Three-Dimensional Modeling and Analysis of Directed Energy Deposition Melt Pools Based on Physical Information Neural Networks
Abstract
1. Introduction
2. Methodology
2.1. Governing Equation
2.2. Neural Network Modeling of Physical Information
2.2.1. Data Sampling
2.2.2. Dynamic Learning Rate-Based Physical Information Neural Networks
2.3. Dynamically Adjusting Learning Rate Strategies
Algorithm 1: Dynamic Learning Rate Adjustment During Training |
Require: Initial learning rate α0; best loss value Lbest = ∞; patience counter p = 0; maximum patience threshold P = 50; improvement threshold δ = 0.001; decay factor γ = 0.05; maximum number of epochs N. 1: Initialize model parameters; n←0; 2: repeat 3: n←n + 1; 4: Forward propagation to compute predictions; 5: Calculate current loss Ln; 6: if Ln < Lbest × (1−δ) then: 7: Lbest←Ln; 8: p←0; Reset patience counter 9: else: 10: p←p + 1; 11: if p ≥ P then: 12: α0←α0 × γ; Apply learning rate decay 13: p←0; Reset patience counter 14: end if 15: end if 16: Update model parameters using optimizer with learning rate α0; 17: until n > N; The optimized model parameters with adaptive learning rate. |
3. Experimentation and Verification
3.1. Experimental Data Collection
3.2. Calibration and Validation of Numerical Models
4. Results and Discussion
4.1. Prediction of Three-Dimensional Temperature Field Based on Improved PINN
4.2. Prediction and Analysis of Melt Pool Temperature and Size Under Different Processes Based on Improved PINN Modeling
4.2.1. Prediction of Molten Pool Temperature and Size at Different Laser Powers
4.2.2. Effect of Scanning Speed on Temperature Distribution
4.3. Sensitivity Analysis
4.4. Orthogonal Experiment
4.5. Prediction and Analysis of Temperature Field Under Flat-Top Heat Source Based on DLR-PINN
5. Conclusions
- (1)
- Aiming at the multi-scale physical characteristics in the DED process, a region-specific differentiated point sampling strategy is proposed. This strategy avoids redundant sampling while ensuring prediction accuracy, effectively reducing the training data by approximately 10%, and significantly lowering the computational costs of data generation and model training.
- (2)
- Considering the nonlinearity between material thermophysical parameters and temperature increases the nonlinearity of the model. Therefore, a dynamic learning rate adjustment strategy is adopted, which significantly improves the convergence and training stability of the model. By combining transfer learning technology, the convergence speed of model training is remarkably enhanced. Under the hardware environment of the NVIDIA GTX 1050 GPU, the prediction of a single three-dimensional transient temperature field only takes about 10 s, providing a technical basis for real-time process monitoring and optimization.
- (3)
- The proposed DLR-PINN model exhibits excellent performance in predicting key parameters of the molten pool. Compared with the finite element results at the same moment, the model can obtain a more complete three-dimensional temperature point cloud distribution, and the maximum mean absolute percentage error of temperature field prediction under different processes is 0.53%. The mean absolute percentage error for predicting the length, width, and depth of the molten pool is 3.69%, 2.48%, and 6.96%, respectively. Moreover, the prediction results of the model successfully reproduce the evolution law of the HAZ with process parameters (as shown in Figure 13), demonstrating that the model has strong physical consistency.
- (4)
- Parameter sensitivity analysis shows that the maximum temperature and size of the molten pool increase significantly with the increase in laser power or the decrease in scanning speed. Among them, the scanning speed v is the primary influencing factor, and its regulatory weight on the molten pool characteristics is higher than that of the laser power.
