Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,244)

Search Parameters:
Keywords = dynamic scanning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1133 KB  
Article
Streak Tube-Based LiDAR for 3D Imaging
by Houzhi Cai, Zeng Ye, Fangding Yao, Chao Lv, Xiaohan Cheng and Lijuan Xiang
Sensors 2025, 25(17), 5348; https://doi.org/10.3390/s25175348 (registering DOI) - 28 Aug 2025
Abstract
Streak cameras, essential for ultrahigh temporal resolution diagnostics in laser-driven inertial confinement fusion, underpin the streak tube imaging LiDAR (STIL) system—a flash LiDAR technology offering high spatiotemporal resolution, precise ranging, enhanced sensitivity, and wide field of view. This study establishes a theoretical model [...] Read more.
Streak cameras, essential for ultrahigh temporal resolution diagnostics in laser-driven inertial confinement fusion, underpin the streak tube imaging LiDAR (STIL) system—a flash LiDAR technology offering high spatiotemporal resolution, precise ranging, enhanced sensitivity, and wide field of view. This study establishes a theoretical model of the STIL system, with numerical simulations predicting limits of temporal and spatial resolutions of ~6 ps and 22.8 lp/mm, respectively. Dynamic simulations of laser backscatter signals from targets at varying depths demonstrate an optimal distance reconstruction accuracy of 98%. An experimental STIL platform was developed, with the key parameters calibrated as follows: scanning speed (16.78 ps/pixel), temporal resolution (14.47 ps), and central cathode spatial resolution (20 lp/mm). The system achieved target imaging through streak camera detection of azimuth-resolved intensity profiles, generating raw streak images. Feature extraction and neural network-based three-dimensional (3D) reconstruction algorithms enabled target reconstruction from the time-of-flight data of short laser pulses, achieving a minimum distance reconstruction error of 3.57%. Experimental results validate the capability of the system to detect fast, low-intensity optical signals while acquiring target range information, ultimately achieving high-frame-rate, high-resolution 3D imaging. These advancements position STIL technology as a promising solution for applications that require micron-scale depth discrimination under dynamic conditions. Full article
18 pages, 2158 KB  
Article
Impact of Disinfection and Sterilization on 3D-Printing Resin Performance for Surgical Guides in Cardiac Ablation Surgery
by Rani Kronenberger, Rawan Kazma, Alireza Amirabadi, Leire Viana Uribe, Giacomo Talevi, Görkem Eylül Kaya, Niko Van den Brande, Ramak Hossein Abadi, Kalliopi-Artemi Kalteremidou, Danny Van Hemelrijck, Kitty Baert, Tom Hauffman, Jeroen Soete, Luigi Pannone, Andrea Maria Paparella, Ivan Eltsov, Gian Battista Chierchia, Mark La Meir, Ali Gharaviri and Carlo de Asmundis
Bioengineering 2025, 12(9), 924; https://doi.org/10.3390/bioengineering12090924 - 28 Aug 2025
Abstract
Patient-tailored, 3D-printed surgical guides offer significant potential to improve precision and therapeutic efficacy in cardiac ablation surgery. However, reliable post-sterilization material performance presents a critical yet underexplored barrier to clinical adoption. This study investigates how disinfection and sterilization impact the mechanical and thermal [...] Read more.
Patient-tailored, 3D-printed surgical guides offer significant potential to improve precision and therapeutic efficacy in cardiac ablation surgery. However, reliable post-sterilization material performance presents a critical yet underexplored barrier to clinical adoption. This study investigates how disinfection and sterilization impact the mechanical and thermal properties of photopolymer resins. Specimens from two 3D-printing resins (Bioflex A80 MB™, 3Dresyns; MED625FLX™, Stratasys) were treated with four combinations of disinfection techniques (low-temperature manual cleaning; high-temperature machine washing) and sterilization techniques (H2O2 vs. autoclaving). We assessed post-sterilization properties by mechanical (material integrity, bending tests), thermal (differential scanning calorimetry, thermogravimetric analysis), and viscoelastic (dynamic mechanical analysis) studies. Statistical analysis was performed using one-way ANOVA with Bonferroni post hoc tests (α = 0.05). From this preliminary study, we conclude that MED625FLX maintains integrity and flexibility across all tested disinfection and sterilization methods. Bioflex A80 MB is only suitable for low-temperature disinfection–sterilization, as high-temperature treatments cause surface cracking. Neither resin is appropriate for cryogenic conditions due to the risk of brittleness. Further research into post-sterilization properties is essential to ensure the safety and clinical reliability of these materials in cardiac procedures. Full article
Show Figures

