Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = dynamic positioning (DP) system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5161 KiB  
Article
AUV Trajectory Planning for Optimized Sensor Data Collection in Internet of Underwater Things
by Talal S. Almuzaini and Andrey V. Savkin
Future Internet 2025, 17(7), 293; https://doi.org/10.3390/fi17070293 - 30 Jun 2025
Viewed by 258
Abstract
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for [...] Read more.
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for a single Autonomous Underwater Vehicle (AUV) operating in coordination with an Unmanned Surface Vehicle (USV) to collect data from multiple Cluster Heads (CHs) deployed across an uneven seafloor. The proposed approach employs a VoI model that captures both the importance and timeliness of sensed data, guiding the AUV to collect and deliver critical information before its value significantly degrades. A forward Dynamic Programming (DP) algorithm is used to jointly optimize the AUV’s trajectory and the USV’s start and end positions, with the objective of maximizing the total residual VoI upon mission completion. The trajectory design incorporates the AUV’s kinematic constraints into travel time estimation, enabling accurate VoI evaluation throughout the mission. Simulation results show that the proposed strategy consistently outperforms conventional baselines in terms of residual VoI and overall system efficiency. These findings highlight the advantages of VoI-aware planning and AUV–USV collaboration for effective data collection in challenging underwater environments. Full article
Show Figures

Figure 1

24 pages, 5959 KiB  
Article
An Information Geometry-Based Track-Before-Detect Algorithm for Range-Azimuth Measurements in Radar Systems
by Jinguo Liu, Hao Wu, Zheng Yang, Xiaoqiang Hua and Yongqiang Cheng
Entropy 2025, 27(6), 637; https://doi.org/10.3390/e27060637 - 14 Jun 2025
Viewed by 510
Abstract
The detection of weak moving targets in heterogeneous clutter backgrounds is a significant challenge in radar systems. In this paper, we propose a track-before-detect (TBD) method based on information geometry (IG) theory applied to range-azimuth measurements, which extends the IG detectors to multi-frame [...] Read more.
The detection of weak moving targets in heterogeneous clutter backgrounds is a significant challenge in radar systems. In this paper, we propose a track-before-detect (TBD) method based on information geometry (IG) theory applied to range-azimuth measurements, which extends the IG detectors to multi-frame detection through inter-frame information integration. The approach capitalizes on the distinctive benefits of the information geometry detection framework in scenarios with strong clutter, while enhancing the integration of information across multiple frames within the TBD approach. Specifically, target and clutter trajectories in multi-frame range-azimuth measurements are modeled on the Hermitian positive definite (HPD) and power spectrum (PS) manifolds. A scoring function based on information geometry, which uses Kullback–Leibler (KL) divergence as a geometric metric, is then devised to assess these motion trajectories. Moreover, this study devises a solution framework employing dynamic programming (DP) with constraints on state transitions, culminating in an integrated merit function. This algorithm identifies target trajectories by maximizing the integrated merit function. Experimental validation using real-recorded sea clutter datasets showcases the effectiveness of the proposed algorithm, yielding a minimum 3 dB enhancement in signal-to-clutter ratio (SCR) compared to traditional approaches. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

18 pages, 3046 KiB  
Article
DP-YOLO: A Lightweight Real-Time Detection Algorithm for Rail Fastener Defects
by Lihua Chen, Qi Sun, Ziyang Han and Fengwen Zhai
Sensors 2025, 25(7), 2139; https://doi.org/10.3390/s25072139 - 28 Mar 2025
Viewed by 631
Abstract
To enable accurate and efficient real-time detection of rail fastener defects under resource-constrained environments, we propose DP-YOLO, an advanced lightweight algorithm based on YOLOv5s with four key optimizations. First, we design a Depthwise Separable Convolution Stage Partial (DSP) module that integrates depthwise separable [...] Read more.
To enable accurate and efficient real-time detection of rail fastener defects under resource-constrained environments, we propose DP-YOLO, an advanced lightweight algorithm based on YOLOv5s with four key optimizations. First, we design a Depthwise Separable Convolution Stage Partial (DSP) module that integrates depthwise separable convolution with a CSP residual connection strategy, reducing model parameters while enhancing recognition accuracy. Second, we introduce a Position-Sensitive Channel Attention (PSCA) mechanism, which calculates spatial statistics (mean and standard deviation) across height and width dimensions for each channel feature map. These statistics are multiplied across corresponding dimensions to generate channel-specific weights, enabling dynamic feature recalibration. Third, the Neck network adopts a GhostC3 structure, which reduces redundancy through linear operations, further minimizing computational costs. Fourth, to improve multi-scale adaptability, we replace the standard loss function with Alpha-IoU, enhancing model robustness. Experiments on the augmented Roboflow Universe Fastener-defect-detection Dataset demonstrate DP-YOLO’s effectiveness: it achieves 87.1% detection accuracy, surpassing the original YOLOv5s by 1.3% in mAP0.5 and 2.1% in mAP0.5:0.95. Additionally, the optimized architecture reduces parameters by 1.3% and computational load by 15.19%. These results validate DP-YOLO’s practical value for resource-efficient, high-precision defect detection in railway maintenance systems. Full article
Show Figures

