Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = eVTOL aircraft

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10076 KB  
Article
Evaluating UAM–Wildlife Collision Prevention Efficacy with Fast-Time Simulations
by Lewis Mossaberi, Isabel C. Metz and Sophie F. Armanini
Aerospace 2026, 13(1), 18; https://doi.org/10.3390/aerospace13010018 - 25 Dec 2025
Viewed by 313
Abstract
Urban Air Mobility (UAM) promises to reduce ground traffic and journey times by using electric vertical take-off and landing (eVTOL) aircraft for short, low-altitude flights, especially in urban environments. However, low-flying aircraft are at particularly high risk of collisions with wildlife, such as [...] Read more.
Urban Air Mobility (UAM) promises to reduce ground traffic and journey times by using electric vertical take-off and landing (eVTOL) aircraft for short, low-altitude flights, especially in urban environments. However, low-flying aircraft are at particularly high risk of collisions with wildlife, such as birds. This study builds on previous research into UAM collision avoidance systems (UAM-CAS) by implementing one such system in the BlueSky open-source air traffic simulator and evaluating its efficacy in reducing bird strikes. Several modifications were made to the original UAM-CAS framework to improve performance. Realistic UAM flight plans were developed and combined with real-world bird movement datasets representing typical birds in sustained flight from all seasons, recorded by an avian radar at Leeuwarden Air Base. Fast-time simulations were conducted in the BlueSky Open Air Traffic Simulator using the UAM flight plan, the bird datasets, and the UAM-CAS algorithm. Results demonstrated that, under modelling assumptions, the UAM-CAS reduced bird strikes by 62%, with an average delay per flight of 15 s, whereas 27% of the remaining strikes occurred with birds outside the system’s design scope. A small number of flights faced substantially longer delays, indicating some operational impacts. Based on the findings, specific avenues for future research to improve UAM-CAS performance are suggested. Full article
(This article belongs to the Special Issue Operational Requirements for Urban Air Traffic Management)
Show Figures

Figure 1

28 pages, 15281 KB  
Article
Development and Validation of a Custom Stochastic Microscale Wind Model for Urban Air Mobility Applications
by D S Nithya, Francesca Monteleone, Giuseppe Quaranta, Man Liang and Vincenzo Muscarello
Drones 2025, 9(12), 863; https://doi.org/10.3390/drones9120863 - 15 Dec 2025
Viewed by 511
Abstract
Urban air mobility operations, such as flying Uncrewed Aerial Vehicles (UAVs) and small passenger aircraft in and around cities, will be inherently susceptible to the turbulent wind conditions in urban environments. Therefore, understanding UAM aircraft performance under microscale wind disturbances is critical. Gaining [...] Read more.
Urban air mobility operations, such as flying Uncrewed Aerial Vehicles (UAVs) and small passenger aircraft in and around cities, will be inherently susceptible to the turbulent wind conditions in urban environments. Therefore, understanding UAM aircraft performance under microscale wind disturbances is critical. Gaining such insight is non-trivial due to the lack of sufficient UAM aircraft operational data and the complexities involved in flight testing UAM aircraft. A viable solution to overcome this hindrance is through simulation-based flight testing, data collection, and performance assessment. To support this effort, the present paper establishes a custom Stochastic microscale Wind Model (SWM) capable of efficiently generating high-resolution, spatio-temporally varying urban wind fields. The SWM is validated against wind tunnel test data, and subsequently, the findings are employed to guide targeted refinements of urban wake simulation. Furthermore, to incorporate realistic atmospheric conditions and demonstrate the ability to generate location-specific wind fields, the SWM is coupled with the mesoscale Weather Research and Forecasting (WRF) model. This integrated approach is demonstrated through a case study focused on a potential vertiport site in Milan, Italy, illustrating its utility for assessing operational area-specific UAM aircraft performance and vertiport emplacement. Full article
(This article belongs to the Special Issue Urban Air Mobility Solutions: UAVs for Smarter Cities)
Show Figures