Figure 1

29 pages, 8415 KB  
Article
Three-Dimensional Modeling and Analysis of Directed Energy Deposition Melt Pools Based on Physical Information Neural Networks
by Xiang Han, Zhuang Qian, Xinyue Gao, Huaping Li, Zhongqing Peng and Yu Long
Appl. Sci. 2025, 15(17), 9401; https://doi.org/10.3390/app15179401 - 27 Aug 2025
Abstract
In Directed Energy Deposition (DED), modeling the molten pool temperature field is crucial for precise temperature control, process optimization, and quality improvement. However, conventional numerical methods suffer from limitations such as high computational costs and poor transferability. This study proposes a physics-informed neural [...] Read more.
In Directed Energy Deposition (DED), modeling the molten pool temperature field is crucial for precise temperature control, process optimization, and quality improvement. However, conventional numerical methods suffer from limitations such as high computational costs and poor transferability. This study proposes a physics-informed neural network with dynamic learning rate (DLR-PINN) model, which integrates transfer learning to enable rapid prediction of 3D temperature fields and dimensions of molten pools across process parameters. Its validity is verified by a finite element method (FEM) calibrated via single-track DED experiments. Results show that DLR-PINN exhibits superior convergence and stability compared to traditional PINN. Combined with transfer learning, training efficiency is significantly enhanced, with a single prediction taking only 10 s. Using the FEM as the benchmark, it achieves a mean absolute percentage error (MAPE) of 0.53% for temperature prediction, and MAPE of 3.69%, 2.48%, and 6.96% for molten pool dimension predictions, respectively. Sensitivity analysis of process parameters reveals that scanning speed has a significantly greater regulatory effect on molten pool characteristics than laser power. Additionally, the temperature field of the flat-top heat source is more uniform than that of the Gaussian heat source, which is more conducive to improving printing quality and efficiency. Full article
Show Figures

Figure 1

14 pages, 3281 KB  
Article
Research on the Johnson–Cook Constitutive Model and Failure Behavior of TC4 Alloy
by Jiaxuan Zhu, Huidong Zhi, Tong Huang, Ning Ding and Zhaoming Yan
Metals 2025, 15(9), 951; https://doi.org/10.3390/met15090951 - 27 Aug 2025
Abstract
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile [...] Read more.
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile tests (strain rate 1000–3000 s−1) were performed with a Split Hopkinson Tensile Bar (SHTB). Key findings include the following: (1) Significant temperature-softening effect was observed, with flow stress decreasing markedly as temperature increased; (2) Notch size effect influenced mechanical properties, showing 50% enhancement in post-fracture elongation when notch radius increased from 3 mm to 6 mm; and (3) Strain-hardening effect exhibited rate dependence under dynamic loading, with reduced hardening index within the tested strain rate range. The Johnson–Cook constitutive model and failure criterion were modified and parameterized based on experimental data. A 3D tensile simulation model developed in ABAQUS demonstrated strong agreement with experimental results, achieving a 0.97 correlation coefficient for load–displacement curves, thereby validating the modified models. Scanning electron microscopy (SEM) analysis of fracture surfaces revealed temperature- and strain rate-dependent microstructural characteristics, dominated by ductile fracture mechanisms involving microvoid nucleation, growth, and coalescence. This research provides theoretical foundations for analyzing Ti alloy structures under impact loading through established temperature–rate-coupled constitutive models. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

