Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (743)

Search Parameters:
Keywords = eIF5A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3286 KiB  
Article
Poxvirus K3 Orthologs Regulate NF-κB-Dependent Inflammatory Responses by Targeting the PKR–eIF2α Axis in Multiple Species
by Huibin Yu, Mary Eloise L. Fernandez, Chen Peng, Dewi Megawati, Greg Brennan, Loubna Tazi and Stefan Rothenburg
Vaccines 2025, 13(8), 800; https://doi.org/10.3390/vaccines13080800 - 28 Jul 2025
Abstract
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by [...] Read more.
Background: Protein kinase R (PKR) inhibits general mRNA translation by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2). PKR also modulates NF-κB signaling during viral infections, but comparative studies of PKR-mediated NF-κB responses across mammalian species and their regulation by viral inhibitors remain largely unexplored. This study aimed to characterize the conserved antiviral and inflammatory roles of mammalian PKR orthologs and investigate their modulation by poxviral inhibitors. Methods: Using reporter gene assays and quantitative RT-PCR, we assessed the impact of 17 mammalian PKR orthologs on general translation inhibition, stress-responsive translation, and NF-κB-dependent induction of target genes. Congenic human and rabbit cell lines infected with a myxoma virus strain lacking PKR inhibitors were used to compare the effects of human and rabbit PKR on viral replication and inflammatory responses. Site-directed mutagenesis was employed to determine key residues responsible for differential sensitivity to the viral inhibitor M156. Results: All 17 mammalian PKR orthologs significantly inhibited general translation, strongly activated stress-responsive ATF4 translation, and robustly induced NF-κB target genes. Inhibition of these responses was specifically mediated by poxviral K3 orthologs that effectively suppressed PKR activation. Comparative analyses showed human and rabbit PKRs similarly inhibited virus replication and induced cytokine transcripts. Amino acid swaps between rabbit PKRs reversed their sensitivity to viral inhibitor M156 and NF-κB activation. Conclusions: Our data show that the tested PKR orthologs exhibit conserved dual antiviral and inflammatory regulatory roles, which can be antagonized by poxviral K3 orthologs that exploit eIF2α mimicry to modulate the PKR-NF-κB axis. Full article
(This article belongs to the Special Issue Antiviral Immunity and Vaccine Development)
Show Figures

Figure 1

27 pages, 7908 KiB  
Article
Deciphering Cowpea Resistance to Potyvirus: Assessment of eIF4E Gene Mutations and Their Impact on the eIF4E-VPg Protein Interaction
by Fernanda Alves de Andrade, Madson Allan de Luna-Aragão, José Diogo Cavalcanti Ferreira, Fernanda Freitas Souza, Ana Carolina da Rocha Oliveira, Antônio Félix da Costa, Francisco José Lima Aragão, Carlos André dos Santos-Silva, Ana Maria Benko-Iseppon and Valesca Pandolfi
Viruses 2025, 17(8), 1050; https://doi.org/10.3390/v17081050 - 28 Jul 2025
Abstract
Cowpea (Vigna unguiculata) is a crop of significant socioeconomic importance, particularly in the semi-arid regions of Africa and America. However, its productivity has been adversely affected by viral diseases, including the cowpea aphid-borne mosaic virus (CABMV), a single-stranded RNA virus. It [...] Read more.
Cowpea (Vigna unguiculata) is a crop of significant socioeconomic importance, particularly in the semi-arid regions of Africa and America. However, its productivity has been adversely affected by viral diseases, including the cowpea aphid-borne mosaic virus (CABMV), a single-stranded RNA virus. It is known that the VPg protein interacts with the host’s translation initiation factor (eIF4E), promoting viral replication. This study aimed to investigate the relationship between mutations in the cowpea eIF4E gene and resistance to CABMV. Twenty-seven cultivars were screened by PCR and bioassays for presence/absence of mutations associated with resistance or susceptibility to Potyviruses. Of the cultivars with mutations previously associated with susceptibility, 88.24% exhibited viral symptoms, while 62.5% associated with resistance remained asymptomatic. The in silico analyses revealed that non-synonymous mutations (Pro68Arg, Gly109Arg) alter the structure of the eIF4E protein, reducing its affinity to VPg. Molecular dynamics simulations also pointed to an enhanced structural stability of eIF4E in resistant cultivars and reinforced, for the first time, key mutations and the functional role of the eIF4E gene in resistance to CABMV in cowpea. Our results offer valuable insights for virus disease management and for genetic improvement programs for this important crop. Full article
(This article belongs to the Special Issue Viral Manipulation of Plant Stress Responses)
Show Figures

