | Foliage habit: 1. Erect 2. Semi-erect 3. Oblique |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prendes-Rodríguez, E.; Iborra, A.; Guijarro-Real, C.; Rodríguez-Burruezo, A.; Fita, A. Morpho-Agronomic Characterization of an Unexploited Germplasm Collection of Cauliflower (Brassica oleracea var. botrytis (L.)) from Spain. Plants 2025, 14, 2919. https://doi.org/10.3390/plants14182919
Prendes-Rodríguez E, Iborra A, Guijarro-Real C, Rodríguez-Burruezo A, Fita A. Morpho-Agronomic Characterization of an Unexploited Germplasm Collection of Cauliflower (Brassica oleracea var. botrytis (L.)) from Spain. Plants. 2025; 14(18):2919. https://doi.org/10.3390/plants14182919
Chicago/Turabian StylePrendes-Rodríguez, Eric, Alicia Iborra, Carla Guijarro-Real, Adrián Rodríguez-Burruezo, and Ana Fita. 2025. "Morpho-Agronomic Characterization of an Unexploited Germplasm Collection of Cauliflower (Brassica oleracea var. botrytis (L.)) from Spain" Plants 14, no. 18: 2919. https://doi.org/10.3390/plants14182919
APA StylePrendes-Rodríguez, E., Iborra, A., Guijarro-Real, C., Rodríguez-Burruezo, A., & Fita, A. (2025). Morpho-Agronomic Characterization of an Unexploited Germplasm Collection of Cauliflower (Brassica oleracea var. botrytis (L.)) from Spain. Plants, 14(18), 2919. https://doi.org/10.3390/plants14182919