Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,411)

Search Parameters:
Keywords = dynamic deformation behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1275 KB  
Article
Fractional Viscoelastic Modeling of Multi-Step Creep and Relaxation in an Aerospace Epoxy Adhesive
by Jesús Gabino Puente-Córdova, Flor Yanhira Rentería-Baltiérrez, José de Jesús Villalobos-Luna and Pedro López-Cruz
Symmetry 2026, 18(1), 130; https://doi.org/10.3390/sym18010130 - 9 Jan 2026
Abstract
Structural adhesives in aeronautical applications are routinely exposed to complex loading histories that generate time-dependent deformation, making accurate prediction of their viscoelastic response essential for reliable assessment of joint integrity. This work presents an integrated experimental and modeling study of the aerospace-grade epoxy [...] Read more.
Structural adhesives in aeronautical applications are routinely exposed to complex loading histories that generate time-dependent deformation, making accurate prediction of their viscoelastic response essential for reliable assessment of joint integrity. This work presents an integrated experimental and modeling study of the aerospace-grade epoxy adhesive 3M Scotch-Weld EC-2216 using multi-step creep and stress-relaxation tests performed at room temperature and controlled loading rates, combined with fractional viscoelastic modeling. Unlike traditional single-step characterizations, the multi-step protocol employed here captures the cumulative loading effects and fading-memory dynamics that govern the adhesive’s mechanical response. The experimental data were analyzed using fractional Maxwell, Voigt–Kelvin, and Zener formulations. Statistical evaluation based on the Bayesian Information Criterion (BIC) consistently identified the Fractional Zener Model (FZM) as the most robust representation of the stress-relaxation behavior, effectively capturing both the unrelaxed and relaxed modulus. The results demonstrate that EC-2216 exhibits hierarchical relaxation mechanisms and history-dependent viscoelasticity that cannot be accurately described by classical integer-order models. Overall, the study validates the use of fractional operators to represent the broad and hierarchical relaxation spectra typical of toughened aerospace epoxies and provides a rigorous framework for durability assessment and predictive modeling of adhesively bonded structures. Full article
44 pages, 20298 KB  
Article
Stochastic Dynamics and Control in Nonlinear Waves with Darboux Transformations, Quasi-Periodic Behavior, and Noise-Induced Transitions
by Adil Jhangeer and Mudassar Imran
Mathematics 2026, 14(2), 251; https://doi.org/10.3390/math14020251 - 9 Jan 2026
Viewed by 18
Abstract
Stochastically forced nonlinear wave systems are commonly associated with complex dynamical behavior, although little is known about the general interaction of nonlinear dispersion, irrational forcing frequencies, and multiplicative noise. To fill this gap, we consider a generalized stochastic SIdV equation and examine the [...] Read more.
Stochastically forced nonlinear wave systems are commonly associated with complex dynamical behavior, although little is known about the general interaction of nonlinear dispersion, irrational forcing frequencies, and multiplicative noise. To fill this gap, we consider a generalized stochastic SIdV equation and examine the effects of deterministic and stochastic influences on the long-term behavior of the equation. The PDE was modeled using a stochastic traveling-wave transformation that simplifies it into a planar system, which was studied using Darboux-seeded constructions, Poincaré maps, bifurcation patterns, Lyapunov exponents, recurrence plots, and sensitivity diagnostics. We discovered that natural, implicit, and unique seeds produce highly diverse transformed wave fields exhibiting both irrational and golden-ratio forcing, controlling the transition from quasi-periodicity to chaos. Stochastic perturbation is demonstrated to suppress as well as to amplify chaotic states, based on noise levels, altering attractor geometry, predictability, and multistability. Meanwhile, OGY control is demonstrated to be able to stabilize chosen unstable periodic orbits of the double-well regime. A stochastic bifurcation analysis was performed with respect to noise strength σ, revealing that the attractor structure of the system remains robust under stochastic excitation, with noise inducing only bounded fluctuations rather than qualitative dynamical transitions within the investigated parameter regime. These findings demonstrate that the emergence, deformation, and controllability of complex oscillatory patterns of stochastic nonlinear wave models are jointly controlled by nonlinear structure, external forcing, and noise. Full article
(This article belongs to the Topic A Real-World Application of Chaos Theory)
Show Figures