14 pages, 4424 KB  
Article
Fabrication and Evaluation of pH-Sensitive Chitosan-Coated Membranes for Enhanced Oil Emulsion Filtration
by Eunseo Choi, Siyoung Byun and Sanghyun Jeong
Membranes 2025, 15(9), 252; https://doi.org/10.3390/membranes15090252 - 27 Aug 2025
Abstract
Oil-contaminated wastewater presents a significant environmental challenge, necessitating the development of efficient and adaptable treatment technologies. In this study, a pH-responsive chitosan-coated polyethersulfone (Ch/PES) membrane was developed and systematically evaluated for oil/water separation performance under varying pH conditions. PES was chosen as the [...] Read more.
Oil-contaminated wastewater presents a significant environmental challenge, necessitating the development of efficient and adaptable treatment technologies. In this study, a pH-responsive chitosan-coated polyethersulfone (Ch/PES) membrane was developed and systematically evaluated for oil/water separation performance under varying pH conditions. PES was chosen as the base membrane material due to its excellent chemical resistance and mechanical durability, while Ch, a biodegradable and environmentally friendly biopolymer with pH-sensitive properties, was applied as a functional surface coating. The Ch/PES membrane was successfully fabricated and characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy, confirming successful surface modification and structural integrity. Additional analyses—including underwater oil contact angle measurements, porosity assessment, and cross-sectional morphological evaluation—demonstrated the membrane’s dynamic pH-responsive wettability and pore size modulation. Oil emulsion separation experiments, conducted using sodium dodecyl sulfate-stabilized emulsions, revealed that the Ch/PES membrane achieved oil removal efficiencies exceeding 97% under acidic conditions. This enhancement was attributed to increased hydrophilicity and reduced effective pore size resulting from chitosan swelling. In contrast, under alkaline conditions, the membrane exhibited greater oleophilicity and maintained a relatively stable pore structure, leading to a reduced separation efficiency of 83.8%. Compared to the unmodified PES membrane, the Ch/PES membrane demonstrated significantly improved responsiveness and adaptability to changes in pH, underscoring its potential as a versatile platform for treating oil-contaminated wastewater of varying chemistries. These findings suggest that the Ch/PES membrane offers a promising, sustainable, and efficient solution for advanced oil/water separation applications. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

24 pages, 2062 KB  
Article
A Flexible Multi-Channel Deep Network Leveraging Texture and Spatial Features for Diagnosing New COVID-19 Variants in Lung CT Scans
by Shervan Fekri-Ershad and Khalegh Behrouz Dehkordi
Tomography 2025, 11(9), 99; https://doi.org/10.3390/tomography11090099 - 27 Aug 2025
Abstract
Background: The COVID-19 pandemic has claimed thousands of lives worldwide. While infection rates have declined in recent years, emerging variants remain a deadly threat. Accurate diagnosis is critical to curbing transmission and improving treatment outcomes. However, the similarity of COVID-19 symptoms to those [...] Read more.
Background: The COVID-19 pandemic has claimed thousands of lives worldwide. While infection rates have declined in recent years, emerging variants remain a deadly threat. Accurate diagnosis is critical to curbing transmission and improving treatment outcomes. However, the similarity of COVID-19 symptoms to those of the common cold and flu has spurred the development of automated diagnostic methods, particularly through lung computed-tomography (CT) scan analysis. Methodology: This paper proposes a novel deep learning-based approach for detecting diverse COVID-19 variants using advanced textural feature extraction. The framework employs a dual-channel convolutional neural network (CNN), where one channel processes texture-based features and the other analyzes spatial information. Unlike existing methods, our model dynamically learns textural patterns during training, eliminating reliance on predefined features. A modified local binary pattern (LBP) technique extracts texture data in matrix form, while the CNN’s adaptable internal architecture optimizes the balance between accuracy and computational efficiency. To enhance performance, hyperparameters are fine-tuned using the Adam optimizer and focal loss function. Results: The proposed method is evaluated on two benchmark datasets, COVID-349 and Italian COVID-Set, which include diverse COVID-19 variants. Conclusions: The results demonstrate its superior accuracy (94.63% and 95.47%, respectively), outperforming competing approaches in precision, recall, and overall diagnostic reliability. Full article
Show Figures