Figure 1

30 pages, 12213 KB  
Article
A Two-Stage Framework for Sensor Selection and Geolocation for eVTOL Emergency Localization Using HF Skywaves
by Xijun Liu, Houlong Ai, Chen Xu, Zelin Chen and Zhaoyang Li
Sensors 2025, 25(24), 7534; https://doi.org/10.3390/s25247534 - 11 Dec 2025
Viewed by 657
Abstract
High-Frequency (HF) geolocation is crucial for emergency search and rescue operations and for re-geolocation of missing targets. This paper proposes a two-stage (Receiver selection then geolocation with Random Spatial Spectrum (RSS)) framework with HF skywave propagation as the main link, which is suitable [...] Read more.
High-Frequency (HF) geolocation is crucial for emergency search and rescue operations and for re-geolocation of missing targets. This paper proposes a two-stage (Receiver selection then geolocation with Random Spatial Spectrum (RSS)) framework with HF skywave propagation as the main link, which is suitable for scenarios where the electric Vertical Take-off and Landing (eVTOL) aircraft loses contact, crashes, or has communication interruption after a malfunction. First, stage A employs two receiver selection paths. One is selection with unknown biases, which combines geometric observability to determine receiver selection. The other is selection with bias priors, which introduces non-line-of-sight bias priors and robust weighting to improve availability. Secondly, stage B constructs RSS-based geolocation using grid objective function matching to alleviate the sensitivity of explicit time difference estimation to noise and model mismatch, thereby maintaining robustness under non-line-of-sight (NLOS) conditions. Finally, simulation and actual measurements demonstrate that the “select first, geolocation later” approach achieves superior overall performance compared to direct geolocation without receiver selection. This study provides a methodological basis and initial field evidence for HF skywave-based emergency eVTOL geolocation. Full article
(This article belongs to the Special Issue Smart Sensor Systems for Positioning and Navigation)
Show Figures

Figure 1

27 pages, 16096 KB  
Article
Effect of Dynamic Tilting Speed on the Flow Field of Distributed Multi-Propeller Tilt-Wing Aircraft During Transition Flight
by Jiahao Zhu, Yongjie Shi, Taihang Ma, Guohua Xu and Zhiyuan Hu
Machines 2025, 13(12), 1130; https://doi.org/10.3390/machines13121130 - 9 Dec 2025
Viewed by 420
Abstract
Advances in distributed electric propulsion and urban air mobility technologies have spurred a surge of research on electric Vertical Take-Off and Landing (eVTOL) aircraft. Distributed Multi-Propeller Tilting-Wing (DMT) eVTOL configurations offer higher forward flight speed and efficiency. However, aerodynamic challenges during the transition [...] Read more.
Advances in distributed electric propulsion and urban air mobility technologies have spurred a surge of research on electric Vertical Take-Off and Landing (eVTOL) aircraft. Distributed Multi-Propeller Tilting-Wing (DMT) eVTOL configurations offer higher forward flight speed and efficiency. However, aerodynamic challenges during the transition phase have limited their practical application. This study develops a high-fidelity body-fitted mesh CFD numerical simulation method for flow field calculations of DMT aircraft. Using the reverse overset assembly method and CPU-GPU collaborative acceleration technology, the accuracy and efficiency of flow field simulations are enhanced. Using the established method, the influence of dynamic tilting speeds on the flow field of this configuration is investigated. This paper presents the variations in the aerodynamic characteristics of the tandem propellers and tilt-wings throughout the full tilt process under different tilting speeds, analyzes the mechanisms behind reductions in the propeller’s aerodynamic performance and tilt-wing lift overshoot, and conducts a detailed comparison of flow field distribution characteristics under fixed-angle tilting, slow tilting, and fast tilting conditions. The study explores the influence mechanism of tilting speed on blade tip vortex-lifting surface interactions and interference between tandem propellers and tilt-wings, providing valuable conclusions for the aerodynamic design and safe transition implementation of DMT aircraft. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