Figure 1

25 pages, 13641 KB  
Article
Microstructure Evolution and Plastic Deformation Mechanism of Cold Rolling Deformation of Micro/Nano Pure Electrolytic Nickel
by Han Zhang, Jisen Qiao, Hao Yang, Yangtao Xu and Tiandong Xia
Materials 2026, 19(2), 235; https://doi.org/10.3390/ma19020235 - 7 Jan 2026
Viewed by 74
Abstract
This paper investigates the cold rolling (CR) deformation behavior of electrolytic nickel at room temperature. While the microstructural evolution across deformation levels ranging from 5% to 98% is systematically characterized. The deposited electrolytic nickel exhibits numerous growth twins of various lengths and thicknesses, [...] Read more.
This paper investigates the cold rolling (CR) deformation behavior of electrolytic nickel at room temperature. While the microstructural evolution across deformation levels ranging from 5% to 98% is systematically characterized. The deposited electrolytic nickel exhibits numerous growth twins of various lengths and thicknesses, accounting for over 70% of the microstructure. The average grain size is 0.56 μm, and the grain size distribution is relatively broad. The plastic deformation of electrolytic nickel in the early stage is governed by the interaction between high-density dislocations and abundant twins. The primary mechanism accommodating deformation is detwinning. At 70% deformation, under high strain, complete detwinning occurs. When the CR reaches 90%, the average short-axis grain size is refined to 113 nm, indicating the deformation-induced refinement limit of electrolytic nickel. The microstructure at this stage exhibits a typical lamellar morphology. At 98% deformation, the average microhardness peaks at 240.3 HV, representing a cumulative increase of 46.88%. Dynamic recovery and recrystallization are observed at both 70% and 98% deformation levels, accompanied by the formation of Σ3 {120} type incoherent twins within recrystallized grains. Under large strain, the dominant cold plastic deformation mechanism transitions to a synergistic effect of dislocation slip and stratification. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

21 pages, 14803 KB  
Article
Creep Behavior and Its Influencing Factors in High-Entropy Superalloys: A Molecular Dynamics Simulation Study
by Kangning Han, Qiuju Wang, Yaxin Zhu, Shulin Yuan, Changwei Wang, Shuang Liang and Lv Zhao
Materials 2026, 19(2), 233; https://doi.org/10.3390/ma19020233 - 7 Jan 2026
Viewed by 133
Abstract
In aero-engine applications, turbine blades operate under high-temperature and high-pressure thermomechanical cyclic loading conditions, which demand exceptional mechanical performance. High-entropy superalloys, characterized by a stable dual-phase γ/γ′ microstructure, have emerged as promising candidates for high-temperature structural materials due to their superior creep resistance. [...] Read more.
In aero-engine applications, turbine blades operate under high-temperature and high-pressure thermomechanical cyclic loading conditions, which demand exceptional mechanical performance. High-entropy superalloys, characterized by a stable dual-phase γ/γ′ microstructure, have emerged as promising candidates for high-temperature structural materials due to their superior creep resistance. In this study, the creep behaviors of high-entropy superalloys are systematically investigated using molecular dynamics simulations, exploring the effects of stress, temperature, γ/γ′ lattice misfit, and γ′ volume fraction on creep deformation mechanisms. The results show that both stress and temperature significantly influence creep behavior, with temperature exerting a more dominant effect. As the applied stress increases, the dominant creep mechanism evolves from atomic diffusion to dislocation nucleation and motion, eventually leading to phase transformation. Additionally, the γ/γ′ lattice misfit and γ′ volume fraction are found to critically affect the alloy’s creep resistance. Specifically, creep resistance initially increases and then decreases with increasing lattice misfit magnitude, while a negative misfit yields better performance than a positive one. Moreover, increasing the γ′ volume fraction enhances the alloy’s ability to resist creep deformation. Microstructural analysis and atomic diffusion data further reveal that the creep resistance of high-entropy superalloys is closely associated with the structural stability of the γ/γ′ dual-phase system. These findings provide useful insights for optimizing the high-temperature performance of high-entropy superalloys through microstructural design. Full article
Show Figures