Figure 1

14 pages, 2768 KB  
Article
Biosynthesis of the Siderophore Desferrioxamine E in Rouxiella badensis SER3 and Its Antagonistic Activity Against Fusarium brachygibbosum
by Luzmaria R. Morales-Cedeño, Sergio de los Santos Villalobos, Pedro D. Loeza-Lara, Debasis Mitra, Ajay Kumar, Ma. del Carmen Orozco-Mosqueda and Gustavo Santoyo
Appl. Microbiol. 2025, 5(3), 91; https://doi.org/10.3390/applmicrobiol5030091 - 26 Aug 2025
Abstract
Iron is a limiting factor for plant and microbial growth because, in soil environments, it is predominantly present as oxyhydroxide minerals, rendering it unavailable to plants and microorganisms. Siderophores are chelating agents secreted to solubilize iron and facilitate its uptake. To understand the [...] Read more.
Iron is a limiting factor for plant and microbial growth because, in soil environments, it is predominantly present as oxyhydroxide minerals, rendering it unavailable to plants and microorganisms. Siderophores are chelating agents secreted to solubilize iron and facilitate its uptake. To understand the evolutionary and ecological dynamics of microbial communities, as well as the evolution of pathogens within hosts, it is essential to study the genes shared between microorganisms for environmental adaptation and survival. In this study, we conducted microbiological assays to evaluate the effect of the siderophore produced by Rouxiella badensis strain SER3 on the mycelial growth of fungal pathogens such as Fusarium brachygibbosum 4BF. Using spectrophotometric techniques and bioinformatics tools, we identified desferrioxamine E (nocardamine) in the culture supernatant, and the corresponding biosynthetic gene cluster in the SER3 genome was confirmed through antiSMASH analysis and synteny comparisons. Gene expression analysis by RT-PCR showed differential expression of biosynthetic precursors when strain SER3 was grown alone or in interaction with fungal pathogen. Finally, scanning electron microscopy revealed structural damage to F. brachygibbosum hyphae during co-culture with strain SER3. These results suggest that the production of desferrioxamine E may act as a biocontrol mechanism employed by R. badensis SER3 against F. brachygibbosum. Full article
(This article belongs to the Topic New Challenges on Plant–Microbe Interactions)
Show Figures

Figure 1

8 pages, 1834 KB  
Brief Report
Preclinical Water-Mediated Ultrasound Platform Using Clinical Field of View for Molecular Targeted Contrast-Enhanced Ultrasound
by Stavros Melemenidis, Anna Stephanie Kim, Jenny M. Vo-Phamhi, Edward E. Graves, Ahmed Nagy El Kaffas and Dimitre Hristov
Diagnostics 2025, 15(17), 2149; https://doi.org/10.3390/diagnostics15172149 - 26 Aug 2025
Viewed by 96
Abstract
We report a low-cost protocol and platform for whole-abdomen 3D dynamic contrast-enhanced ultrasound (DCE-US) imaging in mice using a clinical matrix-array transducer. Background/Objectives: This platform addresses common limitations of preclinical ultrasound systems. In particular, these systems often lack real-time volumetric and molecular [...] Read more.
We report a low-cost protocol and platform for whole-abdomen 3D dynamic contrast-enhanced ultrasound (DCE-US) imaging in mice using a clinical matrix-array transducer. Background/Objectives: This platform addresses common limitations of preclinical ultrasound systems. In particular, these systems often lack real-time volumetric and molecular imaging capabilities. Methods: Using a modified silicone cup and water bath configuration, mice with dual subcutaneous tumors were imaged in vivo on a clinical EPIQ 7 system equipped with an X6-1 transducer. Results: Intravenous administration of targeted microbubbles enabled high-resolution, contrast-mode 3D imaging at multiple time points. Volumetric reconstructions captured both tumors and surrounding anatomy in a single scan, while time–intensity curves and Differential Targeted Enhancement (DTE) analysis revealed greater microbubble uptake in irradiated tumors, consistent with elevated P-selectin expression. Conclusions: This standardized imaging platform enables whole-abdomen molecular DCE-US in preclinical studies, facilitating intra-animal comparisons of vascular and molecular features across lesions or organs. Full article
(This article belongs to the Section Point-of-Care Diagnostics and Devices)
Show Figures