Figure 1

23 pages, 1351 KiB  
Article
Multi-Observer Fusion Based Minimal-Sensor Adaptive Control for Ship Dynamic Positioning Systems
by Yanbin Wu, Xiaomeng He, Linlong Shi and Shengli Dong
Sensors 2025, 25(3), 679; https://doi.org/10.3390/s25030679 - 23 Jan 2025
Cited by 1 | Viewed by 665
Abstract
This paper proposes an adaptive dynamic positioning (DP) control method based on a multi-observer fusion architecture with minimal sensor requirements. A sliding mode observer is designed based on a high- and low-frequency superposition model to filter high-frequency state variables, while a finite-time convergence [...] Read more.
This paper proposes an adaptive dynamic positioning (DP) control method based on a multi-observer fusion architecture with minimal sensor requirements. A sliding mode observer is designed based on a high- and low-frequency superposition model to filter high-frequency state variables, while a finite-time convergence disturbance observer estimates unknown time-varying low-frequency disturbances online. For efficient handling of model uncertainties, a single-parameter learning neural network is implemented that requires only one parameter to be estimated online. The control system employs auxiliary dynamic systems to handle input saturation constraints and considers thruster system dynamics. Theoretical analysis demonstrates the stability of the observer-fusion control strategy, while simulation results based on the SimuNPS platform validate its effectiveness in state estimation and disturbance rejection compared to traditional sensor-dependent methods. Full article
(This article belongs to the Special Issue Intelligent Sensing and Control Technology for Unmanned Vehicles)
Show Figures

Figure 1

19 pages, 5088 KiB  
Article
Predefined-Time Hybrid Tracking Control for Dynamic Positioning Vessels Based on Fully Actuated Approach
by Yujie Xu, Yingjie Wang, Mingyu Fu and Hao Chen
J. Mar. Sci. Eng. 2024, 12(11), 2025; https://doi.org/10.3390/jmse12112025 - 9 Nov 2024
Cited by 1 | Viewed by 890
Abstract
This study investigates the problem of tracking the trajectory of a dynamic positioning (DP) ship under sudden surges of elevated sea states. First, the tracking problem is reformulated as an error calibration problem through the introduction of fully actuated system (FAS) approaches, thereby [...] Read more.
This study investigates the problem of tracking the trajectory of a dynamic positioning (DP) ship under sudden surges of elevated sea states. First, the tracking problem is reformulated as an error calibration problem through the introduction of fully actuated system (FAS) approaches, thereby simplifying controller design. Second, a predefined-time control term is designed to maintain the convergence time of the trajectory tracking error within a specified range; however, the upper bound of the perturbation must be estimated in advance. The high sea state during operation can result in an abrupt change in the upper bound of disturbance, thereby affecting the control accuracy and stability of the system. Therefore, a linear control matrix is developed to eliminate the system’s dependence on the estimation of the upper bound of disturbance following smooth switching, thereby achieving control decoupling and providing a conservative switching time. Additionally, a nonlinear reduced-order expansion observer (RESO) is constructed for feedforward compensation. The stability of the system is demonstrated using the Lyapunov function, indicating that the selection of appropriate poles can theoretically enhance the system’s convergence with greater control accuracy and robustness after switching. Finally, the effectiveness of the proposed method is validated through simulations and comparative experiments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 6699 KiB  
Article
Prescribed-Time Dynamic Positioning Control for USV with Lumped Disturbances, Thruster Saturation and Prescribed Performance Constraints
by Bowen Sui, Jianqiang Zhang and Zhong Liu
Remote Sens. 2024, 16(22), 4142; https://doi.org/10.3390/rs16224142 - 6 Nov 2024
Cited by 2 | Viewed by 1437
Abstract
This work studies the dynamic positioning (DP) control issue of unmanned surface vessels subjected to thruster saturation, error constraints, and lumped disturbances composed of time-varying marine environmental disturbances and model parameter uncertainties. Combining the disturbance-accurate estimation technique and the prescribed performance control strategy, [...] Read more.
This work studies the dynamic positioning (DP) control issue of unmanned surface vessels subjected to thruster saturation, error constraints, and lumped disturbances composed of time-varying marine environmental disturbances and model parameter uncertainties. Combining the disturbance-accurate estimation technique and the prescribed performance control strategy, a novel prescribed-time DP control scheme is established to address this challenging problem. In particular, the prescribed-time lumped disturbance observer is designed to accurately estimate external marine disturbances, which guarantees that the estimation error converges to zero within a prescribed time. Subsequently, a prescribed performance control strategy is proposed to guarantee that the positioning errors of DP surface vessels with thruster saturation constraints meet the error constraints requirements within a prescribed time. Furthermore, an anti-windup compensator is presented to mitigate the thruster saturation and improve the robustness of the DP control system. The stability analysis demonstrates that all positioning errors of the closed-loop system can converge to predefined performance constraints within a prescribed time. Finally, the numerical simulation confirms the efficacy and superiority of the proposed PTDP scheme. Full article
Show Figures