- (5)
- The developed PINN model can accurately predict the temperature distribution under the flat-top heat source. Compared with the Gaussian heat source, the temperature gradient around the molten pool under the flat-top heat source is smaller, and the temperature distribution is more uniform, which is beneficial to improving the forming quality.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bi, J.; Wu, L.; Li, S.; Yang, Z.; Jia, X.; Starostenkov, M.D.; Dong, G. Beam Shaping Technology and Its Application in Metal Laser Additive Manufacturing: A Review. J. Mater. Res. Technol. 2023, 26, 4606–4628. [Google Scholar] [CrossRef]
- Svetlizky, D.; Das, M.; Zheng, B.; Vyatskikh, A.L.; Bose, S.; Bandyopadhyay, A.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed Energy Deposition (DED) Additive Manufacturing: Physical Characteristics, Defects, Challenges and Applications. Mater. Today 2021, 49, 271–295. [Google Scholar] [CrossRef]
- Luo, M.; Li, R.; Zheng, D.; Kang, J.; Wu, H.; Deng, S.; Niu, P. Formation Mechanism of Inherent Spatial Heterogeneity of Microstructure and Mechanical Properties of NiTi SMA Prepared by Laser Directed Energy Deposition. Int. J. Extrem. Manuf. 2023, 5, 035005. [Google Scholar] [CrossRef]
- Chen, S.; Gao, H.; Zhang, Y.; Wu, Q.; Gao, Z.; Zhou, X. Review on Residual Stresses in Metal Additive Manufacturing: Formation Mechanisms, Parameter Dependencies, Prediction and Control Approaches. J. Mater. Res. Technol. 2022, 17, 2950–2974. [Google Scholar] [CrossRef]
- Kiran, A.; Hodek, J.; Vavřík, J.; Urbánek, M.; Džugan, J. Numerical Simulation Development and Computational Optimization for Directed Energy Deposition Additive Manufacturing Process. Materials 2020, 13, 2666. [Google Scholar] [CrossRef]
- Shu, Y.; Galles, D.; Tertuliano, O.A.; McWilliams, B.A.; Yang, N.; Cai, W.; Lew, A.J. A Critical Look at the Prediction of the Temperature Field around a Laser-Induced Melt Pool on Metallic Substrates. Sci. Rep. 2021, 11, 12224. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Li, W.; Ma, Z.; Song, J.; Hu, G.; Wang, T.; Lyu, Z.; Zhang, Y.; Zhang, H. Evolution of Melt Pool Motion and Temperature Field Based on Powder Scale Modeling during Laser Directed Energy Deposition Process. Appl. Therm. Eng. 2024, 243, 122564. [Google Scholar] [CrossRef]
- Chen, F.; Yan, W. High-Fidelity Modelling of Thermal Stress for Additive Manufacturing by Linking Thermal-Fluid and Mechanical Models. Mater. Des. 2020, 196, 109185. [Google Scholar] [CrossRef]
- Qin, J.; Hu, F.; Liu, Y.; Witherell, P.; Wang, C.C.L.; Rosen, D.W.; Simpson, T.W.; Lu, Y.; Tang, Q. Research and Application of Machine Learning for Additive Manufacturing. Addit. Manuf. 2022, 52, 102691. [Google Scholar] [CrossRef]
- Fu, Y.; Downey, A.R.J.; Yuan, L.; Zhang, T.; Pratt, A.; Balogun, Y. Machine Learning Algorithms for Defect Detection in Metal Laser-Based Additive Manufacturing: A Review. J. Manuf. Process. 2022, 75, 693–710. [Google Scholar] [CrossRef]
- Wang, C.; Tan, X.P.; Tor, S.B.; Lim, C.S. Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives. Addit. Manuf. 2020, 36, 101538. [Google Scholar] [CrossRef]
- Ren, K.; Chew, Y.; Zhang, Y.F.; Fuh, J.Y.H.; Bi, G.J. Thermal Field Prediction for Laser Scanning Paths in Laser Aided Additive Manufacturing by Physics-Based Machine Learning. Comput. Methods Appl. Mech. Eng. 2020, 362, 112734. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Z.; Wu, D. Prediction of Melt Pool Temperature in Directed Energy Deposition Using Machine Learning. Addit. Manuf. 2021, 37, 101692. [Google Scholar] [CrossRef]
- Chen, F.; Yang, M.; Yan, W. Data-Driven Prognostic Model for Temperature Field in Additive Manufacturing Based on the High-Fidelity Thermal-Fluid Flow Simulation. Comput. Methods Appl. Mech. Eng. 2022, 392, 114652. [Google Scholar] [CrossRef]
- Guo, S.; Agarwal, M.; Cooper, C.; Tian, Q.; Gao, R.X.; Guo, W.; Guo, Y.B. Machine Learning for Metal Additive Manufacturing: Towards a Physics-Informed Data-Driven Paradigm. J. Manuf. Syst. 2022, 62, 145–163. [Google Scholar] [CrossRef]