21 pages, 5702 KB  
Article
An Adaptive Command Scaling Method for Incremental Flight Control Allocation
by Zhidong Lu, Jiannan Zhang, Hangxu Li and Florian Holzapfel
Actuators 2025, 14(12), 579; https://doi.org/10.3390/act14120579 - 29 Nov 2025
Viewed by 436
Abstract
Modern aircraft usually employ control allocation to distribute virtual control commands among redundant effectors. Infeasible virtual command can occur frequently due to aggressive maneuvers and limited control authority. This paper proposes a lightweight command scaling law for incremental flight control allocation. The method [...] Read more.
Modern aircraft usually employ control allocation to distribute virtual control commands among redundant effectors. Infeasible virtual command can occur frequently due to aggressive maneuvers and limited control authority. This paper proposes a lightweight command scaling law for incremental flight control allocation. The method scales the raw incremental virtual command by a direction-preserving gain K [0,1]. It is updated via gradient descent on a Lyapunov function that balances allocation error against deviation from unity gain. The proposed adaptive update law ensures the convergence of K to a value that corresponds to the attainable portion of infeasible commands, independent of the specific allocator used. At the same time, feasible virtual commands will be preserved. Its performance was evaluated through open-loop ray sweeps of the attainable moment set and closed-loop INDI simulations for a yaw-limited eVTOL. The results demonstrate that the adaptive scaling gain closely approximates the linear programming ground truth while offering significantly higher computational efficiency. Furthermore, it effectively mitigates cross-axis coupling, reduces peak excursions, and alleviates rotor saturation. These findings highlight the method’s effectiveness, modularity, and suitability for real-time implementation in aerospace applications. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

26 pages, 4587 KB  
Article
Configuration Trade-Off and Co-Design Optimization of Hybrid-Electric VTOL Propulsion Systems
by Yanan Li, Haiwang Li, Gang Xie and Zhi Tao
Drones 2025, 9(11), 800; https://doi.org/10.3390/drones9110800 - 17 Nov 2025
Viewed by 1073
Abstract
Unmanned vertical takeoff and landing (VTOL) aircraft are increasingly deployed for logistics, surveillance, and urban air mobility (UAM) applications. However, the limitations of full-electric (FE) and internal combustion engine (ICE) systems in meeting diverse mission requirements have motivated the development of hybrid-electric (HE) [...] Read more.
Unmanned vertical takeoff and landing (VTOL) aircraft are increasingly deployed for logistics, surveillance, and urban air mobility (UAM) applications. However, the limitations of full-electric (FE) and internal combustion engine (ICE) systems in meeting diverse mission requirements have motivated the development of hybrid-electric (HE) propulsion systems. The design of HE powertrains remains challenging due to configuration flexibility and the lack of unified criteria for performance trade-offs among FE, ICE-powered, and HE configurations. This study proposes an integrated propulsion co-design framework coupling power allocation, energy management, and component capacity constraints through parametric system modeling. These interdependencies are represented by three key matching parameters: the power ratio (Φ), energy ratio (Ω), and maximum continuous discharge rate (rc). Through Pareto-optimal design space exploration, trade-off analysis results and optimization principles are derived for diverse mission scenarios such as UAM, remote sensing, and military surveillance. Different technological conditions are considered to guide component-level technological advancements. The method was applied to the power system retrofit of the Great White eVTOL. Subsystem steady-state tests provided accurate design inputs, and a simulation model was developed to reproduce the full flight mission. By comparing the simulation with flight-test measurements, mean absolute percentage errors of 8.91% for instantaneous fuel consumption and 0.26% for battery voltage were obtained. Based on these error magnitudes, a dynamic design margin was defined and then incorporated into a subsequent re-optimization, which achieved the 1.5 h endurance target with a 10.49% increase in cost per ton-kilometer relative to the initial design. These results demonstrate that the proposed co-design methodology offers a scalable, data-driven foundation for early-stage hybrid-electric VTOL powertrain design, enabling iterative performance correction and supporting system optimization in subsequent design stages. Full article
Show Figures