Graphical abstract

13 pages, 3195 KB  
Article
Atomic Bond Strain: A New Strain Measure Displaying Nearly Perfect Linear Correlation with Stress Throughout Plastic Deformation of Single-Crystal FCC Metals
by Donghua Xu, Tittaya Thaiyanurak and Noushin Salsabil
Solids 2026, 7(1), 5; https://doi.org/10.3390/solids7010005 - 6 Jan 2026
Viewed by 104
Abstract
Atomic-scale strain is the basis of a material’s macroscopic deformation behavior. The current measure of atomic-scale strain in the form of the Green–Lagrange tensor loses its physical meaning beyond the yield point, as atomic neighborhoods undergo significant reconstructions. We have recently introduced a [...] Read more.
Atomic-scale strain is the basis of a material’s macroscopic deformation behavior. The current measure of atomic-scale strain in the form of the Green–Lagrange tensor loses its physical meaning beyond the yield point, as atomic neighborhoods undergo significant reconstructions. We have recently introduced a new atomic-scale strain measure, namely, atomic bond strain, through our study of bond behavior in multicomponent metallic glasses. Here, we apply this new strain measure to uniaxial tensile tests (simulated using molecular dynamics) of several representative single-crystal FCC (face-centered cubic) metals under varied strain rates. We show that this new strain measure displays remarkable near-linear correlation with stress, not only in the elastic regime, but also in the plastic regime where complex dislocation dynamics (nucleation, bursting, motion, annihilation, regeneration) and stress fluctuations take place. This suggests that the overall stress of the materials even in the plastic regime is predominantly determined by the degree of bond stretching among all atoms. This appears to contradict the common conceptions that the plastic flow stress of a crystalline material is governed by dislocation events involving only a small fraction of atoms around dislocations, and that the stress–strain relationship is highly non-linear for plastic deformation. The contradictions can be reconciled by considering the causal sequence: dislocation events alter bond stretching, and bond stretching directly determines the stress. This brings a novel insight into the nature of plastic deformation, owing to the newly introduced atomic bond strain. How well the near-linear correlation between the stress and the atomic bond strain holds in other materials (e.g., non-FCC single crystals, polycrystals, quasicrystals, elements, alloys, and compounds) is an intriguing and important topic for future investigation, following the example of this work. Full article
Show Figures

Figure 1

28 pages, 7884 KB  
Article
Numerical Analysis of Deformation Behavior in the Double-Layer Flexible Photovoltaic Support Structure
by Xin Ye, Ming Luo, Hang Zou, Zhu Zhu, Ronglin Hong, Yehui Cui and Jiachen Zhao
Eng 2026, 7(1), 27; https://doi.org/10.3390/eng7010027 - 5 Jan 2026
Viewed by 179
Abstract
Flexible photovoltaic (PV) support systems, referring to cable-supported structural systems that carry conventional rigid PV modules rather than flexible thin-film modules, have attracted increasing attention as a promising solution for photovoltaic construction in complex terrains due to their advantages of broad-span design and [...] Read more.
Flexible photovoltaic (PV) support systems, referring to cable-supported structural systems that carry conventional rigid PV modules rather than flexible thin-film modules, have attracted increasing attention as a promising solution for photovoltaic construction in complex terrains due to their advantages of broad-span design and simplified installation. However, the deformation behavior of flexible PV supports remains insufficiently understood, which restricts its application and engineering optimization. To address this issue, a three-dimensional finite element model of a flexible PV support system was developed using an in-house Python code to investigate its deformation characteristics. The model discretizes the structure into beam and cable elements according to their mechanical properties, and the coupling relationship between their degrees of freedom is established by means of a multi-point constraint. The validation of the proposed model is confirmed by comparison with theoretical solutions. Simulation results reveal that the deformation of flexible PV supports is more sensitive to horizontal loads, indicating that their overall deformation performance is primarily governed by lateral rather than vertical loading. Furthermore, dynamic analyses show that higher loading frequencies induce noticeable torsional de-formation of the structure, which may compromise the stability of the PV panels. These findings provide valuable theoretical guidance for the design and optimization of flexible PV support systems deployed in complex terrains. Full article
Show Figures