- Paturi, U.M.R.; Palakurthy, S.T.; Cheruku, S.; Vidhya Darshini, B.; Reddy, N.S. Role of Machine Learning in Additive Manufacturing of Titanium Alloys—A Review. Arch. Comput. Methods Eng. 2023, 30, 5053–5069. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-Informed Machine Learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Meng, C.; Seo, S.; Cao, D.; Griesemer, S.; Liu, Y. When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning. arXiv 2022, arXiv:2203.16797. [Google Scholar] [CrossRef]
- Hao, Z.; Liu, S.; Zhang, Y.; Ying, C.; Feng, Y.; Su, H.; Zhu, J. Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications. Methods Appl. 2023, arXiv:2211.08064. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Laubscher, R. Simulation of Multi-Species Flow and Heat Transfer Using Physics-Informed Neural Networks. Phys. Fluids 2021, 33, 087101. [Google Scholar] [CrossRef]
- Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review. Acta Mech. Sin. 2021, 37, 1727–1738. [Google Scholar] [CrossRef]
- Qiu, R.; Huang, R.; Yao, X.; Wang, J.; Zhang, Z.; Yue, J.; Zeng, Z.; Wang, Y. Physics-Informed Neural Networks for Phase-Field Method in Two-Phase Flow. Phys. Fluids 2022, 34, 052109. [Google Scholar] [CrossRef]
- Cai, S.; Wang, Z.; Wang, S.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks for Heat Transfer Problems. J. Heat. Transf. 2021, 143, 060801. [Google Scholar] [CrossRef]
- Misyris, G.S.; Venzke, A.; Chatzivasileiadis, S. Physics-Informed Neural Networks for Power Systems. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020. [Google Scholar]
- Zhu, Q.; Liu, Z.; Yan, J. Machine Learning for Metal Additive Manufacturing: Predicting Temperature and Melt Pool Fluid Dynamics Using Physics-Informed Neural Networks. Comput. Mech. 2021, 67, 619–635. [Google Scholar] [CrossRef]
- Xie, J.; Chai, Z.; Xu, L.; Ren, X.; Liu, S.; Chen, X. 3D Temperature Field Prediction in Direct Energy Deposition of Metals Using Physics Informed Neural Network. Int. J. Adv. Manuf. Technol. 2022, 119, 3449–3468. [Google Scholar] [CrossRef]
- Liao, S.; Xue, T.; Jeong, J.; Webster, S.; Ehmann, K.; Cao, J. Hybrid Thermal Modeling of Additive Manufacturing Processes Using Physics-Informed Neural Networks for Temperature Prediction and Parameter Identification. Comput. Mech. 2023, 72, 499–512. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.; Di, Y.; Wang, L.; Wang, H.; Zhou, Q. A Physics-Informed Neural Network Framework to Predict 3D Temperature Field without Labeled Data in Process of Laser Metal Deposition. Eng. Appl. Artif. Intell. 2023, 120, 105908. [Google Scholar] [CrossRef]
- Denlinger, E.R.; Michaleris, P. Effect of Stress Relaxation on Distortion in Additive Manufacturing Process Modeling. Addit. Manuf. 2016, 12, 51–59. [Google Scholar] [CrossRef]
- Lu, X.; Lin, X.; Chiumenti, M.; Cervera, M.; Hu, Y.; Ji, X.; Ma, L.; Huang, W. In Situ Measurements and Thermo-Mechanical Simulation of Ti–6Al–4V Laser Solid Forming Processes. Int. J. Mech. Sci. 2019, 153–154, 119–130. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, H.; Peng, G.; Yin, J.; Zeng, X. Microstructure Prediction of Selective Laser Melting AlSi10Mg Using Finite Element Analysis. Mater. Des. 2018, 142, 319–328. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Qi, Y.; Zhu, H. Residual Stress Reduction and Surface Quality Improvement of Dual-Laser Powder Bed fusion. Addit. Manuf. 2023, 71, 103565. [Google Scholar] [CrossRef]
- Jonaet, A.M.; Park, H.S.; Myung, L.C. Prediction of Residual Stress and Deformation Based on the Temperature Distribution in 3D-Printed Parts. Int. J. Adv. Manuf. Technol. 2021, 113, 2227–2242. [Google Scholar] [CrossRef]
- PyTorch Core Team. torch.optim.lr_scheduler. ReduceLROnPlateau. PyTorch Documentation. 2023. Available online: https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html (accessed on 12 August 2025).
