Lens Proteomics Provide Novel Clues for Cataractogenesis: Original Investigation and a Broad Literature Survey
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics, Design and Ophtalmological Examinations
2.2. Proteomics: LC-MS/MS, Protein Identification and Quantitative Analysis
2.3. Statistical Analysis of Non-Proteomic Data
3. Results
3.1. General Features
3.2. Protein Differences According to Age
3.3. Protein Differences According to Sex
3.4. Protein Differences According to Lens Features and Cataract Type
3.5. Protein Differences According to Visual Acuity and Dysfunctional Lens Index
4. Discussion
4.1. Protein Differences According to Age
4.2. Protein Differences According to Sex
4.3. Protein Differences According to Lens and Cataract Features
4.4. Protein Differences According to Visual Acuity and Dysfunctional Lens Index
4.4.1. Proteins Positively Correlating with Visual Acuity
4.4.2. Proteins Negatively Correlating with Visual Acuity
- 1.
- A Conceptual Framework for Cataractogenesis
- 2.
- Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hashemi, H.; Pakzad, R.; Yekta, A.; Aghamirsalim, M.; Pakbin, M.; Ramin, S.; Khabazkhoob, M. Global and regional prevalence of age-related cataract: A comprehensive systematic review and meta-analysis. Eye 2020, 34, 1357–1370. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, J.L.; Grove, N.; Elson, G.; Lynch, A.M.; Taravella, M.J. Prevalence of cortical cataracts by sex, race, and ethnicity in a Colorado cohort. J. Cataract Refract. Surg. 2024, 50, 301–303. [Google Scholar] [CrossRef]
- Schey, K.L.; Wang, Z.; Friedrich, M.G.; Garland, D.L.; Truscott, R.J.W. Spatiotemporal changes in the human lens proteome: Critical insights into long-lived proteins. Prog Retin. Eye Res. 2020, 76, 100802. [Google Scholar] [CrossRef]
- Karakosta, C.; Samiotaki, M.; Panayotou, G.; Papaconstantinou, D.S.; Moschos, M.M. Lens Cytoskeleton: An Update on the Etiopathogenesis of Human Cataracts. Cureus 2024, 16, e56793. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Bhattacharya, S.S.; Moore, T.; Prescott, Q.; Wedig, T.; Herrmann, H.; Magin, T.M. Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum. Mol. Genet. 2009, 18, 1052–1057. [Google Scholar] [CrossRef]
- Sanderson, J.; Marcantonio, J.M.; Duncan, G. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2255–2261. [Google Scholar]
- Wang, B.; Hom, G.; Zhou, S.; Guo, M.; Li, B.; Yang, J.; Monnier, V.M.; Fan, X. The oxidized thiol proteome in aging and cataractous mouse and human lens revealed by ICAT labeling. Aging Cell 2017, 16, 244–261. [Google Scholar] [CrossRef]
- Tanabe, S.; Kawabata, T.; Aoyagi, K.; Yokozaki, H.; Sasaki, H. Gene expression and pathway analysis of CTNNB1 in cancer and stem cells. World J. Stem Cells. 2016, 8, 384–395. [Google Scholar] [CrossRef]
- Kim, J.M.; Min, K.W.; Kim, Y.J.; Smits, R.; Basler, K.; Kim, J.W. Wnt/β-Catenin Signaling Pathway Is Necessary for the Specification but Not the Maintenance of the Mouse Retinal Pigment Epithelium. Mol. Cells 2023, 46, 441–450. [Google Scholar] [CrossRef]