Figure 1

24 pages, 1689 KiB  
Article
Cyber–Physical Security Assessment for Maritime Vessels: Study on Drillship DP System Using American Petroleum Institute Security Risk Analysis and Bow-Tie Analysis
by Iosif Progoulakis, Ioannis K. Dagkinis, Anastasia Dimakopoulou, Theodoros Lilas, Nikitas Nikitakos and Panagiotis M. Psomas
J. Mar. Sci. Eng. 2024, 12(10), 1757; https://doi.org/10.3390/jmse12101757 - 4 Oct 2024
Cited by 1 | Viewed by 2154
Abstract
The maritime industry’s increasing integration of IT/OT systems into vessel operations has significantly elevated its exposure to cyber–physical threats, making the development of effective cyber risk management strategies a necessity. This paper provides an outlook of the current landscape of cyber security threats [...] Read more.
The maritime industry’s increasing integration of IT/OT systems into vessel operations has significantly elevated its exposure to cyber–physical threats, making the development of effective cyber risk management strategies a necessity. This paper provides an outlook of the current landscape of cyber security threats and vulnerabilities for the maritime sector and vessels. An outline of the relevant governmental and industry directives, standards, and guidelines for cyber security in maritime vessels is given. Considering maritime vessels as critical elements of the maritime critical infrastructure sector, a number of relevant cyber–physical security assessment methods are presented. Bridging cyber–physical security, process safety, and security, API SRA (American Petroleum Institute Security Risk Analysis) and BTA (Bow-Tie Analysis) are presented as the most applicable cyber–physical security assessment methods for complex maritime vessels, such as an offshore oil and gas drillship. The scenario of a cyber-attack on the Dynamic Positioning (DP) system of a drillship is presented with the use of API SRA and BTA. The difficulties in the implementation of NIST CSF v2.0 and IACS UR E26 and UR E27 in the maritime sector are also discussed. The need for intensified research on and the formulation of bespoke cyber security measures to mitigate the evolving cyber threats within the maritime domain is highlighted. The need for the allocation of training and resources for the reinforcement of the capacity of a maritime vessel’s crew in the mitigation of cyber threats and safe maritime operations is emphasized. Full article
Show Figures