Graphical abstract

15 pages, 1333 KiB  
Article
Reliable RT-qPCR Normalization in Polypogon fugax: Reference Gene Selection for Multi-Stress Conditions and ACCase Expression Analysis in Herbicide Resistance
by Yufei Zhao, Xu Yang, Qiang Hu, Jie Zhang, Sumei Wan and Wen Chen
Agronomy 2025, 15(8), 1813; https://doi.org/10.3390/agronomy15081813 - 26 Jul 2025
Viewed by 77
Abstract
Asia minor bluegrass (Polypogon fugax), a widespread Poaceae weed, exhibits broad tolerance to abiotic stresses. Validated reference genes (RGs) for reliable RT-qPCR normalization in this ecologically and agriculturally significant species remain unidentified. This study identified eight candidate RGs using transcriptome data [...] Read more.
Asia minor bluegrass (Polypogon fugax), a widespread Poaceae weed, exhibits broad tolerance to abiotic stresses. Validated reference genes (RGs) for reliable RT-qPCR normalization in this ecologically and agriculturally significant species remain unidentified. This study identified eight candidate RGs using transcriptome data from seedling tissues. We assessed the expression stability of these eight RGs across various abiotic stresses and developmental stages using Delta Ct, BestKeeper, geNorm, and NormFinder algorithms. A comprehensive stability ranking was generated using RefFinder, with validation performed using the target genes COR413 and P5CS. Results identified EIF4A and TUB as the optimal RG combination for normalizing gene expression during heat stress, cold stress, and growth stages. EIF4A and ACT were most stable under drought stress, EIF4A and 28S under salt stress, and EIF4A and EF-1 under cadmium (Cd) stress. Furthermore, EIF4A and UBQ demonstrated optimal stability under herbicide stress. Additionally, application of validated RGs revealed higher acetyl-CoA carboxylase gene (ACCase) expression in one herbicide-resistant population, suggesting target-site gene overexpression contributes to resistance. This work presents the first systematic evaluation of RGs in P. fugax. The identified stable RGs provide essential tools for future gene expression studies on growth and abiotic stress responses in this species, facilitating deeper insights into the molecular basis of its weediness and adaptability. Full article
(This article belongs to the Special Issue Adaptive Evolution in Weeds: Molecular Basis and Management)
Show Figures

Graphical abstract

15 pages, 4716 KiB  
Article
Deletion of Ptpmt1 by αMHC-Cre in Mice Results in Left Ventricular Non-Compaction
by Lei Huang, Maowu Cao, Xiangbin Zhu, Na Li, Can Huang, Kunfu Ouyang and Ze'e Chen
J. Dev. Biol. 2025, 13(3), 25; https://doi.org/10.3390/jdb13030025 - 18 Jul 2025
Viewed by 232
Abstract
Background: Left ventricular non-compaction cardiomyopathy (LVNC) is a congenital heart disease characterized by abnormal prenatal development of the left ventricle that has an aberrantly thick trabecular layer and a thinner compacted myocardial layer. However, the underlying molecular mechanisms of LVNC regulated by mitochondrial [...] Read more.
Background: Left ventricular non-compaction cardiomyopathy (LVNC) is a congenital heart disease characterized by abnormal prenatal development of the left ventricle that has an aberrantly thick trabecular layer and a thinner compacted myocardial layer. However, the underlying molecular mechanisms of LVNC regulated by mitochondrial phosphatase genes remain largely unresolved. Methods: We generated a mouse model with cardiac-specific deletion (CKO) of Ptpmt1, a type of mitochondrial phosphatase gene, using the αMHC-Cre, and investigated the effects of cardiac-specific Ptpmt1 deficiency on cardiac development. Morphological, histological, and immunofluorescent analyses were conducted in Ptpmt1 CKO and littermate controls. A transcriptional atlas was identified by RNA sequencing (RNA-seq) analysis. Results: We found that CKO mice were born at the Mendelian ratio with normal body weights. However, most of the CKO mice died within 24 h after birth, developing spontaneous ventricular tachycardia. Morphological and histological analysis further revealed that newborn CKO mice developed an LVNC phenotype, evidenced by a thicker trabecular layer and a thinner myocardium layer, when compared with the littermate control. We then examined the embryonic hearts and found that such an LVNC phenotype could also be observed in CKO hearts at E15.5 but not at E13.5. We also performed the EdU incorporation assay and demonstrated that cardiac cell proliferation in both myocardium and trabecular layers was significantly reduced in CKO hearts at E15.5, which is also consistent with the dysregulation of genes associated with heart development and cardiomyocyte proliferation in CKO hearts at the same stage, as revealed by both the transcriptome analysis and the quantitative real-time PCR. Deletion of Ptpmt1 in mouse cardiomyocytes also induced an increase in phosphorylated eIF2α and ATF4 levels, indicating a mitochondrial stress response in CKO hearts. Conclusions: Our results demonstrated that Ptpmt1 may play an essential role in regulating left ventricular compaction during mouse heart development. Full article
Show Figures