Figure 1

23 pages, 9412 KB  
Article
Ballistic Performance of 7A52/7A62 Aluminum Alloy Laminates: A Numerical Investigation of Configuration Effect
by Qunjiao Wang, Meilin Yin, Jiangong Zhou, Xinyu Liu, Hui Zhang, Ruibin Mei, Zejun Chen, Yu Cao, Qiang Wang, Fuguan Cong and Yunlong Zhang
Materials 2026, 19(1), 179; https://doi.org/10.3390/ma19010179 - 3 Jan 2026
Viewed by 286
Abstract
This study presents a systematic numerical investigation into the ballistic performance of 7A52/7A62 aluminum alloy laminated plates with varying configurations. The dynamic mechanical behavior of the base alloys, 7A52 and 7A62, was first characterized experimentally, and the corresponding Johnson-Cook (J-C) constitutive parameters were [...] Read more.
This study presents a systematic numerical investigation into the ballistic performance of 7A52/7A62 aluminum alloy laminated plates with varying configurations. The dynamic mechanical behavior of the base alloys, 7A52 and 7A62, was first characterized experimentally, and the corresponding Johnson-Cook (J-C) constitutive parameters were calibrated. Using the calibrated J-C model, a series of numerical simulations were performed on several structural configurations, including single-layer (7A52-A, 7A62-B), double-layer (AB, BA), and four-layer laminates (ABAB, BAAB, ABBA, BABA). The results demonstrate that four-layer laminates exhibit markedly better ballistic performance than monolithic and double-layer plates. Among them, the ABAB stacking sequence—arranged in an alternating soft–hard–soft–hard pattern—shows the optimal performance, yielding a residual projectile velocity of only 256 m/s. This represents an approximately 27% reduction compared to the monolithic high-strength 7A62 plate. The overall ranking of ballistic performance is as follows: ABAB > BAAB > ABBA > BABA. Energy-based analysis further indicates that multi-interface delamination, coupled with plastic deformation and damage evolution, improves the energy-absorption efficiency of the laminated plates and thus enhances their ballistic resistance. This study offers valuable guidance for the lightweight design of laminated 7XXX-series aluminum alloy protective plates. Full article
Show Figures

Figure 1

8 pages, 18297 KB  
Proceeding Paper
Experimental Investigation on the Formation of Adiabatic Shear Bands (ASB) During Dynamic Compression of AISI 1045 Steel at Different Strain Rates
by Konstantina Karantza, Jari Rämö, Mikko Hokka and Dimitrios Manolakos
Eng. Proc. 2025, 119(1), 47; https://doi.org/10.3390/engproc2025119047 - 31 Dec 2025
Viewed by 103
Abstract
This study investigates the development of adiabatic shear bands (ASBs) in AISI 1045 carbon steel under high-strain-rate uniaxial compression, emphasizing the conditions governing their onset and growth. Split Hopkinson pressure bar (SHPB) experiments were carried out at strain rates of 1000, 2000 and [...] Read more.
This study investigates the development of adiabatic shear bands (ASBs) in AISI 1045 carbon steel under high-strain-rate uniaxial compression, emphasizing the conditions governing their onset and growth. Split Hopkinson pressure bar (SHPB) experiments were carried out at strain rates of 1000, 2000 and 4000 s−1 with controlled displacement/strain interruption to capture gradual ASB formation throughout the process. Stress–strain data were analyzed alongside optical microscopy to determine the critical strain for ASB initiation, document ASB morphology, dimensions and type, and connect ASB formulating stages to material macroscopic mechanical behavior. The observations clarify how deformation evolves from homogenous plastic flow to localized shear instability as the strain and strain rate increase, linking mechanical response to microstructural features. Integrating these results, the effects of strain rate and strain progress on ASB formation and evolution characteristics are investigated. These findings enhance our understanding of shear localization phenomena under dynamic loading and provide a basis for predicting failure modes in structural applications. Full article
Show Figures