Figure 1

29 pages, 3996 KB  
Article
Demand Assessment and Integration Feasibility Analysis for Advanced and Urban Air Mobility in Illinois
by Vasileios Volakakis, Christopher Cummings, Laurence Audenaerd, William M. Viste and Hani S. Mahmassani
Appl. Sci. 2025, 15(22), 11901; https://doi.org/10.3390/app152211901 - 8 Nov 2025
Viewed by 971
Abstract
Advanced and Urban Air Mobility (AAM and UAM) represent emerging transportation concepts that involve the use of novel aircraft technologies to transport passengers and cargo within urban, regional, and intra-regional environments. These systems may include Electric Vertical Take-off and Landing (eVTOL) aircraft, Short [...] Read more.
Advanced and Urban Air Mobility (AAM and UAM) represent emerging transportation concepts that involve the use of novel aircraft technologies to transport passengers and cargo within urban, regional, and intra-regional environments. These systems may include Electric Vertical Take-off and Landing (eVTOL) aircraft, Short Take-off and Landing (STOL) aircraft, and unmanned aerial vehicles (UAVs), which are being considered for a range of applications including passenger transport, cargo delivery, and other specialized operations. This study introduced a state-specific analytical framework that integrates different methodologies and data to enable a more precise evaluation of AAM viability in the State of Illinois, compared to generic national or global assessments, capturing the state’s unique mobility patterns, infrastructure constraints, and demographic distributions. One of the main goals is to provide a comprehensive evaluation of the potential implications—both challenges and opportunities—associated with AAM and UAM operations. The analysis examines potential impacts on mobility, infrastructure, economic development, and public services, with particular emphasis on identifying key considerations for policy development. The research framework categorizes use cases into two broad types: AAM for the transportation of people and cargo, and AAM for functional applications such as emergency response, agriculture, and infrastructure monitoring. The study provides a detailed quantitative assessment of passenger air taxi services, including demand estimation, business model feasibility analysis, integration effects on existing transportation systems, and infrastructure requirements. For other AAM applications, the analysis identifies operational considerations, regulatory implications, and potential barriers to implementation, establishing a foundation for future detailed evaluation. Full article
(This article belongs to the Special Issue Autonomous Vehicles and Robotics—2nd Edition)
Show Figures

Figure 1

18 pages, 3013 KB  
Article
Study on Certification-Driven Fault Detection Threshold Optimization for eVTOL Dual-Motor-Driven Rotor
by Liqun Ma, Chenchen Ma and Jianzhong Yang
Aerospace 2025, 12(11), 973; https://doi.org/10.3390/aerospace12110973 - 30 Oct 2025
Viewed by 604
Abstract
Advances in motor technology and the application of distributed electric propulsion systems have greatly promoted the development of electric vertical take-off and landing aircraft. As a critical safety component of eVTOL aircraft, the motor system design must satisfy both performance requirements and stringent [...] Read more.
Advances in motor technology and the application of distributed electric propulsion systems have greatly promoted the development of electric vertical take-off and landing aircraft. As a critical safety component of eVTOL aircraft, the motor system design must satisfy both performance requirements and stringent airworthiness standards. This paper studies the lift–thrust unit drive motor system of an eVTOL aircraft and proposes an architecture that utilizes analytical redundancy to enhance system-level reliability. This paper focuses on threshold optimization in analytical redundancy systems. Through simulations and reliability analyses, the performance of the analytical redundancy system is quantified, with false alarm and missed detection probabilities evaluated, fault detection thresholds optimized, and overall system reliability enhanced analytical redundancy systems is improved. Simulation and calculation results demonstrate that the proposed fault detection method can effectively meet the requirements for rapid detection and achieve optimal reliability at the given optimal threshold. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 3072 KB  
Article
Unmanned Aircraft for Emergency Deliveries Between Hospitals in Madrid: Estimating Time Savings and Predictability
by Emir Ganić, Cristina Barrado, Tatjana Krstić Simić, Jovana Kuljanin and Miguel Baena
Drones 2025, 9(11), 728; https://doi.org/10.3390/drones9110728 - 22 Oct 2025
Cited by 2 | Viewed by 2132
Abstract
Unmanned aircraft are increasingly recognized for their potential to enhance healthcare logistics, offering rapid and reliable transport solutions. Among the many envisioned use cases, emergency medical deliveries stand out as particularly promising due to their immediate societal value. This study investigates the potential [...] Read more.
Unmanned aircraft are increasingly recognized for their potential to enhance healthcare logistics, offering rapid and reliable transport solutions. Among the many envisioned use cases, emergency medical deliveries stand out as particularly promising due to their immediate societal value. This study investigates the potential of drones operating under U-space to support hospital-to-hospital emergency deliveries in Madrid. Using the GEMMA tool, we modeled and simulated operations with two drone types along direct routes between four hospitals, resulting in six hospital pairs. Drone travel times were estimated and compared against road transport times obtained from the Google Routes API, incorporating one week of traffic data to capture daily and weekend variability. The results show substantial advantages of aerial transport, with time savings ranging from 2 to 26 min, equivalent to 35–58% compared to road transport. Drones consistently ensured deliveries within 15 min, outperforming regular cars (39%) and ambulances or motorcycles in highly congested periods. Sensitivity analysis confirms their reliability in scenarios with strict time constraints, especially under 15 min. These findings demonstrate that drones reduce travel times and improve predictability, providing a robust evidence base for policymakers and regulators to advance U-space integration in healthcare logistics. Full article
(This article belongs to the Special Issue Urban Air Mobility Solutions: UAVs for Smarter Cities)
Show Figures