Figure 1

16 pages, 1617 KiB  
Article
Lens Proteomics Provide Novel Clues for Cataractogenesis: Original Investigation and a Broad Literature Survey
by Banu Cosar, Mustafa Sehvar Nefesoglu, Meric A. Altinoz, Emel Akgun, Betul Sahin, Ahmet Baykal and Mustafa Serteser
J. Clin. Med. 2025, 14(13), 4737; https://doi.org/10.3390/jcm14134737 - 4 Jul 2025
Viewed by 364
Abstract
Background: Previous proteomic studies provided valuable information about cataracts, but unclarified issues, such as sex and ethnicity-associated differences, remain. This study aimed to provide additional data on cataract-related proteins regarding age, sex, and cataract type. Methods: Twenty-six female and seven male [...] Read more.
Background: Previous proteomic studies provided valuable information about cataracts, but unclarified issues, such as sex and ethnicity-associated differences, remain. This study aimed to provide additional data on cataract-related proteins regarding age, sex, and cataract type. Methods: Twenty-six female and seven male Turkish cataract patients were screened for visual acuity and dysfunctional lens index. A nano-LC-MS/MS system and Progenesis QI software v3.0 were used for protein identification and quantification. The remaining data were evaluated with SPSS Version 29.0 software. Results: Proteins that showed age-associated changes were mainly involved in cytoskeletal organization. A glyoxalase enzyme, caveolin 1, and HS90B were lower, and RAB8B and ATP6V1B1 were higher in lenses in women. Proteins with lower levels in cataractous lenses than in transparent lenses included filensin and phakinin, concurrent with previous publications, and LCTL, GDI, HSPB1, and EIF4A2, not reported before. Corticonuclear cataracts constituted the only group showing depletions in putatively protective proteins, while the cortical type was the least influenced. ANXA1 and DNHD1 positively, and TCPD, SEC14L2, and PRPS1 proteins negatively correlated with visual acuity. Conclusions: This study revealed cataract-related proteins concurrent with earlier studies and new ones hitherto unreported. Despite the low number of patients investigated, the results merit further research, as these new proteins are highly likely to be involved in cataractogenesis. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

18 pages, 3265 KiB  
Article
Nymphoides peltata Alleviates Patulin-Induced Glutamine Metabolic Stress and Epithelial Toxicity in Small Intestinal Epithelial Cells
by Chae Hyun Lee, Sangsu Shin, Tae Hyun Kim and Sang In Lee
Toxins 2025, 17(7), 337; https://doi.org/10.3390/toxins17070337 - 3 Jul 2025
Viewed by 435
Abstract
Patulin (PAT) is a mycotoxin commonly found in fruits and contaminated feedstuffs, known for its gastrointestinal and systemic toxicity. However, the mechanisms underlying PAT-induced damage to intestinal epithelial cells remain poorly understood. In this study, we demonstrated that 6.5 µM PAT exposure for [...] Read more.
Patulin (PAT) is a mycotoxin commonly found in fruits and contaminated feedstuffs, known for its gastrointestinal and systemic toxicity. However, the mechanisms underlying PAT-induced damage to intestinal epithelial cells remain poorly understood. In this study, we demonstrated that 6.5 µM PAT exposure for 24 h reduced glutamine (GLN) uptake and altered the expression of GLN transporters and related metabolic enzymes in IPEC-J2 cells. This concentration was selected based on previous in vitro studies that reported PAT-induced cytotoxicity in porcine intestinal epithelial cells. Moreover, PAT also upregulated ER stress markers (DDIT3, EIF2AK3, ERN1, and HSPA5) and inflammatory cytokines (IL-8, IL-1β, and TNF-α), while decreasing ZO-1 localization, indicating disrupted epithelial barrier integrity. Although 6 mM GLN supplementation only partially mediated ER stress and inflammatory responses, it more effectively restored ZO-1 localization. A high-throughput screening of 324 natural products was conducted to identify potential protective agents, identifying Nymphoides peltata extract as a promising candidate. Co-treatment with 80 ng/μL N. peltata extract improved GLN uptake, partially alleviated ER stress and inflammation, and significantly restored tight junction structure in PAT-exposed cells. Collectively, these findings suggest that N. peltata could serve as a novel natural therapeutic for enhancing intestinal resilience against PAT-induced toxicity. Specifically, this study highlights the potential use of N. peltata extract as a natural feed additive to protect intestinal health in livestock under mycotoxin stress. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