Figure 1

23 pages, 11360 KB  
Article
Dynamic Behaviors of the Loess Modified by Fly Ash and Lignin Under the Coupled Effect of Dry-Wet and Frozen-Thaw Cycles
by Qian Wang, Chen Li, Xiumei Zhong, Shan Yan, Haiping Ma, Xuefeng Hu and Songhan Wu
Water 2025, 17(17), 2512; https://doi.org/10.3390/w17172512 - 22 Aug 2025
Viewed by 266
Abstract
Loess has poor engineering properties, including wet subsidence and dynamic fragility, and the dynamic stability of the loess subgrades can be improved by compacted modified loess mixing industrial wastes such as fly ash and lignin. However, the performance of the modified loess under [...] Read more.
Loess has poor engineering properties, including wet subsidence and dynamic fragility, and the dynamic stability of the loess subgrades can be improved by compacted modified loess mixing industrial wastes such as fly ash and lignin. However, the performance of the modified loess under complex environmental conditions, including dry and wet cycles, as well as freeze-thaw cycles, remains unclear. In this study, the dynamic and structural characteristics of modified loess mixing fly ash and lignin under the coupling effect of dry-wet/freeze-thaw cycles were investigated through laboratory tests, including dry-wet–freeze/thaw cycle tests, dynamic triaxial tests, and scanning electron microscope tests. The cumulative plastic deformation characteristics of the improved loess under different dry-wet cycles and freeze-thaw cycles were analyzed. Combined with the scanning electron microscope test results, the attenuation mechanism of the strength of the improved loess under dry-wet/freeze-thaw coupling was analyzed. The results show that the dry-wet/freeze-thaw cycles have a significant effect on the dynamic deformation of the improved loess. With the increase in dry-wet/freeze-thaw cycles, the cumulative plastic deformation of the improved loess increases logarithmically with the rise in vibration times. With the increase in the number of dry-wet/freeze-thaw cycles, the improved loess becomes loose. The micro-cracks formed in the modified loess due to the connection and directional arrangement of the pores, and become wider and wider with the increase in dry-wet/freeze-thaw cycles. The apparent porosity, average porous diameter, and pore fractal dimension of the improved loess increase, while the probability entropy decreases. Compared with freeze-thaw cycles, dry-wet cycles had a greater effect on the microstructure of the improved loess, which made the deterioration of the dynamic stability of the improved loess more obvious. Full article
Show Figures