Figure 1

29 pages, 1062 KB  
Review
Cost-Effectiveness of Structural Health Monitoring in Aviation: A Literature Review
by Pietro Ballarin, Giuseppe Sala and Alessandro Airoldi
Sensors 2025, 25(19), 6146; https://doi.org/10.3390/s25196146 - 4 Oct 2025
Viewed by 1605
Abstract
(1) Background: Structural Health Monitoring Systems (SHMSs) can reduce maintenance costs and aircraft downtime. However, their economic impact remains underexplored, particularly in cost–benefit terms. (2) Methods: This study conducted a targeted literature review on all the existing studies consisting of seventeen economic analyses [...] Read more.
(1) Background: Structural Health Monitoring Systems (SHMSs) can reduce maintenance costs and aircraft downtime. However, their economic impact remains underexplored, particularly in cost–benefit terms. (2) Methods: This study conducted a targeted literature review on all the existing studies consisting of seventeen economic analyses of SHMS applications. Key features—such as SHMS type, structural material, vehicle type, integration stage, and cost elements—were classified to identify prevailing trends and gaps. (3) Results: The analysis revealed a predominance of piezoelectric-based SHMS applied to metallic fixed-wing aircraft, with limited attention to composite structures and e-VTOLs. Most studies focused on maintenance phase impacts, overlooking integration costs during manufacturing. Potential benefits like operational life extension, prognostic capabilities, and safety margin reduction were rarely explored, while critical drawbacks such as detection performance, reliability, and power consumption were underrepresented. Maintenance and fuel costs were the most frequently considered economic drivers; downtime costs were often neglected. (4) Conclusions: Although the majority of reviewed studies suggest a positive economic impact from SHMS implementation, significant gaps remain. Future research should address SHMS reliability, integration during early design stages, and applications to emerging aircraft like e-VTOLs to fully realize SHMS economic advantages. Full article
(This article belongs to the Special Issue Sensors—Integrating Composite Materials in Aerospace Applications)
Show Figures

Figure 1

45 pages, 5989 KB  
Review
A Review of Hybrid-Electric Propulsion in Aviation: Modeling Methods, Energy Management Strategies, and Future Prospects
by Feifan Yu, Jiajie Chen, Panao Gao, Yu Kong, Xiaokang Sun, Jiqiang Wang and Xinmin Chen
Aerospace 2025, 12(10), 895; https://doi.org/10.3390/aerospace12100895 - 3 Oct 2025
Cited by 4 | Viewed by 6746
Abstract
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency [...] Read more.
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency of electrified powertrains. At present, the field of hybrid-electric aircraft is developing rapidly. To systematically study hybrid-electric propulsion control in aviation, this review focuses on practical aspects of system development, including propulsion architectures, system- and component-level modeling approaches, and energy management strategies. Key technologies in the future are examined, with emphasis on aircraft power-demand prediction, multi-timescale control, and thermal integrated energy management. This review aims to serve as a reference for configuration design, modeling and control simulation, as well as energy management strategy design of hybrid-electric propulsion systems. Building on this reference role, the review presents a coherent guidance scheme from architectures through modeling to energy-management control, with a practical roadmap toward flight-ready deployment. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