Figure 1

22 pages, 2624 KiB  
Article
Multi-Objective Optimization for Thrust Allocation of Dynamic Positioning Ship
by Qiang Ding, Fang Deng, Shuai Zhang, Zhiyu Du and Hualin Yang
J. Mar. Sci. Eng. 2024, 12(7), 1118; https://doi.org/10.3390/jmse12071118 - 3 Jul 2024
Viewed by 1844
Abstract
Thrust allocation (TA) plays a critical role in the dynamic positioning system (DPS). The task of TA is to allocate the rotational speed and angle of each thruster to generate the generalized control forces. Most studies take TA as a single-objective optimization problem; [...] Read more.
Thrust allocation (TA) plays a critical role in the dynamic positioning system (DPS). The task of TA is to allocate the rotational speed and angle of each thruster to generate the generalized control forces. Most studies take TA as a single-objective optimization problem; however, TA is a multi-objective optimization problem (MOP), which needs to satisfy multiple conflicting allocation objectives simultaneously. This study proposes an improved multi-objective particle swarm optimization (IMOPSO) method to deal with the non-convex MOP of TA. The objective functions of reducing the allocation error, and minimizing the power consumption and the tear-and-wear of thrusters under physical constraints, are established and solved via MOPSO. To enhance the global seeking ability, the improved mutation strategy combined with the roulette wheel mechanism is adopted. It is shown through test data that IMOPSO converges better than multi-objective algorithms such as MOPSO and nondominated sorting genetic algorithm II (NSGA-II). Simulations are conducted for a DP ship with two propeller–rudder combinations. The simulation results with the single-objective PSO algorithm show that the proposed IMOPSO algorithm reduces thrust allocation errors in the three directions of surge, sway, and yaw by 48.48%, 39.64%, and 15.02%, respectively, and reduces power consumption by 44.53%, which demonstrates the feasibility and effectiveness of the proposed method. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 3474 KiB  
Article
Analysis of Human-Related Incidents during Dynamic Positioning Operations
by Zaloa Sanchez-Varela, David Boullosa-Falces, Ivica Skoko and Zlatko Boko
J. Mar. Sci. Eng. 2024, 12(6), 907; https://doi.org/10.3390/jmse12060907 - 29 May 2024
Cited by 1 | Viewed by 1353
Abstract
Dynamic positioning systems ensure additional position accuracy in different operations in the maritime industry, such as shuttling, drilling, diving, pipe laying, and others. Although they are known to be robust systems, they are not exempt from failures leading to incidents, among which we [...] Read more.
Dynamic positioning systems ensure additional position accuracy in different operations in the maritime industry, such as shuttling, drilling, diving, pipe laying, and others. Although they are known to be robust systems, they are not exempt from failures leading to incidents, among which we can find human-related incidents. This research analyzes 62 human-related dynamic-positioning incidents and aims to determine which segment in the dynamic positioning system influences these occurrences by applying binary logistic regression modeling techniques in the test sample and validating the results using a control sample. The results indicate that thrusters have the most significant influence on human-related incidents; however, not all DP operations are affected in the same measure. By stratifying the database and considering the different operations in progress, it is noted that human-related incidents while drilling operations are in progress are effectively influenced using a higher percentage of thrusters online. Full article
Show Figures

Figure 1

16 pages, 2775 KiB  
Article
Fixed-Time Path-Following-Based Underactuated Unmanned Surface Vehicle Dynamic Positioning Control
by Shuai Zheng, Yumin Su, Jiayuan Zhuang, Yueqi Tang and Guangjie Yi
J. Mar. Sci. Eng. 2024, 12(4), 551; https://doi.org/10.3390/jmse12040551 - 26 Mar 2024
Cited by 2 | Viewed by 1550
Abstract
The development of dynamic positioning (DP) algorithms for an unmanned surface vehicle (USV) is attracting great interest, especially in support of complex missions such as sea rescue. In order to improve the simplicity of the algorithm, a DP algorithm based on its own [...] Read more.
The development of dynamic positioning (DP) algorithms for an unmanned surface vehicle (USV) is attracting great interest, especially in support of complex missions such as sea rescue. In order to improve the simplicity of the algorithm, a DP algorithm based on its own path following control ability is proposed. The algorithm divides the DP problem into two parts: path generation and path following. The key contribution is that the DP ability can be realized only by designing the path generation method, rather than a whole complex independent DP controller. This saves the computing power of the USV onboard computer and can effectively reduce the complexity of the algorithm. In addition, the fixed-time LOS guidance law is designed to improve the convergence rate of the system state in path-following control. The reasonable selection of speed and a heading controller ensures that the number of design parameters to be determined is at a low level. The above algorithms have been thoroughly evaluated and validated through extensive computer simulations, demonstrating their effectiveness in simulated and real marine environments. The simulation results verify the ability of the proposed algorithm to realize the dynamic positioning of USVs, and provide a practical scheme for the design of the dynamic positioning controller of USVs. Full article
(This article belongs to the Special Issue Control and Navigation of Underwater Robot Systems)
Show Figures