- Su, J.-L.; Jiang, F.-L.; Teng, J.; Chen, L.-Q.; Requena, G.; Yan, M.; Zhang, L.-C.; Wang, Y.M.; Okulov, I.V.; Zhu, H.-M.; et al. Laser Additive Manufacturing of Titanium Alloys: Process, Materials and Post-Processing. Rare Met. 2024, 43, 6288–6328. [Google Scholar] [CrossRef]
- Zafari, A.; Akula, S.P.; Li, M.; Wakai, A.; Gabourel, A.; Clark, S.J.; Fezzaa, K.; Gibson, I.; Moridi, A. Operando Synchrotron X-Ray Analysis of Melt Pool Dynamics in an al-Sn Immiscible Alloy. Addit. Manuf. 2025, 103, 104754. [Google Scholar] [CrossRef]
- Zhao, K.; Chen, M.; Wang, Z.; Li, R.; Jia, Z.; Lan, H.; Sun, G. Investigation of Thermal and Fluid Dynamics Behaviors of Melt Pool during Laser Direct Metal Deposition on Inclined Substrates. Mater. Today Commun. 2024, 41, 110953. [Google Scholar] [CrossRef]
- Février, S.; Fernández, E.; Lacroix, M.; Boman, R.; Ponthot, J.-P. Simulation of Melt Pool Dynamics Including Vaporization Using the Particle Finite Element Method. Comput. Mech. 2024, 75, 1787–1815. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Zhang, D.; Cong, W. Laser Remelting of CoCrFeNiTi High Entropy Alloy Coatings Fabricated by Directed Energy Deposition: Effects of Remelting Laser Power. Opt. Laser Technol. 2023, 158, 108871. [Google Scholar] [CrossRef]
- Liu, T.-S.; Chen, P.; Qiu, F.; Yang, H.-Y.; Jin, N.T.Y.; Chew, Y.; Wang, D.; Li, R.; Jiang, Q.-C.; Tan, C. Review on Laser Directed Energy Deposited Aluminum Alloys. Int. J. Extrem. Manuf. 2024, 6, 022004. [Google Scholar] [CrossRef]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review. Appl. Sci. 2020, 10, 3310. [Google Scholar] [CrossRef]
- Fu, Y.; Gu, H.; Qian, L.; Ren, X. Dynamics of Molten Pool Evolution on Flat Plates and Outer/Inner Shaft Surfaces in High-Speed Laser Cladding. Adv. Lasers Optoelectron. 2024, 61, 304–318. [Google Scholar] [CrossRef]
- Yuan, W.; Chen, H.; Cheng, T.; Wei, Q. Effects of Laser Scanning Speeds on Different States of the Molten Pool during Selective Laser Melting: Simulation and Experiment. Mater. Des. 2020, 189, 108542. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, W.; Wang, Q.; Sun, Y.; Chen, J.; Du, C.; Xing, H.; Li, N.; Tian, W. Effect of Beam Energy Density Characteristics on Microstructure and Mechanical Properties of Nickel-Based Alloys Manufactured by Laser Directed Energy Deposition. J. Mater. Process. Technol. 2023, 319, 118074. [Google Scholar] [CrossRef]
- Sow, M.C.; De Terris, T.; Castelnau, O.; Hamouche, Z.; Coste, F.; Fabbro, R.; Peyre, P. Influence of Beam Diameter on Laser Powder Bed Fusion (L-PBF) Process. Addit. Manuf. 2020, 36, 101532. [Google Scholar] [CrossRef]