29 pages, 12717 KB  
Article
Simulation Study on Electromagnetic Response and Cable Coupling Characteristics of eVTOL Under Lightning Environment
by Hangyu Chen, Xin Li, Chao Zhou, Yifang Tan and Yizhi Shen
Electronics 2025, 14(18), 3661; https://doi.org/10.3390/electronics14183661 - 16 Sep 2025
Viewed by 1258
Abstract
This study employs CST simulations to analyze the electromagnetic response and cable coupling characteristics of electric vertical takeoff and landing (eVTOL) aircraft under lightning conditions. Based on the SAE ARP5414B standard, lightning zoning was carried out, and three typical strike scenarios—the nose, wing, [...] Read more.
This study employs CST simulations to analyze the electromagnetic response and cable coupling characteristics of electric vertical takeoff and landing (eVTOL) aircraft under lightning conditions. Based on the SAE ARP5414B standard, lightning zoning was carried out, and three typical strike scenarios—the nose, wing, and vertical tail—were established. Referring to representative lightning current waveforms in SAE ARP5412B, Component A was selected as the primary excitation source. On this basis, the L9(33) orthogonal design method was applied to evaluate the influence of cable structure, length, and routing method on the induced current. The results show that nose attachment produces the strongest coupling to the airframe. Shielded cables effectively reduce the induced current in the conductor core by diverting most of the coupled current through the shielding layer, while unshielded single-core cables demonstrate the weakest resistance to interference. The induced current increases with cable length, and Z-shaped wall-mounted routing produces stronger coupling than straight or suspended routing. This research provides a systematic approach for evaluating indirect lightning effects in eVTOL and offers engineering guidance for electromagnetic protection and cable design. Full article
Show Figures

Figure 1

25 pages, 2949 KB  
Article
Strategic Vertiport Placement for Airport Access: Utilizing Urban Air Mobility for Accelerated and Reliable Transportation
by Vasileios Volakakis and Hani S. Mahmassani
Infrastructures 2025, 10(9), 242; https://doi.org/10.3390/infrastructures10090242 - 14 Sep 2025
Cited by 1 | Viewed by 2750
Abstract
Airport-bound access and egress trips comprise a significant portion of total ground transportation trips, especially in regions served by large airports. Connecting urban areas with airports under minimal travel delays can be challenging, with traffic congestion along busy connecting corridors being a common [...] Read more.
Airport-bound access and egress trips comprise a significant portion of total ground transportation trips, especially in regions served by large airports. Connecting urban areas with airports under minimal travel delays can be challenging, with traffic congestion along busy connecting corridors being a common phenomenon. Urban Air Mobility (UAM) is a new transportation mode envisioned to reduce travel times using specific aircraft, such as electric (and non-electric) Vertical or Short Take-off and Landing aircraft (e/VTOLs and STOLs, respectively). The operation of these aircraft requires take-off and landing infrastructure known as vertiports. A strategic infrastructure placement framework was introduced, utilizing and adapting the Capacitated Facility Location Problem (a-CFLP) and the Maximal Covering Location Problem (a-MCLP) with capacity constraints. An adapted capacitated k-means algorithm and a greedy heuristic were considered for the solution of the a-CFLP, while the a-MCLP was formulated as a mixed-integer linear programming problem. The proposed framework was applied in the Chicago Metropolitan Area, revealing that various trade-offs regarding coverage and accessibility, versus operational costs (number of facilities, facility capacity, and service radius), exist. The results showed that, depending on vertiport capacity and service radius capabilities, a range of 5 to 12 vertiports can sufficiently address the demand (above 95% demand coverage) and, with respect to accessibility, serve a moderate UAM demand scenario of 6124 daily requests, as identified for this region. Full article
Show Figures