- Mao, Y.; Ou, S.; Zhu, C.; Lin, S.; Liu, X.; Liang, M.; Yu, J.; Wu, Y.; He, H.; Zong, R.; et al. Downregulation of p38 MAPK Signaling Pathway Ameliorates Tissue-Engineered Corneal Epithelium. Tissue Eng. Part A 2022, 28, 977–989. [Google Scholar] [CrossRef]
- Brümmendorf, T.; Spaltmann, F.; Treubert, U. Cloning and characterization of a neural cell recognition molecule on axons of the retinotectal system and spinal cord. Eur. J. Neurosci. 1997, 9, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, Y.; McAvoy, J.W. Analysis of PCP defects in mammalian eye lens. Methods Mol. Biol. 2012, 839, 147–156. [Google Scholar] [CrossRef]
- Luo, N.; Conwell, M.D.; Chen, X.; Kettenhofen, C.I.; Westlake, C.J.; Cantor, L.B.; Wells, C.D.; Weinreb, R.N.; Corson, T.W.; Spandau, D.F.; et al. Primary cilia signaling mediates intraocular pressure sensation. Proc. Natl. Acad. Sci. USA 2014, 111, 12871–12876. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Hanai, A.; Nakai, W.; Katoh, Y.; Nakayama, K.; Shin, H.W. ARF1 and ARF3 are required for the integrity of recycling endosomes and the recycling pathway. Cell Struct. Funct. 2012, 37, 141–154. [Google Scholar] [CrossRef]
- Hanai, A.; Ohgi, M.; Yagi, C.; Ueda, T.; Shin, H.W.; Nakayama, K. Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis. J. Biochem. 2016, 159, 201–208. [Google Scholar] [CrossRef]
- Sakamoto, M.; Sasaki, K.; Sugie, A.; Nitta, Y.; Kimura, T.; Gürsoy, S.; Cinleti, T.; Iai, M.; Sengoku, T.; Ogata, K.; et al. De novo ARF3 variants cause neurodevelopmental disorder with brain abnormality. Hum. Mol. Genet. 2021, 31, 69–81. [Google Scholar] [CrossRef]
- Bakker, A. Carbonic anhydrase and cataracta lentis. Br. J. Ophthalmol. 1948, 32, 910–912. [Google Scholar] [CrossRef]
- Zhang, P.B.; Xiao, H.Y.; Liu, H.; Qin, R. Regulation of zinc transporter 3 and carbonic anhydrases 2 and 14 mRNA expression in the retina of rats affected by low dietary zinc. Genet. Mol. Res. 2014, 13, 963–971. [Google Scholar] [CrossRef]
- Lo, W.K.; Wen, X.J.; Zhou, C.J. Microtubule configuration and membranous vesicle transport in elongating fiber cells of the rat lens. Exp. Eye Res. 2003, 77, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Hertecant, J.; Komara, M.; Nagi, A.; Suleiman, J.; Al-Gazali, L.; Ali, B.R. A novel de novo mutation in DYNC1H1 gene underlying malformation of cortical development and cataract. Meta Gene 2016, 9, 124–127. [Google Scholar] [CrossRef]
- Kenney, R.; Borkhetaria, R.; Soni, A.; Aliu, E.; Ely, A. Ocular manifestations in a 2 year-old patient with a DYNC1H1 mutation. Ophthalmic. Genet. 2023, 44, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Yuan, C.; Lee, H.; Chen, E.S.; Wu, P.Y.; Tsai, M.D. Structure and function of the phosphothreonine-specific FHA domain. Sci. Signal. 2008, 1, re12. [Google Scholar] [CrossRef]
- Shi, B.J. Decoding common and divergent cellular functions of the domains of forkhead transcription factors Fkh1 and Fkh2. Biochem. J. 2016, 473, 3855–3869. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xue, J.; Jiang, S.; Zheng, H.; Wang, C. Forkhead-associated phosphopeptide binding domain 1 (FHAD1) deficiency impaired murine sperm motility. PeerJ 2024, 12, e17142. [Google Scholar] [CrossRef]