Figure 1

24 pages, 4305 KB  
Article
Driving the Green Transition: Innovative Tyre Formulation Using Agricultural and Pyrolysed Tyres Waste
by Carlo Di Bernardo, Francesca Demichelis, Mehran Dadkhah, Debora Fino, Massimo Messori and Camilla Noè
Polymers 2025, 17(17), 2275; https://doi.org/10.3390/polym17172275 - 22 Aug 2025
Viewed by 392
Abstract
The rubber industry is facing increasing pressure to adopt sustainable practices due to environmental concerns associated with the use of non-renewable resources and the growing accumulation of waste tyres and agricultural byproducts. This study explores the potential of partially replacing conventional carbon black [...] Read more.
The rubber industry is facing increasing pressure to adopt sustainable practices due to environmental concerns associated with the use of non-renewable resources and the growing accumulation of waste tyres and agricultural byproducts. This study explores the potential of partially replacing conventional carbon black (CB) with sustainable alternatives derived from agricultural waste (wine by-products) and pyrolysed waste tyres in natural rubber/styrene-butadiene rubber (NR/SBR) composites for tyre applications. A series of NR/SBR composites were formulated with varying ratios of CB to agricultural waste and pyrolysed tyre waste, while maintaining consistent levels of other additives. The resulting composites were then subjected to a comprehensive suite of analyses, including scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area measurements, Fourier transform infrared spectroscopy (FTIR), bound rubber content determination, Payne effect analysis, thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), and mechanical property testing. Furthermore, a Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) analysis were conducted to evaluate the environmental and economic viability of the proposed CB replacements. The results reveal that the incorporation of agricultural waste and pyrolysed tyre waste can significantly impact the curing behaviour, mechanical properties, and thermal stability of rubber composites. Importantly, some of the formulations demonstrate comparable tensile strength, elongation at break, and hardness compared to traditional CB-filled composites. The LCA and LCC analyses further highlight the potential for substantial reductions in greenhouse gas emissions, fossil resource depletion, and overall production costs, thereby supporting the transition toward more sustainable tyre manufacturing practices. Full article
(This article belongs to the Special Issue Sustainable Bio-Based and Circular Polymers and Composites)
Show Figures

Graphical abstract

17 pages, 1723 KB  
Article
HoneyLite: A Lightweight Honeypot Security Solution for SMEs
by Nurayn AlQahtan, Aseel AlOlayan, AbdulAziz AlAjaji and Abdulaziz Almaslukh
Sensors 2025, 25(16), 5207; https://doi.org/10.3390/s25165207 - 21 Aug 2025
Viewed by 314
Abstract
Small and medium-sized enterprises (SMEs) are increasingly targeted by cyber threats but often lack the financial and technical resources to implement advanced security systems. This paper presents HoneyLite, a lightweight and dynamic honeypot-based security solution specifically designed to meet the constraints and cybersecurity [...] Read more.
Small and medium-sized enterprises (SMEs) are increasingly targeted by cyber threats but often lack the financial and technical resources to implement advanced security systems. This paper presents HoneyLite, a lightweight and dynamic honeypot-based security solution specifically designed to meet the constraints and cybersecurity needs of SMEs. Unlike traditional honeypots, HoneyLite integrates real-time network traffic analysis with automated malware detection via the VirusTotal API, enabling it to identify a wide range of cyber threats, including TCP scans, FTP/SSH intrusions, ICMP flood attacks, and malicious file uploads. Developed using open-source tools, the system operates with minimal resource overhead and is validated within a simulated virtual environment. It also generates detailed threat reports to support incident analysis and response. By combining affordability, adaptability, and comprehensive threat visibility, HoneyLite offers a practical and scalable solution to help SMEs detect, analyze, and respond to modern cyberattacks in real time. Full article
(This article belongs to the Special Issue IoT Network Security (Second Edition))
Show Figures