Figure 1

18 pages, 2529 KiB  
Review
Dynamic Positioning Control for Marine Crafts: A Survey and Recent Advances
by Xiaoyang Gao and Tieshan Li
J. Mar. Sci. Eng. 2024, 12(3), 362; https://doi.org/10.3390/jmse12030362 - 20 Feb 2024
Cited by 11 | Viewed by 3080
Abstract
This paper surveys the recent advances in dynamic positioning (DP) control for marine crafts. DP of marine crafts means that a craft can maintain a fixed position and heading, or move along a predetermined trajectory slowly without the anchoring system, using only its [...] Read more.
This paper surveys the recent advances in dynamic positioning (DP) control for marine crafts. DP of marine crafts means that a craft can maintain a fixed position and heading, or move along a predetermined trajectory slowly without the anchoring system, using only its own thruster system to counteract ocean disturbances. The survey is by no means exhaustive but provides a survey of some of the major technological advancements in DP controller design over the years of research and development. Firstly, the model of marine crafts and some difficult problems in DP control are introduced including the impact of multiple source disturbance, unavailable velocity measurement information, resource conservation and performance optimization, destabilizing impact of faults and network security and compound multi-constraint restrictions. Then, the DP control schemes in recent years are summarized and classified in detail. Finally, some theoretical and technical problems are proposed, including online data-driven model-free control, man–machine combination intelligent control and composite hierarchical anti-disturbance control to guide future investigations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 1329 KiB  
Article
Nonlinear Model Predictive Control for a Dynamic Positioning Ship Based on the Laguerre Function
by Xiaobin Qian, Helong Shen, Yong Yin and Dongdong Guo
J. Mar. Sci. Eng. 2024, 12(2), 294; https://doi.org/10.3390/jmse12020294 - 7 Feb 2024
Cited by 2 | Viewed by 1720
Abstract
In this paper, we present a novel nonlinear model predictive control (NMPC) algorithm based on the Laguerre function for dynamic positioning ships to solve the problems of input saturation, unknown time-varying disturbances, and heavy computation. The nonlinear model of a dynamic positioning ship [...] Read more.
In this paper, we present a novel nonlinear model predictive control (NMPC) algorithm based on the Laguerre function for dynamic positioning ships to solve the problems of input saturation, unknown time-varying disturbances, and heavy computation. The nonlinear model of a dynamic positioning ship is presented as a linear model, transformed from a standard affine nonlinear state-space model by precise feedback linearization. The environmental disturbance is overcome using an integrator. The time cost of the proposed nonlinear control algorithm is decreased by inducing the Laguerre function to describe the feedback-linearization system input increments. The Laguerre function reduces the matrix dimensions of the nonlinear optimization problem. The simulation results for a DP supply vessel showed that the novel algorithm maintained the effective control performance of the original nonlinear model predictive control algorithm and had a reduced computation load to satisfy the requirements of real-time operation. Full article
(This article belongs to the Special Issue Optimal Maneuvering and Control of Ships)
Show Figures

Figure 1

18 pages, 8114 KiB  
Article
Power Positioning System Control Study of “Intelligent Research and Internship Vessel” Based on Terminal Sliding Mode
by Zhenghao Wei, Zhibin He, Xiaoyu Wu and Qi Zhang
Appl. Sci. 2024, 14(2), 808; https://doi.org/10.3390/app14020808 - 17 Jan 2024
Cited by 3 | Viewed by 1555
Abstract
As most of the current dynamic positioning systems are based on model ships, they cannot accurately reflect the motion state, position changes, and mutual influence of each part of the dynamic positioning system of actual ships in complex environments. Other actual ships such [...] Read more.
As most of the current dynamic positioning systems are based on model ships, they cannot accurately reflect the motion state, position changes, and mutual influence of each part of the dynamic positioning system of actual ships in complex environments. Other actual ships such as cargo ships cannot add various sensors and auxiliary equipment to verify and analyze the positioning system. This article takes the intelligent research and training dual-use ship of Dalian Maritime University, which integrates scientific research and training, as the object of study. This ship will not be affected by the voyage period and route and can choose a suitable sea area for research. Therefore, in order to improve the accuracy and reliability of the dynamic positioning system, research on the ship’s dynamic positioning system was carried out. Firstly, an accurate mathematical model was developed to simulate ship motion, focusing on the use of the Dalian Maritime University’s intelligent and practical training dual-purpose vessel as the modeling object. Through this approach, a more detailed understanding of the effects of actual environmental perturbations on ship control and positioning can be obtained, as well as more realistic ship control and positioning results. The hydrodynamic derivatives of ship model motion were obtained by numerical calculation and applied to the three-degree-of-freedom model of the intelligent research and training dual-use ship. Then, the model was used as part of the closed-loop simulation model of the ship’s dynamic positioning system, and the terminal sliding mode controller was used for simulation and emulation, thereby obtaining ideal simulation test results. Our results deepen the understanding of DPS accuracy and are consistent with the theory of terminal slip modes for ship power positioning control systems. This has implications for improving the accuracy of ship power positioning systems, as previously discussed in previous authors. In conclusion, this study not only improves the accuracy and reliability of the DPS but also proposes the use of the terminal slip film for a ship power positioning control system modeled on the Dalian Maritime University intelligent and practical dual-purpose vessel. These contributions are significant in improving the efficiency, safety, and environmental sustainability of ship operations. Full article
(This article belongs to the Topic Ship Dynamics, Stability and Safety)
Show Figures