23 pages, 1565 KiB  
Article
Proteomic Analysis and Expression of Selected Genes During the Early Somatic Embryogenesis of Jatropha curcas L.
by Anamarel Edzná Medina-Hernández, Ileana Vera-Reyes, Emmanuel Ríos-Castro, Juan José Torres-Ruiz, Teresa Ponce-Noyola, Gabriela Trejo-Tapia, Adriana Garay-Arroyo, Josefina Barrera-Cortés and Ana C. Ramos-Valdivia
Int. J. Mol. Sci. 2025, 26(13), 6384; https://doi.org/10.3390/ijms26136384 - 2 Jul 2025
Viewed by 1025
Abstract
Jatropha curcas L. is a shrub of the Euphorbiaceae family with non-toxic varieties found in Mexico that holds significant potential for biofuel production and other industrial applications. However, its limited in vitro regenerative capacity is a barrier to the development of productive species. [...] Read more.
Jatropha curcas L. is a shrub of the Euphorbiaceae family with non-toxic varieties found in Mexico that holds significant potential for biofuel production and other industrial applications. However, its limited in vitro regenerative capacity is a barrier to the development of productive species. Somatic embryogenesis (SE) offers a strategy to establish a regeneration system to overcome these challenges and enable genetic improvement. In this work, proteomic and gene expression analyses were utilized to identify key factors involved in SE induction in a non-toxic variety of J. curcas. Two-dimensional electrophoresis (2-DE) in combination with mass spectrometry was used to compare the proteomes of pre-globular and globular somatic embryos. RT-qPCR was used for gene expression analysis of the BBM, AGL15, SERK, IAA26 and eIF3f genes. The globular stage showed enrichment in the pathways related to carbohydrate and energy metabolism, protein folding, and stress response. In addition, the gene expression analysis of selected genes revealed a significantly elevated expression of BBM, AGL15, and IAA26 in globular embryos compared to pre-globular embryos. In contrast, SERK expression was low, and eIF3f expression remained unchanged between stages. These expression patterns may contribute to developmental arrest at the globular stage. These findings provide new insights into the molecular mechanisms regulating early SE in J. curcas and offer potential strategies for improving its propagation and industrial applications. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 3rd Edition)
Show Figures

Figure 1

16 pages, 1455 KiB  
Article
A Genome-Wide Association Study of Anti-Müllerian Hormone (AMH) Levels in Samoan Women
by Zeynep Erdogan-Yildirim, Jenna C. Carlson, Mohanraj Krishnan, Jerry Z. Zhang, Geralyn Lambert-Messerlian, Take Naseri, Satupaitea Viali, Nicola L. Hawley, Stephen T. McGarvey, Daniel E. Weeks and Ryan L. Minster
Genes 2025, 16(7), 793; https://doi.org/10.3390/genes16070793 - 30 Jun 2025
Viewed by 378
Abstract
Background/Objectives: The anti-Müllerian hormone (AMH) is a key biomarker of the ovarian reserve, correlating with ovarian follicle count, fertility outcomes, and menopause timing. Understanding its genetic determinants has broad implications for female reproductive health. However, prior genome-wide association studies (GWASs) have focused [...] Read more.
Background/Objectives: The anti-Müllerian hormone (AMH) is a key biomarker of the ovarian reserve, correlating with ovarian follicle count, fertility outcomes, and menopause timing. Understanding its genetic determinants has broad implications for female reproductive health. However, prior genome-wide association studies (GWASs) have focused exclusively on women of European ancestry, limiting insights into diverse populations. Methods: We conducted a GWAS to identify genetic loci associated with circulating AMH levels in a sample of 1185 Samoan women from two independently recruited samples. Using a Cox mixed-effects model we accounted for AMH levels below detectable limits and meta-analysed the summary statistics using a fixed-effect model. To prioritize variants and genes, we used FUMA and performed colocalization and transcriptome-wide association analysis (TWAS). We also assessed whether any previously reported loci were replicated in our GWAS. Results: We identified eleven genome-wide suggestive loci, with the strongest signal at ARID3A (19-946163-G-C; p = 2.32 × 10−7) and replicated rs10093345 near EIF4EBP1. The gene-based testing revealed ARID3A and R3HDM4 as significant genes. Integrating GWAS results with expression quantitative trait loci via TWAS, we detected seven transcriptome-wide significant genes. The lead variant in ARID3A is in high linkage disequilibrium (r2 = 0.79) with the known age-at-menopause variant 19-950694-G-A. Nearby KISS1R is a biologically plausible candidate gene that encodes the kisspeptin receptor, a regulator of ovarian follicle development linked to AMH levels. Conclusions: This study expands our understandings of AMH genetics by focusing on Samoan women. While these findings may be particularly relevant to Pacific Islanders, they hold broader implications for reproductive phenotypes such as the ovarian reserve, menopause timing, and polycystic ovary syndrome. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