- Xie, J.; Raoelison, R.N.; Zhang, Y.; Liu, Y.; Shou, W.; Mazeran, P.-E.; Kang, N.; Rachik, M. Mesoscopic Segregation in H13 Steel Molten Pool during Laser Remelting: A Combined Influence of Marangoni Convection and Oxidation. J. Mater. Process. Technol. 2023, 316, 117956. [Google Scholar] [CrossRef]
- Wolff, S.J.; Lin, S.; Faierson, E.J.; Liu, W.K.; Wagner, G.J.; Cao, J. A Framework to Link Localized Cooling and Properties of Directed Energy Deposition (DED)-Processed Ti-6Al-4V. Acta Mater. 2017, 132, 106–117. [Google Scholar] [CrossRef]
- Wang, K.; Xie, D.; Lv, F.; Liu, F.; Liu, R.; Liu, D.; Zhao, J. Stability of Molten Pool and Microstructure Evolution of Ti-6Al-4 V during Laser Powder Bed Fusion with a Flat-Top Beam. Addit. Manuf. 2023, 75, 103756. [Google Scholar] [CrossRef]
- Gusarov, A.V.; Grigoriev, S.N.; Volosova, M.A.; Melnik, Y.A.; Laskin, A.; Kotoban, D.V.; Okunkova, A.A. On Productivity of Laser Additive Manufacturing. J. Mater. Process. Technol. 2018, 261, 213–232. [Google Scholar] [CrossRef]
Sampling Strategy | Number of Sampling Points per Unit Time | Training Time (50 Epochs) |
---|---|---|
Differential sampling | 20,939 | 24.5 s |
Uniform sampling | 23,266 | 30.7 s |
P (W) | V (mm/s) | E (J/mm2) |
---|---|---|
1500 | 10 | 50 |
1800 | 10 | 60 |
2000 | 10 | 66.67 |
1500 | 6 | 83.33 |
1500 | 8 | 62.5 |
P (W) | V (mm/s) | Max Error (K) | MAPE (%) | |
---|---|---|---|---|
1 | 1500 | 6 | 51.21 | 0.31 |
2 | 1800 | 6 | 58.38 | 0.36 |
3 | 2000 | 6 | 62.25 | 0.38 |
4 | 1500 | 8 | 41.67 | 0.36 |
5 | 1800 | 8 | 59.15 | 0.37 |
6 | 2000 | 8 | 60.23 | 0.29 |
7 | 1500 | 10 | 32.35 | 0.35 |
8 | 1800 | 10 | 77 | 0.53 |
9 | 2000 | 10 | 80.68 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Qian, Z.; Gao, X.; Li, H.; Peng, Z.; Long, Y. Three-Dimensional Modeling and Analysis of Directed Energy Deposition Melt Pools Based on Physical Information Neural Networks. Appl. Sci. 2025, 15, 9401. https://doi.org/10.3390/app15179401
Han X, Qian Z, Gao X, Li H, Peng Z, Long Y. Three-Dimensional Modeling and Analysis of Directed Energy Deposition Melt Pools Based on Physical Information Neural Networks. Applied Sciences. 2025; 15(17):9401. https://doi.org/10.3390/app15179401
Chicago/Turabian StyleHan, Xiang, Zhuang Qian, Xinyue Gao, Huaping Li, Zhongqing Peng, and Yu Long. 2025. "Three-Dimensional Modeling and Analysis of Directed Energy Deposition Melt Pools Based on Physical Information Neural Networks" Applied Sciences 15, no. 17: 9401. https://doi.org/10.3390/app15179401
APA StyleHan, X., Qian, Z., Gao, X., Li, H., Peng, Z., & Long, Y. (2025). Three-Dimensional Modeling and Analysis of Directed Energy Deposition Melt Pools Based on Physical Information Neural Networks. Applied Sciences, 15(17), 9401. https://doi.org/10.3390/app15179401