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef]
- Zetterberg, M.; Celojevic, D. Gender and cataract—The role of estrogen. Curr. Eye Res. 2015, 40, 176–190. [Google Scholar] [CrossRef]
- Farrera, D.O.; Galligan, J.J. The Human Glyoxalase Gene Family in Health and Disease. Chem. Res. Toxicol. 2022, 35, 1766–1776. [Google Scholar] [CrossRef]
- Saqib, M.; Iqbal, S.; Naeem, S.; Mahmood, A. DFT for exploring the antioxidant potential of homogentisic and orsellinic acids. Pak. J. Pharm. Sci. 2013, 26, 1209–1214. [Google Scholar] [PubMed]
- Giwercman, A.; Sahlin, K.B.; Pla Parada, I.; Pawlowski, K.; Fehninger, C.; Lundberg Giwercman, Y.; Leijonhufvud, I.; Appelqvist, R.; Marko-Varga, G.; Sanchez, A.; et al. Novel protein markers of androgen activity in humans: Proteomic study of plasma from young chemically castrated men. Elife 2022, 11, e74638. [Google Scholar] [CrossRef]
- Jin, H.Y.; Yao, K.; Ma, J.; Li, H.W.; Tang, X.J.; Yang, C.H. Experimental study on the effects of hydrogen peroxide on caveolin in human lens epithelial cells. Zhonghua Yan Ke Za Zhi 2007, 43, 431–436. [Google Scholar]
- Zhang, Z.; Yao, K.; Jin, C. Apoptosis of lens epithelial cells induced by high concentration of glucose is associated with a decrease in caveolin-1 levels. Mol. Vis. 2009, 15, 2008–2017. [Google Scholar] [PubMed]
- Magyar, M.; Zsiros, V.L.; Kiss, A.; Nagy, Z.Z.; Szepessy, Z. The role of caveolae in cataractogenesis: Examination of human lens epithelial cells. Orv. Hetil. 2019, 160, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Kircher, M.; Del Campo, M.; Amato, R.S.; Agarwal, A.K.; University of Washington Center for Mendelian Genomics. Whole exome sequencing identifies de novo heterozygous CAV1 mutations associated with a novel neonatal onset lipodystrophy syndrome. Am. J. Med. Genet. A 2015, 167, 1796–1806. [Google Scholar] [CrossRef] [PubMed]
- Chadli, A.; Graham, J.D.; Abel, M.G.; Jackson, T.A.; Gordon, D.F.; Wood, W.M.; Felts, S.J.; Horwitz, K.B.; Toft, D. GCUNC-45 is a novel regulator for the progesterone receptor/hsp90 chaperoning pathway. Mol. Cell. Biol. 2006, 26, 1722–1730. [Google Scholar] [CrossRef]
- da Costa Marques, R.; Hüppe, N.; Speth, K.R.; Oberländer, J.; Lieberwirth, I.; Landfester, K.; Mailänder, V. Proteomics reveals time-dependent protein corona changes in the intracellular pathway. Acta Biomater. 2023, 172, 355–368. [Google Scholar] [CrossRef]
- Johari, A.H.; Nejad, F.R.; Mansoori, N.; Vafaei, F.; Salehi, S.; Alehabib, E.; Alinaghi, S.; Chapi, M.; Jamali, F.; Darvish, H.; et al. The rs1986112 Variant is Associated with Increased RAB8B Gene Expression in Schizophrenic Patients. Clin. Lab. 2019, 65, 517. [Google Scholar] [CrossRef]
- Massa, O.; Alessio, M.; Russo, L.; Nardo, G.; Bonetto, V.; Bertuzzi, F.; Paladini, A.; Iafusco, D.; Patera, P.; Federici, G.; et al. Serological Proteome Analysis (SERPA) as a tool for the identification of new candidate autoantigens in type 1 diabetes. J. Proteom. 2013, 82, 263–273. [Google Scholar] [CrossRef]