Figure 1

17 pages, 2028 KB  
Review
CMOS-Compatible Ultrasonic 3D Beamforming Sensor System for Automotive Applications
by Khurshid Hussain, Wanhae Jeon, Yongmin Lee, In-Hyouk Song and Inn-Yeal Oh
Appl. Sci. 2025, 15(16), 9201; https://doi.org/10.3390/app15169201 - 21 Aug 2025
Viewed by 372
Abstract
This paper presents a fully electronic, CMOS-compatible ultrasonic sensing system integrated into a 3D beamforming architecture for advanced automotive applications. The proposed system eliminates mechanical scanning by implementing a dual-path beamforming structure comprising programmable transmit (TX) and receive (RX) paths. The TX beamformer [...] Read more.
This paper presents a fully electronic, CMOS-compatible ultrasonic sensing system integrated into a 3D beamforming architecture for advanced automotive applications. The proposed system eliminates mechanical scanning by implementing a dual-path beamforming structure comprising programmable transmit (TX) and receive (RX) paths. The TX beamformer introduces per-element time delays derived from steering angles to control the direction of ultrasonic wave propagation, while the RX beamformer aligns echo signals for spatial focusing. Electrostatic actuation governs the CMOS-compatible ultrasonic transmission mechanism, whereas dynamic modulation under acoustic pressure forms the reception mechanism. The system architecture supports full horizontal and vertical angular coverage, leveraging delay-and-sum processing to achieve electronically steerable beams. The system enables low-power, compact, and high-resolution sensing modules by integrating signal generation, beam control, and delay logic within a CMOS framework. Theoretical modeling demonstrates its capability to support fine spatial resolution and fast response, making it suitable for integration into autonomous vehicle platforms and driver-assistance systems. Full article
(This article belongs to the Special Issue Ultrasonic Transducers in Next-Generation Application)
Show Figures

Figure 1

25 pages, 15459 KB  
Article
Effect of Fiber Type on the Thermomechanical Performance of High-Density Polyethylene (HDPE) Composites with Continuous Reinforcement
by José Luis Colón Quintana, Scott Tomlinson and Roberto A. Lopez-Anido
J. Compos. Sci. 2025, 9(8), 450; https://doi.org/10.3390/jcs9080450 - 20 Aug 2025
Viewed by 444
Abstract
The thermal, thermomechanical, and viscoelastic properties of continuous unidirectional (UD) glass fiber/high-density polyethylene (GF/HDPE) and ultra-high-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) tapes are characterized in this paper in order to support their use in extreme environments. Unlike prior studies that focus on short-fiber composites or [...] Read more.
The thermal, thermomechanical, and viscoelastic properties of continuous unidirectional (UD) glass fiber/high-density polyethylene (GF/HDPE) and ultra-high-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) tapes are characterized in this paper in order to support their use in extreme environments. Unlike prior studies that focus on short-fiber composites or limited thermal conditions, this work examines continuous fiber architectures under five operational environments derived from Army Regulation 70-38, reflecting realistic defense-relevant extremes. Differential scanning calorimetry (DSC) was used to identify melting transitions for GF/HDPE and UHMWPE/HDPE, which guided the selection of test conditions for thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA). TMA revealed anisotropic thermal expansion consistent with fiber orientation, while DMA, via strain sweep, temperature ramp, frequency sweep, and stress relaxation, quantified their temperature- and time-dependent viscoelastic behavior. The frequency-dependent storage modulus highlighted multiple resonant modes, and stress relaxation data were fitted with high accuracy (R2 > 0.99) to viscoelastic models, yielding model parameters that can be used for predictive simulations of time-dependent material behavior. A comparative analysis between the two material systems showed that UHMWPE/HDPE offers enhanced unidirectional stiffness and better low-temperature performance. At the same time, GF/HDPE exhibits lower thermal expansion, better transverse stiffness, and greater stability at elevated temperatures. These differences highlight the impact of fiber type on thermal and mechanical responses, informing material selection for applications that require directional load-bearing or dimensional control under thermal cycling. By integrating thermal and viscoelastic characterization across realistic operational profiles, this study provides a foundational dataset for the application of continuous fiber thermoplastic tapes in structural components exposed to harsh thermal and mechanical conditions. Full article
Show Figures

