Abstract
High-Frequency (HF) geolocation is crucial for emergency search and rescue operations and for re-geolocation of missing targets. This paper proposes a two-stage (Receiver selection then geolocation with Random Spatial Spectrum (RSS)) framework with HF skywave propagation as the main link, which is suitable for scenarios where the electric Vertical Take-off and Landing (eVTOL) aircraft loses contact, crashes, or has communication interruption after a malfunction. First, stage A employs two receiver selection paths. One is selection with unknown biases, which combines geometric observability to determine receiver selection. The other is selection with bias priors, which introduces non-line-of-sight bias priors and robust weighting to improve availability. Secondly, stage B constructs RSS-based geolocation using grid objective function matching to alleviate the sensitivity of explicit time difference estimation to noise and model mismatch, thereby maintaining robustness under non-line-of-sight (NLOS) conditions. Finally, simulation and actual measurements demonstrate that the “select first, geolocation later” approach achieves superior overall performance compared to direct geolocation without receiver selection. This study provides a methodological basis and initial field evidence for HF skywave-based emergency eVTOL geolocation.