Figure 1

22 pages, 5713 KiB  
Article
L1 Adaptive Control for Marine Structures
by Jose Joaquin Sainz, Victor Becerra, Elías Revestido Herrero, Jose Ramon Llata and Francisco J. Velasco
Mathematics 2023, 11(16), 3554; https://doi.org/10.3390/math11163554 - 17 Aug 2023
Cited by 2 | Viewed by 1533
Abstract
Nowadays, many maritime structures require precise dynamic positioning (DP) of the constructive elements that compose them. In addition, the use of preconstructed elements that are later moved to the final location has become widespread. These operations have not been automated with the risks [...] Read more.
Nowadays, many maritime structures require precise dynamic positioning (DP) of the constructive elements that compose them. In addition, the use of preconstructed elements that are later moved to the final location has become widespread. These operations have not been automated with the risks involved in carrying out the complex operations required. To minimize these operational risks and to perform a correct DP of floating structures, a new approach based on the L1 adaptive control technique is proposed. As an example of application, a proposed L1 adaptive controller was implemented in the dynamic positioning of a floating caisson. Several simulations of the system with wave disturbances were carried out, and the results were compared with those obtained by applying other classical and advanced control techniques, such as linear quadratic Gaussian control (LQG) and model predictive control (MPC). It was concluded that the proposed L1 adaptive controller performs correct dynamic positioning and reduces the tension generated on the lines concerning the other advanced control techniques with which it was compared. This reduction in line tension leads to an important improvement due to the possibility of reducing the size of the actuators or reducing their number, with the important economic and safety repercussions that these actions entail. Full article
Show Figures

Figure 1

15 pages, 6828 KiB  
Article
Features of Dynamism Wharf-Cable-Dynamic-Positioning Vessel Rigid-Flexible Coupling Multi-Body System Analysis
by Dapeng Zhang, Bowen Zhao, Haoyu Jiang and Keqiang Zhu
J. Mar. Sci. Eng. 2023, 11(8), 1601; https://doi.org/10.3390/jmse11081601 - 16 Aug 2023
Cited by 2 | Viewed by 1695
Abstract
The conventional mooring positioning technique is cost-effective; however, it shows poor maneuverability and positioning precision. In this study, to calculate the mooring tension, mooring cables were discretized into lumped mass models using the lumped mass technique. Dock fender nonlinear response forces were modeled [...] Read more.
The conventional mooring positioning technique is cost-effective; however, it shows poor maneuverability and positioning precision. In this study, to calculate the mooring tension, mooring cables were discretized into lumped mass models using the lumped mass technique. Dock fender nonlinear response forces were modeled in OrcaFlex using the Link unit. The multi-body system’s entire coupling vibrant time-frequency features have been examined. The effect of the side thrusters on removing the vessel motion carried on by the first-order wave loads has been determined under mooring conditions by comparing the difference in horizontal degree of freedom motion and the mooring line’s mooring tension between dynamic and non-dynamic positioning vessels (DPV). The impact of the wharf-cable and target position on side thrusters and positioning capabilities are analyzed, considering the results of both vessels under identical environmental loads. The results demonstrate that deep evaluation of the target position can greatly improve side thruster performance and ship positioning precision. DP systems are weak to cancel linear wave forces, and the missing ship motions for DP ships may be due to the combined action of the fender, moorings and the selection of a good target position. When the selection of the target position is unreasonable, the size of the pre-tension of the mooring line cannot meet the requirement of absorbing the first-order wave load on the vessel. Full article
Show Figures

Figure 1

Back to TopTop