Figure 1

15 pages, 3100 KB  
Article
Research on Variable Pitch Propeller Control Technology of eVTOL Based on ADRC
by Xijun Liu, Hao Zhao, Zhaoyang Li, Houlong Ai, Zelin Chen and Yuehong Dai
Electronics 2025, 14(18), 3627; https://doi.org/10.3390/electronics14183627 - 12 Sep 2025
Viewed by 957
Abstract
To address heading instability in electric vertical take-off and landing (eVTOL) aircraft at low speeds and large pitch angles, a rotational speed feedback compensation control scheme based on Active Disturbance Rejection Control (ADRC) is proposed for variable-pitch propellers. This scheme integrates propeller speed [...] Read more.
To address heading instability in electric vertical take-off and landing (eVTOL) aircraft at low speeds and large pitch angles, a rotational speed feedback compensation control scheme based on Active Disturbance Rejection Control (ADRC) is proposed for variable-pitch propellers. This scheme integrates propeller speed into the heading control inner loop and employs a state observer to process the measured speed. Simulation results demonstrate that under dynamic propeller speed variations of 0.5%, 1%, and 2%, the proposed compensation scheme reduces yaw angle oscillation amplitudes by 22.2%, 30.6%, and 37.8%, and yaw angular velocity fluctuations by 32.5%, 43.4%, and 33.3%, respectively, compared to a basic speed feedback scheme, showcasing significantly superior robustness. Experimental bench tests further validate that the proposed strategy enhances overall propeller force efficiency from 2.479 kg/kW to 3.05 kg/kW at 120 km/h cruise, resulting in a power saving of 0.48 kW and extending the cruising range by 8.5 km. The stability and energy efficiency of the proposed method are rigorously validated through both simulation and experimental testing. Full article
Show Figures

Figure 1

24 pages, 3514 KB  
Article
Research on LiDAR-Assisted Optimization Algorithm for Terrain-Aided Navigation of eVTOL
by Guangming Zhang, Jing Zhou, Zhonghang Duan and Weiwei Zhao
Sensors 2025, 25(18), 5672; https://doi.org/10.3390/s25185672 - 11 Sep 2025
Viewed by 835
Abstract
To address the high-precision navigation requirements of urban low-altitude electric vertical take-off and landing (eVTOL) aircraft in environments where global navigation satellite systems (GNSSs) are denied and under complex urban terrain conditions, a terrain-matching optimization algorithm based on light detection and ranging (LiDAR) [...] Read more.
To address the high-precision navigation requirements of urban low-altitude electric vertical take-off and landing (eVTOL) aircraft in environments where global navigation satellite systems (GNSSs) are denied and under complex urban terrain conditions, a terrain-matching optimization algorithm based on light detection and ranging (LiDAR) is proposed. Given the issues of GNSS signal susceptibility to occlusion and interference in urban low-altitude environments, as well as the error accumulation in inertial navigation systems (INSs), this algorithm leverages LiDAR point cloud data to assist in constructing a digital elevation model (DEM). A terrain-matching optimization algorithm is then designed, incorporating enhanced feature description for key regions and an adaptive random sample consensus (RANSAC)-based misalignment detection mechanism. This approach enables efficient and robust terrain feature matching and dynamic correction of INS positioning errors. The simulation results demonstrate that the proposed algorithm achieves a positioning accuracy better than 2 m in complex scenarios such as typical urban canyons, representing a significant improvement of 25.0% and 31.4% compared to the traditional SIFT-RANSAC and SURF-RANSAC methods, respectively. It also elevates the feature matching accuracy rate to 90.4%; meanwhile, at a 95% confidence level, the proposed method significantly increases the localization success rate to 96.8%, substantially enhancing the navigation and localization accuracy and robustness of eVTOLs in complex low-altitude environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

Back to TopTop