Figure 1

15 pages, 10636 KB  
Article
Coupled Effects of the Mover Mass on Stepping Characteristics of Stick–Slip Piezoelectric Actuators
by Zhaochen Ding, Xiaoqin Zhou, Ke Wang, Zhi Xu, Jingshi Dong, Yuqing Fan and Huadong Yu
Micromachines 2026, 17(1), 61; https://doi.org/10.3390/mi17010061 - 31 Dec 2025
Viewed by 281
Abstract
Stick–slip piezoelectric actuators are widely used in high-precision positioning systems, yet their performance is limited by backward motion during the slip stage. Although the effects of preload force, driving voltage, and driving frequency have been extensively examined, the specific influence of mover mass [...] Read more.
Stick–slip piezoelectric actuators are widely used in high-precision positioning systems, yet their performance is limited by backward motion during the slip stage. Although the effects of preload force, driving voltage, and driving frequency have been extensively examined, the specific influence of mover mass and its coupling with these parameters remains insufficiently understood. This study aims to clarify the mass-dependent stepping behavior of stick–slip actuators and to provide guidance for structural design. A compact stick–slip actuator incorporating a lever-type amplification mechanism is developed. Its deformation amplification capability and structural reliability are verified through motion principle analysis, finite element simulations, and modal analysis. A theoretical model is formulated to describe the inverse dependence of backward displacement on the mover mass. Systematic experiments conducted under different mover masses, preload forces, voltages, and frequencies demonstrate that the mover mass directly affects stepping displacement and interacts with input conditions to determine motion linearity and backward-slip suppression. Light movers exhibit pronounced backward motion, whereas heavier movers improve smoothness and stepping stability, although excessive mass slows the dynamic response. These results provide quantitative insight into mass-related dynamic behavior and offer practical guidelines for optimizing the performance of stick–slip actuators in precision motion control. Full article
(This article belongs to the Collection Piezoelectric Transducers: Materials, Devices and Applications)
Show Figures

Figure 1

23 pages, 18529 KB  
Article
UAV Vision-Based Method for Multi-Point Displacement Measurement of Bridges
by Deyong Pan, Wujiao Dai, Lei Xing, Zhiwu Yu, Jun Wu and Yunsheng Zhang
Sensors 2026, 26(1), 240; https://doi.org/10.3390/s26010240 - 30 Dec 2025
Viewed by 218
Abstract
The challenge of insufficient monitoring accuracy in vision-based multi-point displacement measurement of bridges using Unmanned Aerial Vehicles (UAVs) stems from camera motion interference and the limitations in camera performance. Existing methods for UAV motion correction often fall short of achieving the high precision [...] Read more.
The challenge of insufficient monitoring accuracy in vision-based multi-point displacement measurement of bridges using Unmanned Aerial Vehicles (UAVs) stems from camera motion interference and the limitations in camera performance. Existing methods for UAV motion correction often fall short of achieving the high precision necessary for effective bridge monitoring, and there is a deficiency of high-performance cameras that can function as adaptive sensors. To address these challenges, this paper proposes a UAV vision-based method for multi-point displacement measurement of bridges and introduces a monitoring system that includes a UAV-mounted camera, a computing terminal, and targets. The proposed technique was applied to monitor the dynamic displacements of the Lunzhou Highway Bridge in Qingyuan City, Guangdong Province, China. The research reveals the deformation behavior of the bridge under vehicle traffic loads. Field test results show that the system can accurately measure vertical multi-point displacements across the entire span of the bridge, with monitoring results closely matching those obtained from a Scheimpflug camera. With a root mean square error (RMSE) of less than 0.3 mm, the proposed method provides essential data necessary for bridge displacement monitoring and safety assessments. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

27 pages, 4979 KB  
Article
Computational Models for the Vibration and Modal Analysis of Silica Nanoparticle-Reinforced Concrete Slabs with Elastic and Viscoelastic Foundation Effects
by Mohammed Chatbi, Silva Lozančić, Zouaoui R. Harrat and Marijana Hadzima-Nyarko
Modelling 2026, 7(1), 8; https://doi.org/10.3390/modelling7010008 - 30 Dec 2025
Viewed by 157
Abstract
The integration of silica nanoparticles (NS) into cementitious composites has emerged as a promising strategy to refine the microstructure and enhance concrete performance. Beyond their chemical role in accelerating hydration and promoting additional C–S–H gel formation, silica nanoparticles act as physical fillers, reducing [...] Read more.
The integration of silica nanoparticles (NS) into cementitious composites has emerged as a promising strategy to refine the microstructure and enhance concrete performance. Beyond their chemical role in accelerating hydration and promoting additional C–S–H gel formation, silica nanoparticles act as physical fillers, reducing porosity and improving interfacial bonding within the matrix. These dual effects result in a denser and more resilient composite, whose mechanical and dynamic responses differ from those of conventional concrete. However, studies addressing the vibrational and modal behavior of nano-reinforced concretes, particularly under elastic and viscoelastic foundation conditions, remain limited. This study investigates the dynamic response of NS-reinforced concrete slabs using a refined quasi-3D plate deformation theory with five (05) unknowns. Different foundation configurations are considered to represent various soil interactions and assess structural integrity under diverse supports. The effective elastic properties of the nanocomposite are obtained through Eshelby’s homogenization model, while Hamilton’s principle is used to derive the governing equations of motion. Navier’s analytical solutions are applied to simply supported slabs. Quantitative results show that adding 30 wt% NS increases the Young’s modulus of concrete by about 26% with only ~1% change in density; for simply supported slender slabs, this results in geometry-dependent increases of up to 18% in the fundamental natural frequency. While the Winkler and Pasternak foundation parameters reduce this frequency, the damping parameter of the viscoelastic foundation enhances the dynamic response, yielding frequency increases of up to 28%, depending on slab geometry. Full article
(This article belongs to the Section Modelling in Engineering Structures)
Show Figures