10 pages, 1688 KiB  
Case Report
Second Trimester Ultrasound Diagnosis of External Hydrocephalus in Two Fetuses with Noonan Syndrome—Case Report Series
by Tibor Elekes, Aniko Ladanyi, Eva Pap, Janos Szabo, Anett Illes, Nora Gullai and Szabolcs Varbiro
J. Clin. Med. 2025, 14(11), 3973; https://doi.org/10.3390/jcm14113973 - 4 Jun 2025
Viewed by 660
Abstract
Background: Noonan syndrome (NS) is a relatively common RASopathy that can be associated with a variety of phenotypic and genotypic variations and potential long-term health consequences. Its most described prenatal ultrasound features in the first trimester are thickened nuchal translucency (NT) and dilated [...] Read more.
Background: Noonan syndrome (NS) is a relatively common RASopathy that can be associated with a variety of phenotypic and genotypic variations and potential long-term health consequences. Its most described prenatal ultrasound features in the first trimester are thickened nuchal translucency (NT) and dilated jugular sacs; while heart defects, polyhydramnios and facial dysmorphisms are its known manifestations in the second and third trimesters. Methods: We present two cases of NS with the prenatal ultrasound diagnosis of external hydrocephalus (EH) in the second trimester. Results: Case 1 had a normal first trimester scan and showed mild polyhydramnios, an echogenic intracardiac focus (EIF) in the left ventricle and pyelectasis in the second trimester in association with the EH. The whole exome sequencing (WES) confirmed a pathogenic variant in the SOS1 gene. Case 2 showed increased NT, agenesis of the ductus venosus (DV), single umbilical artery (SUA), an EIF in the right ventricle and an abnormal prefrontal space ratio (PSFR). By the 19th gestational week, EH appeared. The ambient and quadrigeminal cisterns were also slightly widened. The WES revealed a PTPN11 gene variant. Conclusions: The most reported sonographic features of NS are either non-specific or difficult to integrate into routine screening, requiring substantial experience. In our two cases, we detected EH in the second trimester, which is rarely described as a prenatal ultrasound diagnosis. To our current knowledge, this is the first case reported of EH in NS caused by an SOS1 gene variant and these are the first cases reported with the prenatal sonographic diagnosis of EH in NS. Full article
(This article belongs to the Special Issue New Advances in Prenatal Diagnosis and Newborn Screening)
Show Figures

Figure 1

19 pages, 2467 KiB  
Article
Wind Power Forecasting Based on Multi-Graph Neural Networks Considering External Disturbances
by Xiaoyin Xu, Zhumei Luo and Menglong Feng
Energies 2025, 18(11), 2969; https://doi.org/10.3390/en18112969 - 4 Jun 2025
Viewed by 424
Abstract
Wind power forecasting is challenging because of complex, nonlinear relationships between inherent patterns and external disturbances. Though much progress has been achieved in deep learning approaches, existing methods cannot effectively decompose and model intertwined spatio-temporal dependencies. Current methods typically treat wind power as [...] Read more.
Wind power forecasting is challenging because of complex, nonlinear relationships between inherent patterns and external disturbances. Though much progress has been achieved in deep learning approaches, existing methods cannot effectively decompose and model intertwined spatio-temporal dependencies. Current methods typically treat wind power as a unified signal without explicitly separating inherent patterns from external influences, so they have limited prediction accuracy. This paper introduces a novel framework GCN-EIF that decouples external interference factors (EIFs) from inherent wind power patterns to achieve excellent prediction accuracy. Our innovation lies in the physically informed architecture that explicitly models the mathematical relationship: P(t)=Pinherent(t)+EIF(t). The framework adopts a three-component architecture consisting of (1) a multi-graph convolutional network using both geographical proximity and power correlation graphs to capture heterogeneous spatial dependencies between wind farms, (2) an attention-enhanced LSTM network that weights temporal features differentially based on their predictive significance, and (3) a specialized Conv2D mechanism to identify and isolate external disturbance patterns. A key methodological contribution is our signal decomposition strategy during the prediction phase, where an EIF is eliminated from historical data to better learn fundamental patterns, and then a predicted EIF is reintroduced for the target period, significantly reducing error propagation. Extensive experiments across diverse wind farm clusters and different weather conditions indicate that GCN-EIF achieves an 18.99% lower RMSE and 5.08% lower MAE than state-of-the-art methods. Meanwhile, real-time performance analysis confirms the model’s operational viability as it maintains excellent prediction accuracy (RMSE < 15) even at high data arrival rates (100 samples/second) while ensuring processing latency below critical thresholds (10 ms) under typical system loads. Full article
Show Figures