- Rezaie, J.; Nejati, V.; Khaksar, M.; Oryan, A.; Aghamohamadzadeh, N.; Shariatzadeh, M.A.; Rahbarghazi, R.; Mehranjani, M.S. Diabetic sera disrupted the normal exosome signaling pathway in human mesenchymal stem cells in vitro. Cell Tissue Res. 2018, 374, 555–565. [Google Scholar] [CrossRef]
- Vasanthakumar, T.; Rubinstein, J.L. Structure and Roles of V-type ATPases. Trends Biochem. Sci. 2020, 45, 295–307. [Google Scholar] [CrossRef]
- Wang, L.; Wu, D.; Robinson, C.V.; Wu, H.; Fu, T.M. Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Mol. Cell 2020, 80, 501–511.e3. [Google Scholar] [CrossRef]
- Xiang, Y.; Xu, G.; Weigel-Van Aken, K.A. Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone proteins. PLoS ONE 2010, 5, e13820. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Fujimori, T.; Hayashizaki, Y.; Nabeshima, Y. Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. Biochim. Biophys. Acta 2002, 1576, 341–345. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, J.; Chang, M.; Liu, Z.; Li, D.; Hu, S.; Hu, L. Proteomic analysis of endothelial progenitor cells exposed to oxidative stress. Int. J. Mol. Med. 2013, 32, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Castegna, A.; Thongboonkerd, V.; Klein, J.; Lynn, B.C.; Wang, Y.L.; Osaka, H.; Wada, K.; Butterfield, D.A. Proteomic analysis of brain proteins in the gracile axonal dystrophy (gad) mouse, a syndrome that emanates from dysfunctional ubiquitin carboxyl-terminal hydrolase L-1, reveals oxidation of key proteins. J. Neurochem. 2004, 88, 1540–1546. [Google Scholar] [CrossRef]
- Goulielmos, G.; Gounari, F.; Remington, S.; Müller, S.; Häner, M.; Aebi, U.; Georgatos, S.D. Filensin and phakinin form a novel type of beaded intermediate filaments and coassemble de novo in cultured cells. J. Cell Biol. 1996, 132, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Conley, Y.P.; Erturk, D.; Keverline, A.; Mah, T.S.; Keravala, A.; Barnes, L.R.; Bruchis, A.; Hess, J.F.; FitzGerald, P.G.; Weeks, D.E.; et al. A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am. J. Hum. Genet. 2000, 66, 1426–1431. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Yan, H.; Wang, L.L.; Yan, W.J.; Shui, Y.B.; Beebe, D.C. Quantitative proteomics analysis by iTRAQ in human nuclear cataracts of different ages and normal lens nuclei. Proteom. Clin. Appl. 2015, 9, 776–786. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, T.; Wu, D.; Zhang, J. A novel beaded filament structural protein 1 (BFSP1) gene mutation associated with autosomal dominant congenital cataract in a Chinese family. Mol. Vis. 2013, 19, 2590–2595. [Google Scholar]
- Tsai, C.F.; Wu, J.Y.; Hsu, Y.W. Protective Effects of Rosmarinic Acid against Selenite-Induced Cataract and Oxidative Damage in Rats. Int. J. Med. Sci. 2019, 16, 729–740. [Google Scholar] [CrossRef]
- Plüss, C.J.; Kustermann, S. A Human Three-Dimensional In Vitro Model of Lens Epithelial Cells as a Model to Study Mechanisms of Drug-Induced Posterior Subcapsular Cataracts. J. Ocul. Pharmacol. Ther. 2020, 36, 56–64. [Google Scholar] [CrossRef]
