You are currently viewing a new version of our website. To view the old version click .
Sensors
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

11 December 2025

A Two-Stage Framework for Sensor Selection and Geolocation for eVTOL Emergency Localization Using HF Skywaves

,
,
,
and
College of Aviation Electronic and Electrical Engineering, Civil Aviation Flight University of China, Chengdu 641400, China
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Smart Sensor Systems for Positioning and Navigation

Abstract

High-Frequency (HF) geolocation is crucial for emergency search and rescue operations and for re-geolocation of missing targets. This paper proposes a two-stage (Receiver selection then geolocation with Random Spatial Spectrum (RSS)) framework with HF skywave propagation as the main link, which is suitable for scenarios where the electric Vertical Take-off and Landing (eVTOL) aircraft loses contact, crashes, or has communication interruption after a malfunction. First, stage A employs two receiver selection paths. One is selection with unknown biases, which combines geometric observability to determine receiver selection. The other is selection with bias priors, which introduces non-line-of-sight bias priors and robust weighting to improve availability. Secondly, stage B constructs RSS-based geolocation using grid objective function matching to alleviate the sensitivity of explicit time difference estimation to noise and model mismatch, thereby maintaining robustness under non-line-of-sight (NLOS) conditions. Finally, simulation and actual measurements demonstrate that the “select first, geolocation later” approach achieves superior overall performance compared to direct geolocation without receiver selection. This study provides a methodological basis and initial field evidence for HF skywave-based emergency eVTOL geolocation.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.