Figure 1

16 pages, 2495 KiB  
Article
A Comprehensive Screening of the Interactors of Areca Palm Necrotic Ringspot Virus (ANRSV) HCPro2 Highlights the Proviral Roles of eIF4A and PGK in Viral Infection
by Li Qin, Peilan Liu, Wentao Shen, Zhaoji Dai and Hongguang Cui
Plants 2025, 14(11), 1673; https://doi.org/10.3390/plants14111673 - 30 May 2025
Viewed by 466
Abstract
The areca palm (Areca catechu L.), a medicinal tropical crop, hosts three novel viruses, areca palm necrotic ringspot virus (ANRSV), areca palm necrotic spindle-spot virus (ANSSV), and ANRSV2, which form a new genus Arepavirus in the family Potyviridae. Both viruses feature [...] Read more.
The areca palm (Areca catechu L.), a medicinal tropical crop, hosts three novel viruses, areca palm necrotic ringspot virus (ANRSV), areca palm necrotic spindle-spot virus (ANSSV), and ANRSV2, which form a new genus Arepavirus in the family Potyviridae. Both viruses feature a unique tandem leader protease arrangement (HCPro1-HCPro2). To elucidate HCPro2’s role, this study identified its interaction partners in infected cells using affinity purification coupled with liquid chromatography-tandem mass spectrometry, a yeast two-hybrid system, and co-immunoprecipitation. Thirteen host proteins and five viral factors (HCPro1, 6K2, VPg, NIa-Pro, NIb) were validated as HCPro2 interactors. Among the host proteins interacting with HCPro2, the expression of five genes (NbeIF4A, NbSAMS1α, NbTEF1α, NbUEP1, and NbRan2) was upregulated under the condition of viral infection, while the expression of another five genes (NbpsbS1, NbPGK, NbchIP, NbClpC1A, and NbCysPrx) was downregulated. Functional assays showed that silencing NbeIF4A or NbPGK significantly reduced viral accumulation in Nicotiana benthamiana. These findings reveal HCPro2’s network of virus-host interaction, highlighting its critical role in viral pathogenesis. Further exploration of these interactions may clarify the evolutionary significance of tandem leader proteases and inform novel plant antiviral strategies. Full article
Show Figures

Figure 1

20 pages, 2001 KiB  
Article
Testing Protein Stress Signals in Peripheral Immunocytes Under the Same Treatment Capable of Decreasing the Incidence of Alzheimer’s Disease in Bladder Cancer Patients
by Benjamin Y. Klein, Ofer N. Gofrit and Charles L. Greenblatt
Curr. Issues Mol. Biol. 2025, 47(6), 392; https://doi.org/10.3390/cimb47060392 - 26 May 2025
Viewed by 519
Abstract
Several studies showed that the incidence of Alzheimer’s disease (AD) is significantly lower in patients with non-muscle invasive bladder cancer (NMIBC) treated with intravesical bacillus Calmette–Guérin (BCG) instillations compared to treatment by alternative methods. Hypothetically, failure to clear misfolded and aggregated proteins (i.e., [...] Read more.
Several studies showed that the incidence of Alzheimer’s disease (AD) is significantly lower in patients with non-muscle invasive bladder cancer (NMIBC) treated with intravesical bacillus Calmette–Guérin (BCG) instillations compared to treatment by alternative methods. Hypothetically, failure to clear misfolded and aggregated proteins (i.e., beta-amyloid) in AD brains and peripheral blood mononuclear cells (PBMCs) implicates BCG in upgrading the unfolded protein response (UPR). To test this hypothesis, pre- versus post-BCG PBMC proteins of the UPR pathway were compared in six NMIBC patients by capillary immunoelectrophoresis on an Abby instrument. PERK, the endoplasmic reticulum (ER) resident kinase, a stress-activated sensor, and its substrate alpha component of the eIF2 translation factor (eIF2a) complex inactivation were considered as potentially proapoptotic via a downstream proapoptotic transcription factor only if persistently high. GAPDH, a glycolytic marker of innate immunocyte training by BCG, and eight other UPR proteins were considered antiapoptotic. Summation of antiapoptotic %change scores per patient showed that the older the age, the lower the antiapoptotic %change. Higher antiapoptotic scores were observed upon a longer time from BCG treatment (with the exception of the patient in her ninth decade of life). Studies with more individuals could substantiate that BCG enhances the antiapoptotic aggregate-clearance effect of the UPR in PBMCs of NMIBC patients, which hypothetically protects brain cells against AD. Full article
(This article belongs to the Special Issue Molecules at Play in Neurological Diseases)
Show Figures