Figure 1

15 pages, 4796 KB  
Article
Atomistic Simulations of Individual Amphiphilic Carbosilane Dendrimers with –(OCH2CH2)n–OCH3 Terminal Groups in Hydrophilic and Hydrophobic Environments and at Interfaces
by Andrey O. Kurbatov, Kirill A. Litvin, Iurii Iu. Grishin, Nikolay K. Balabaev and Elena Yu. Kramarenko
Polymers 2026, 18(1), 92; https://doi.org/10.3390/polym18010092 - 28 Dec 2025
Viewed by 312
Abstract
Amphiphilic dendrimers represent a promising class of nanoscale building blocks for functional materials, yet their conformational behavior, solvation, and interfacial activity remain incompletely understood. In this work, we employ atomistic molecular dynamics simulations to investigate G2–G4 carbosilane dendrimers functionalized with ethylene glycol terminal [...] Read more.
Amphiphilic dendrimers represent a promising class of nanoscale building blocks for functional materials, yet their conformational behavior, solvation, and interfacial activity remain incompletely understood. In this work, we employ atomistic molecular dynamics simulations to investigate G2–G4 carbosilane dendrimers functionalized with ethylene glycol terminal groups of two lengths—R1 (one ethylene glycol unit) and R3 (three units)—in water, toluene, and at fluid interfaces (water–toluene and water–air). Both types of dendrimers adopt compact, nearly spherical conformations in water but swell significantly (~83% in volume for G4) in toluene, a good solvent for the hydrophobic core. At the water–toluene interface, the dendrimers remain fully solvated in the toluene phase and show no surface activity. In contrast, at the water–air interface, they adsorb and adopt a mildly anisotropic, biconvex conformation, with a modest deformation. The total number of hydrogen bonds is reduced by ~50% compared to bulk water. Notably, the R3 dendrimers form more hydrogen bonds overall due to their higher oxygen content, which may contribute to the enhanced stability of their monolayers observed experimentally. These results demonstrate how dendrimer generation as well as terminal group length and hydrophilicity finely tune dendrimer conformation, hydration, and interfacial behavior, which are key factors for applications in nanocarriers, interfacial engineering, and self-assembled materials. The validated simulation protocol provides a robust foundation for future studies of multi-dendrimer systems and monolayer formation. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

14 pages, 8499 KB  
Article
Study on the Flow Behavior and Processing Map of a High Copper 6A82 Aluminum Alloy During Hot Deformation
by Qunying Yang, Xiaoyong Liu and Guodong Liu
Metals 2026, 16(1), 33; https://doi.org/10.3390/met16010033 - 27 Dec 2025
Viewed by 226
Abstract
The hot deformation behavior of 6A82 aluminum alloy with a copper content of approximately 0.46 wt% was investigated by uniaxial compression tests in a temperature range of 320–530 °C and a strain rate range of 0.01–10 s−1. The effects of deformation [...] Read more.
The hot deformation behavior of 6A82 aluminum alloy with a copper content of approximately 0.46 wt% was investigated by uniaxial compression tests in a temperature range of 320–530 °C and a strain rate range of 0.01–10 s−1. The effects of deformation heating and friction on flow stress were analyzed and corrected. The results revealed that the reduction in flow stress due to deformation heating is more pronounced at high strain rates (≥1 s−1) and low temperatures (≤390 °C) compared to other deformation conditions. The corrected data illustrated that deformation heating has a more significant influence on flow stress than friction. Hot deformation activation energy (Q) decreased from 322.63 to 236.22 kJ/mol with increasing strain. Based on the corrected flow stress, the evolution of processing maps and microstructural characterization were analyzed to evaluate workability and identify flow instabilities. It was found that strain has a slight effect on the efficiency of power dissipation, whereas the instability parameter varies considerably with increasing strain. The corresponding processing maps showed that the unstable regions undergo more complex variations than the stable regions throughout the hot deformation process. An optimum hot working domain was identified in the temperature range of 440–530 °C and strain rate of 0.01–0.37 s−1. Under these deformation conditions, fine grains and uniformly distributed particles are formed through extensive dynamic recrystallization and coarsening of second phase particles, which facilitate dislocation motion and promote the formation of a sub-grain boundary. Full article
Show Figures