Figure 1

22 pages, 9617 KB  
Article
An Improved PCA and Jacobian-Enhanced Whale Optimization Collaborative Method for Point Cloud Registration
by Haiman Chu, Jingjing Fan, Zai Luo, Yinbao Cheng, Yingqi Tang and Yaru Li
Photonics 2025, 12(8), 823; https://doi.org/10.3390/photonics12080823 - 19 Aug 2025
Viewed by 146
Abstract
Scanned data often contain substantial outliers due to environmental interference, which drastically decreases the performance of traditional registration algorithms. To address this issue, this article proposes an improved principal component analysis (PCA) and Jacobian-enhanced whale optimization collaborative method for point cloud registration. First, [...] Read more.
Scanned data often contain substantial outliers due to environmental interference, which drastically decreases the performance of traditional registration algorithms. To address this issue, this article proposes an improved principal component analysis (PCA) and Jacobian-enhanced whale optimization collaborative method for point cloud registration. First, an improved PCA point cloud initial registration algorithm is proposed by introducing the normal vector local information to set the screening conditions. This algorithm can streamline the original set of 48 candidate rotation matrices down to 4, achieving rapid point cloud registration at the data level between the scanned and model point clouds. Second, a Jacobian whale optimization algorithm for fine registration (JWOA-FR) is proposed by incorporating local gradient information. The algorithm employs gradient descent on optimal whale individuals to dynamically guide global search updates, thereby enhancing both registration accuracy and efficiency. Finally, a threshold is set to remove the outliers contained in the workpieces based on the information of the matched point pairs. The iterative closest point (ICP) algorithm is further used to improve registration accuracy for data without outliers. The experimental results showed that registration errors of large workpieces 1, 2, and 3 were 2.0755 mm, 2.3955 mm, and 2.5823 mm, respectively, after outlier removal, which indicates that the proposed method is applicable to data with outliers, and the registration accuracy meets the requirements. Full article
(This article belongs to the Special Issue Advancements in Optics and Laser Measurement)
Show Figures

Figure 1

21 pages, 4127 KB  
Article
Riboflavin as a Dual-Function Additive for Enhancing Biodegradation in Piezoelectric PLA/BT Composites
by Natalia Puszczykowska, Piotr Rytlewski, Agnieszka Mirkowska, Paweł Cyprys, Piotr Augustyn and Kacper Fiedurek
Materials 2025, 18(16), 3860; https://doi.org/10.3390/ma18163860 - 18 Aug 2025
Viewed by 365
Abstract
Poly(lactic acid)/barium titanate (PLA/BT) composites exhibit piezoelectric properties desirable for bone tissue engineering, but their low biodegradability limits implant resorption. In this study, riboflavin (RF) is introduced as a dual-function additive that enhances biodegradation in PLA/BT composites. Its addition led to significantly increased [...] Read more.
Poly(lactic acid)/barium titanate (PLA/BT) composites exhibit piezoelectric properties desirable for bone tissue engineering, but their low biodegradability limits implant resorption. In this study, riboflavin (RF) is introduced as a dual-function additive that enhances biodegradation in PLA/BT composites. Its addition led to significantly increased microbial colonization and a five-fold higher mass loss compared to unmodified samples. These observations are consistent with the known polarity of RF and its role as a cofactor in microbial metabolism. The PLA/BT/RF composites are subjected to full characterization, including thermogravimetric analysis (TG), differential scanning calorimetry (DSC), tensile testing, dynamic mechanical analysis (DMA), dielectric permittivity measurements, and determination of piezoelectric coefficient d33. Compared to PLA/BT, RF-containing composites exhibit significantly accelerated biodegradation, with mass loss reaching up to 16% after 28 days, while maintaining functional piezoelectricity (d33 ≈ 3.9 pC/N). Scanning electron microscopy (SEM) performed after biodegradation reveals intensified microbial colonization and surface deterioration in the RF-modified samples. The data confirm that riboflavin serves as an effective modifier, enabling controlled biodegradation without compromising electromechanical performance. These results support the use of PLA-based piezoelectric composites for resorbable biomedical implants. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

Back to TopTop