- Paul, M.S.; Duncan, A.R.; Genetti, C.A.; Pan, H.; Jackson, A.; Grant, P.E.; Shi, J.; Pinelli, M.; Brunetti-Pierri, N.; Garza-Flores, A.; et al. Rare EIF4A2 variants are associated with a neurodevelopmental disorder characterized by intellectual disability, hypotonia, and epilepsy. Am. J. Hum. Genet. 2023, 110, 120–145. [Google Scholar] [CrossRef] [PubMed]
- Gim, S.A.; Park, D.J.; Kang, J.B.; Shah, F.A.; Koh, P.O. Identification of regulated proteins by resveratrol in glutamate-induced cortical injury of newborn rats. J. Vet. Med. Sci. 2021, 83, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Geib, T.; Iacob, C.; Jribi, R.; Fernandes, J.; Benderdour, M.; Sleno, L. Identification of 4-hydroxynonenal-modified proteins in human osteoarthritic chondrocytes. J. Proteom. 2021, 232, 104024. [Google Scholar] [CrossRef] [PubMed]
- Michael, R.; Bron, A.J. The ageing lens and cataract: A model of normal and pathological ageing. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1278–1292. [Google Scholar] [CrossRef]
- Hoehenwarter, W.; Tang, Y.; Ackermann, R.; Pleissner, K.P.; Schmid, M.; Stein, R.; Zimny-Arndt, U.; Kumar, N.M.; Jungblut, P.R. Identification of proteins that modify cataract of mouse eye lens. Proteomics 2008, 8, 5011–5024. [Google Scholar] [CrossRef]
- Stein, J.D.; Khawaja, A.P.; Weizer, J.S. Glaucoma in Adults-Screening, Diagnosis, and Management: A Review. JAMA 2021, 325, 164–174. [Google Scholar] [CrossRef]
- Wang, L.M.; Dong, L.J.; Liu, X.; Huang, L.Y.; Liu, W.; Lyu, Y.J.; Li, X.R.; Liu, A.H. Proteomic analysis of aqueous humor in acute primary angle-closure glaucoma. Zhonghua Yan Ke Za Zhi 2019, 55, 687–694. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, R.; Arst, H.N., Jr.; Peñalva, M.A.; Xiang, X. HookA is a novel dynein-early endosome linker critical for cargo movement in vivo. J. Cell. Biol. 2014, 204, 1009–1026. [Google Scholar] [CrossRef]
- Keren-Kaplan, T.; Sarić, A.; Ghosh, S.; Williamson, C.D.; Jia, R.; Li, Y.; Bonifacino, J.S. RUFY3 and RUFY4 are ARL8 effectors that promote coupling of endolysosomes to dynein-dynactin. Nat. Commun. 2022, 13, 1506. [Google Scholar] [CrossRef]
- Héon, E.; Priston, M.; Schorderet, D.F.; Billingsley, G.D.; Girard, P.O.; Lubsen, N.; Munier, F.L. The gamma-crystallins and human cataracts: A puzzle made clearer. Am. J. Hum. Genet. 1999, 65, 1261–1267. [Google Scholar] [CrossRef]
- Takata, T.; Shimo-Oka, T.; Kojima, M.; Miki, K.; Fujii, N. Differential analysis of D-beta-Asp-containing proteins found in normal and infrared irradiated rabbit lens. Biochem. Biophys. Res. Commun. 2006, 344, 263–271. [Google Scholar] [CrossRef]
- Rogaev, E.I.; Rogaeva, E.A.; Korovaitseva, G.I.; Farrer, L.A.; Petrin, A.N.; Keryanov, S.A.; Turaeva, S.; Chumakov, I.; St George-Hyslop, P.; Ginter, E.K. Linkage of polymorphic congenital cataract to the gamma-crystallin gene locus on human chromosome 2q33-35. Hum. Mol. Genet. 1996, 5, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Mehra, S.; Kapur, S.; Ganesh, S. Association between a Tetranucleotide Repeat Polymorphism of SPAG16 Gene and Cataract in Male Children. J. Biomark. 2013, 2013, 810395. [Google Scholar] [CrossRef] [PubMed]