Graphical abstract

26 pages, 3102 KiB  
Article
Effect of Recombinant Human Growth Hormone (rhGH) Use on Genetic Methylation Patterns and Their Relationship with Body Composition in Small-for-Gestational-Age (SGA) Newborns
by Juan M. Alfaro Velásquez, Elsa Maria Vásquez Trespalacios, Rodrigo Urrego, María C. Arroyave Toro, María del Pilar Montilla Velásquez, Cecilia Maria Díaz Soto, Juan C. Zuluaga Vélez, Verónica Jaramillo Henríquez, Jorge Emilio Salazar Flórez, Fernando P. Monroy, Hernando Alirio Palacio Mosquera, Sara Vélez Gómez and Ronald Guillermo Pelaez Sánchez
Biomedicines 2025, 13(6), 1288; https://doi.org/10.3390/biomedicines13061288 - 23 May 2025
Viewed by 864
Abstract
Background: Low birth weight in newborns is of multifactorial origin (fetal, maternal, placental, and environmental factors), and in one-third of cases, the cause is of unknown origin, with high infant morbidity and mortality. The main treatment for regaining weight and height in children [...] Read more.
Background: Low birth weight in newborns is of multifactorial origin (fetal, maternal, placental, and environmental factors), and in one-third of cases, the cause is of unknown origin, with high infant morbidity and mortality. The main treatment for regaining weight and height in children with low birth weight is the application of growth hormones. However, their role as a protective factor to prevent an increase in body composition and the development of metabolic diseases is still poorly understood. Methodology: A case–control study was conducted in a cohort of patients consulted at the CES Pediatric Endocrinology Clinic, Medellín, Colombia, between 2008 and 2018. We evaluated sociodemographic and clinical variables. Additionally, the identification of differential patterns of genomic methylation between cases (treated with growth hormone) and controls (without growth hormone treatment) was performed. The groups were compared using Fisher’s exact test for qualitative variables and Student’s t-test for the difference in means in independent samples. The correlation was evaluated with the Pearson coefficient. Results: Regarding clinical manifestations, body mass index (BMI) was higher in children who did not receive growth hormone treatment, higher doses of growth hormone treatment helped reduce body mass index (R: −0.21, and p = 0.067), and the use of growth hormone was related to a decrease in triglyceride blood concentrations (p = 0.06); these results tended towards significance. Regarding genome-wide methylation patterns, the following genes were found to be hypermethylated: MDGA1, HOXA5, LINC01168, ZFYVE19, ASAH1, MYH15, DNAJC17, PAMR1, MROCKI, CNDP2, CBY2, ZADH2, HOOK2, C9orf129, NXPH2, OSCP1, ZMIZ2, RUNX1, PTPRS, TEX26, EIF2A4K, MYO1F, C2orf69, and ZSCAN1. Meanwhile, the following genes were found hypomethylated: C10orf71-AS1, ZDHHC13, RPL17, EMC4, RPRD2, OBSCN-AS1, ZNF714, MUC4, SUGT1P4, TRIM38, C3, SPON1, NGF-AS1, CCSER2, P2RX2, LOC284379, GGTA1, NLRP5, OR51A4, HLA-H, and TTLL8. Conclusions: Using growth hormone as a treatment in SGA newborns helps regain weight and height. Additionally, it could be a protective factor against the increase in adolescent body composition. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