Figure 1

17 pages, 7223 KB  
Article
Hot Deformation Behavior of 7085 Aluminum Alloy Based on Constitutive Model, Processing Map, and Microstructure Evolution
by Wenke Wang, Wenqing Li, Xiaolong Tang, Yuehua Sun and Jian Ren
Materials 2026, 19(1), 91; https://doi.org/10.3390/ma19010091 - 26 Dec 2025
Viewed by 280
Abstract
To understand the hot deformation behavior of 7085 aluminum alloy, compression tests were performed under varied conditions (593–743 K/0.001–1 s−1). While the true stress–strain curves predominantly display the features of dynamic recovery, the softening mechanism shifts towards dynamic recrystallization when deforming [...] Read more.
To understand the hot deformation behavior of 7085 aluminum alloy, compression tests were performed under varied conditions (593–743 K/0.001–1 s−1). While the true stress–strain curves predominantly display the features of dynamic recovery, the softening mechanism shifts towards dynamic recrystallization when deforming at higher temperatures and lower strain rates. The validity of the constructed strain-compensated Zener–Hollomon model is confirmed by its exceptional precision in forecasting the flow stress, achieving an R2 value of 0.992. The instability areas are concentrated in the high-strain-rate regions, and the optimal deformation processing for 7085 aluminum alloy is 693–743 K/0.01–0.001 s−1. The alloy’s softening mechanism undergoes a transition from solely dynamic recovery to a progressively more significant coordinated role of dynamic recovery and dynamic recrystallization as the temperature rises and the strain rate drops. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

25 pages, 4674 KB  
Article
Numerical Modeling of Thermomechanics of Antifriction Polymers in Viscoelastic and Elastic-Viscoplastic Formulations
by Anastasia P. Bogdanova, Anna A. Kamenskikh, Andrey R. Muhametshin and Yuriy O. Nosov
Appl. Mech. 2026, 7(1), 2; https://doi.org/10.3390/applmech7010002 - 24 Dec 2025
Viewed by 149
Abstract
The present article relates to the description of phenomenological relations of amorphous material behavior within the framework of viscoelasticity and elastic-viscoplasticity theory, as well as to the creation of its digital analog. Ultra-high-molecular-weight polyethylene (UHMWPE) is considered in the study. The model is [...] Read more.
The present article relates to the description of phenomenological relations of amorphous material behavior within the framework of viscoelasticity and elastic-viscoplasticity theory, as well as to the creation of its digital analog. Ultra-high-molecular-weight polyethylene (UHMWPE) is considered in the study. The model is based on the results of a series of experimental studies. Free compression of cylindrical specimens in a wide range of temperatures [−40; +80] °C and strain rates [0.1; 4] mm/min was performed. Cylindrical specimens were also used to determine the thermal expansion coefficient of the material. Dynamic mechanical analysis (DMA) was performed on rectangular specimens using a three-point bending configuration. Maxwell and Anand models were used to describe the material behavior. In the framework of the study, the temperature dependence of a number of parameters was established. This influenced the mathematical formulation of the Anand model, which was adapted by introducing the temperature dependence of the activation energy, the initial deformation resistance, and the strain rate sensitivity coefficient. Testing of the material models was carried out in the process of analyzing the deformation of a spherical bridge bearing with a multi-cycle periodic load. The load corresponded to the movement of a train on a bridge structure, without taking into account vibrations. It is shown that the viscoelastic model does not describe the behavior of the material accurately enough for a quantitative analysis of the stress–strain state of the structure. It is necessary to move on to more complex models of material behavior to minimize the discrepancy between the digital analog and the real structure; it has been established that taking into account plastic deformation while describing UHMWPE would allow this to be performed. Full article
(This article belongs to the Special Issue Cutting-Edge Developments in Computational and Experimental Mechanics)
Show Figures

Figure 1

Back to TopTop