- Pajer, V.; Tiboldi, A.; Bae, N.; Li, K.; Kang, S.U.; Hopp, B.; Kolozsvári, L.; Lubec, G.; Nógrádi, A. The molecular background of the differential UV absorbance of the human lens in the 240–400 nm range. Photochem. Photobiol. 2013, 89, 856–863. [Google Scholar] [CrossRef]
- Zhu, J.; Shao, J.; Yao, Y.; Chu, Z.D.; Yu, Q.Q.; Zhao, W.; Lin, Q.; Zhang, Z.Y. Differential proteomics analysis of proteins from human diabetic and age-related cataractous lenses. J. Res. Med. Sci. 2013, 18, 984–989. [Google Scholar] [PubMed]
- Yu, A.Y.; Lin, C.X.; Wang, Q.M.; Zheng, M.Q.; Qin, X.Y. Safety of femtosecond laser-assisted cataract surgery: Assessment of aqueous humour and lens capsule. Acta Ophthalmol. 2016, 94, e534–e540. [Google Scholar] [CrossRef]
- Ngqaneka, T.; Khoza, S.; Magwebu, Z.E.; Chauke, C.G. Mutational analysis of BFSP1, CRYBB1, GALK1, and GJA8 in captive-bred vervet monkeys (Chlorocebus aethiops). J. Med. Primatol. 2020, 49, 79–85. [Google Scholar] [CrossRef]
- Vendra, V.P.R.; Ostrowski, C.; Dyba, M.A.; Tarasov, S.G.; Hejtmancik, J.F. Human γS-Crystallin Mutation F10_Y11delinsLN in the First Greek Key Pair Destabilizes and Impairs Tight Packing Causing Cortical Lamellar Cataract. Int. J. Mol. Sci. 2023, 24, 14332. [Google Scholar] [CrossRef]
- Ahmed, M.; Taylor, W.; Smith, P.R.; Becker, M.A. Accelerated transcription of PRPS1 in X-linked overactivity of normal human phosphoribosylpyrophosphate synthetase. J. Biol. Chem. 1999, 274, 7482–7488. [Google Scholar] [CrossRef]
- Porrmann, J.; Betcheva-Krajcir, E.; Di Donato, N.; Kahlert, A.K.; Schallner, J.; Rump, A.; Schröck, E.; Dobritzsch, D.; Roelofsen, J.; van Kuilenburg, A.B.P.; et al. Novel PRPS1 gain-of-function mutation in a patient with congenital hyperuricemia and facial anomalies. Am. J. Med. Genet. A 2017, 173, 2736–2742. [Google Scholar] [CrossRef]
- Lin, H.L.; Wang, S.; Sato, K.; Zhang, Y.Q.; He, B.T.; Xu, J.; Nakazawa, T.; Qin, Y.J.; Zhang, H.Y. Uric acid-driven NLRP3 inflammasome activation triggers lens epithelial cell senescence and cataract formation. Cell Death Discov. 2024, 10, 126. [Google Scholar] [CrossRef] [PubMed]
- Porter, T.D. Supernatant protein factor and tocopherol-associated protein: An unexpected link between cholesterol synthesis and vitamin E (review). J. Nutr. Biochem. 2003, 14, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Borchman, D.; Yappert, M.C. Lipids and the ocular lens. J. Lipid Res. 2010, 51, 2473–2488. [Google Scholar] [CrossRef]
- Zanon-Moreno, V.; Asensio-Marquez, E.M.; Ciancotti-Oliver, L.; Garcia-Medina, J.J.; Sanz, P.; Ortega-Azorin, C.; Pinazo-Duran, M.D.; Ordovás, J.M.; Corella, D. Effects of polymorphisms in vitamin E-, vitamin C-, and glutathione peroxidase-related genes on serum biomarkers and associations with glaucoma. Mol. Vis. 2013, 19, 231–242. [Google Scholar]
- Llorca, O.; McCormack, E.A.; Hynes, G.; Grantham, J.; Cordell, J.; Carrascosa, J.L.; Willison, K.R.; Fernandez, J.J.; Valpuesta, J.M. Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 1999, 402, 693–696. [Google Scholar] [CrossRef]