35 pages, 16910 KiB  
Article
A Simplified Model Validation for the Energy Assessment of Opaque Adaptive Façades with Variable Thermal Resistance
by Ismael Palacios Mackay, Laura Marín-Restrepo and Alexis Pérez-Fargallo
Energies 2025, 18(11), 2682; https://doi.org/10.3390/en18112682 - 22 May 2025
Viewed by 647
Abstract
Adaptive façades, also known as climate-adaptive building shells (CABSs), could make a significant contribution towards reducing the energy consumption of buildings and their environmental impacts. There is extensive research on glazed adaptive façades, mainly due to the available technology for glass materials. The [...] Read more.
Adaptive façades, also known as climate-adaptive building shells (CABSs), could make a significant contribution towards reducing the energy consumption of buildings and their environmental impacts. There is extensive research on glazed adaptive façades, mainly due to the available technology for glass materials. The technological development of opaque adaptive façades has focused on variable-thermal-resistance envelopes, and the simulation of this type of façade is a challenging task that has not been thoroughly studied. The aim of this study was to configure and validate a simplified office model that could be used for simulating an adaptive façade with variable thermal resistance via adaptive insulation thickness in its opaque part. Software-to-software model comparison based on the results of an EnergyPlus Building Energy Simulation Test 900 (BesTest 900)-validated model was used. Cooling and heating annual energy demand (kWh), peak cooling and heating (kW), and maximum, minimum, and average annual hourly zone temperature variables were compared for both the Adaptive and non-adaptive validated model. An Adaptive EnergyPlus model based on the BesTest 900 model, which uses the EnergyPlus SurfaceControl:MovableInsulation class list, was successfully validated and could be used for studying office buildings with a variable-thermal-resistance adaptive façade wall configuration, equivalent to a heavyweight mass wall construction with an External Insulation Finishing System (EIFS). An example of the Adaptive model in the Denver location is included in this paper. Annual savings of up to 26% in total energy demand (heating + cooling) was achieved and could reach up to 54% when electro-chromic (EC) glass commanded by a rule-based algorithm was added to the glazed part of the variable-thermal-resistance adaptive façade. Full article
(This article belongs to the Special Issue Advanced Building Materials for Energy Saving—2nd Edition)
Show Figures

Figure 1

17 pages, 2112 KiB  
Article
Mitigation of 3.5 GHz Electromagnetic Field-Induced BV2 Microglial Cytotoxicity by Polydeoxyribonucleotide
by Shailashree Pachhapure, Amila Mufida, Qun Wei, Jong-Soon Choi and Byeong-Churl Jang
Curr. Issues Mol. Biol. 2025, 47(6), 386; https://doi.org/10.3390/cimb47060386 - 22 May 2025
Viewed by 676
Abstract
Emerging evidence highlights the biological risks associated with electromagnetic fields (EMFs) generated by electronic devices. The toxic effects and mechanisms induced by exposure to EMFs on microglial cells and natural substances that inhibit them are limited to date. Here, we investigated whether exposure [...] Read more.
Emerging evidence highlights the biological risks associated with electromagnetic fields (EMFs) generated by electronic devices. The toxic effects and mechanisms induced by exposure to EMFs on microglial cells and natural substances that inhibit them are limited to date. Here, we investigated whether exposure to 3.5 GHz EMF radiation, potentially generated by smartphones working in 5G communication or cooking using microwave ovens, affects the growth of BV2 mouse microglial cells and polydeoxyribonucleotide (PDRN), a DNA preparation derived from salmon sperm, inhibits it. Of note, exposure to 3.5 GHz EMF radiation for 2 h markedly inhibited the growth and triggered apoptosis in BV2 cells, characterized by the reduced number of surviving cells, increased genomic DNA fragmentation, increased reactive oxygen species (ROS) levels, and altered phosphorylation and expression levels of JNK-1/2, p38 MAPK, ERK-1/2, eIF-2α, and procaspase-9. Pharmacological inhibition studies revealed that JNK-1/2 and p38 MAPK activation and ROS generation were crucial for 3.5 GHz EMF-induced BV2 cytotoxicity. Of interest, PDRN effectively countered these effects by inhibiting the activation of JNK-1/2, p38 MAPK, and caspase-9, and the production of ROS, although it did not affect eIF-2 phosphorylation. In conclusion, this study is the first to report that PDRN protects against 3.5 GHz EMF-induced toxicities in BV2 microglial cells, and PDRN’s protective effects on 3.5 GHz EMF-induced BV2 cytotoxicity are mediated primarily by modulating ROS, JNK-1/2, p38 MAPK, and caspase-9. Full article
(This article belongs to the Special Issue Radiation-Induced Cellular and Molecular Responses)
Show Figures

Graphical abstract

Back to TopTop