- Yokota, S.; Yanagi, H.; Yura, T.; Kubota, H. Cytosolic chaperonin-containing t-complex polypeptide 1 changes the content of a particular subunit species concomitant with substrate binding and folding activities during the cell cycle. Eur. J. Biochem. 2001, 268, 4664–7463. [Google Scholar] [CrossRef] [PubMed]
- Freund, A.; Zhong, F.L.; Venteicher, A.S.; Meng, Z.; Veenstra, T.D.; Frydman, J.; Artandi, S.E. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell 2014, 159, 1389–1403. [Google Scholar] [CrossRef]
- Norton-Baker, B.; Mehrabi, P.; Kwok, A.O.; Roskamp, K.W.; Rocha, M.A.; Sprague-Piercy, M.A.; von Stetten, D.; Miller, R.J.D.; Martin, R.W. Deamidation of the human eye lens protein γS-crystallin accelerates oxidative aging. Structure 2022, 30, 763–776.e4. [Google Scholar] [CrossRef]
Number of Patients | 33 |
Age | |
Mean ± STD Median (min–max) | 62.08 ± 9.32 63.5 (45–85) |
Sex | n (%) |
Female | 26 (78.79) |
Male | 7 (21.21) |
Lens or Cataract Type | |
Transparent Lens | 4 (12.12) |
Cortical Cataract | 5 (15.15) |
Nuclear Cataract | 9 (27.27) |
Corticonuclear Cataract | 10 (30.30) |
Other | 5 (15.15) |
Mean ± STD | |
Visual Acuity (V-CC LogMar) | 0.26 ± 0.25 |
Dysfunctional Lens Index (DLI) | 5.38 ± 2.76 |
Lens Type | Age (Mean ± STD) (Min–Max) | DLI (Mean ± STD) (Min–Max) | V-CC (Mean ± STD) (Min–Max) |
---|---|---|---|
Cortical Cataract | 57 ± 2.6 (51–66) | 7.09 ± 1.43 (3.61–10.0) | 0.5 ± 0.01 (0.00–0.1) |
Nuclear Cataract | 66.78 ± 2.54 (54–75) | 6.09 ± 0.82 (2.36–9.32) | 0.21 ± 0.04 (0.05–0.40) |
Corticonuclear Cataract | 73.90 ± 1.90 (66–85) | 3.57 ± 0.85 (1.31–8.97) | 0.41 ± 0.07 (0.15–0.80) |
Mixed Cataract | 63.22 ± 3.81 (45–78) | 4.07 ± 0.76 (1.54–7.11) | 0.43 ± 0.10 (0.00–1.00) |
Clear Lens | 49.50 ± 2.02 (46–55) | 7.51 ± 0.76 (5.67–9.08) | 0.012 ± 0.001 (0.00–0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosar, B.; Nefesoglu, M.S.; Altinoz, M.A.; Akgun, E.; Sahin, B.; Baykal, A.; Serteser, M. Lens Proteomics Provide Novel Clues for Cataractogenesis: Original Investigation and a Broad Literature Survey. J. Clin. Med. 2025, 14, 4737. https://doi.org/10.3390/jcm14134737
Cosar B, Nefesoglu MS, Altinoz MA, Akgun E, Sahin B, Baykal A, Serteser M. Lens Proteomics Provide Novel Clues for Cataractogenesis: Original Investigation and a Broad Literature Survey. Journal of Clinical Medicine. 2025; 14(13):4737. https://doi.org/10.3390/jcm14134737
Chicago/Turabian StyleCosar, Banu, Mustafa Sehvar Nefesoglu, Meric A. Altinoz, Emel Akgun, Betul Sahin, Ahmet Baykal, and Mustafa Serteser. 2025. "Lens Proteomics Provide Novel Clues for Cataractogenesis: Original Investigation and a Broad Literature Survey" Journal of Clinical Medicine 14, no. 13: 4737. https://doi.org/10.3390/jcm14134737
APA StyleCosar, B., Nefesoglu, M. S., Altinoz, M. A., Akgun, E., Sahin, B., Baykal, A., & Serteser, M. (2025). Lens Proteomics Provide Novel Clues for Cataractogenesis: Original Investigation and a Broad Literature Survey. Journal of Clinical Medicine, 14(13), 4737. https://doi.org/10.3390/jcm14134737