Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = dye tracking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 14639 KB  
Article
Light-Induced Structural Evolutions in Electrostatic Nanoassemblies
by Mohit Agarwal, Ralf Schweins and Franziska Gröhn
Polymers 2026, 18(2), 190; https://doi.org/10.3390/polym18020190 - 9 Jan 2026
Viewed by 422
Abstract
Studying nanoscale self-assembly in real time using external stimuli unlocks new opportunities for dynamic and adaptive materials. While electrostatic self-assembly is well-established, real-time monitoring of its structural evolution under light irradiation remains largely unexploited. In this study, we employ light-responsive azobenzene dyes (Acid [...] Read more.
Studying nanoscale self-assembly in real time using external stimuli unlocks new opportunities for dynamic and adaptive materials. While electrostatic self-assembly is well-established, real-time monitoring of its structural evolution under light irradiation remains largely unexploited. In this study, we employ light-responsive azobenzene dyes (Acid Yellow 38, AY38) and pH-sensitive polyamidoamine (PAMAM) dendrimers to investigate the kinetics of electrostatic self-assembly under UV irradiation. Using a custom in situ small-angle neutron scattering (SANS) setup, we track the real-time morphological transformations of self-assembled structures with sub-minute resolution. We introduce two distinct pathways: method A (pre-irradiated cis-AY38 for controlled, slow kinetics) and method B (direct UV-induced self-assembly, fast kinetics). The results reveal that trans-cis isomerization kinetics dictate the rate of self-assembly, influencing aggregate stability, ζ-potential evolution, and final morphology. Structural analysis using dynamic and static light scattering (DLS and SLS) and SANS elucidates a transition from spherical to ellipsoidal morphologies governed by electrostatic and dipole-dipole interactions. These findings establish photoisomerization-driven self-assembly as a robust mechanism for tunable nanoscale architectures, paving the way for adaptive photonic materials, targeted drug delivery, and reconfigurable nanostructures. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

14 pages, 1184 KB  
Article
Highly Efficient Electrochemical Degradation of Dyes via Oxygen Reduction Reaction Intermediates on N-Doped Carbon-Based Composites Derived from ZIF-67
by Maja Ranković, Nemanja Gavrilov, Anka Jevremović, Aleksandra Janošević Ležaić, Aleksandra Rakić, Danica Bajuk-Bogdanović, Maja Milojević-Rakić and Gordana Ćirić-Marjanović
Processes 2026, 14(1), 130; https://doi.org/10.3390/pr14010130 - 30 Dec 2025
Cited by 1 | Viewed by 310
Abstract
A cobalt-containing zeolitic imidazolate framework (ZIF-67) was carbonized by different routes to composite materials (cZIFs) composed of metallic Co, Co3O4, and N-doped carbonaceous phase. The effect of the carbonization procedure on the water pollutant removal properties of cZIFs was [...] Read more.
A cobalt-containing zeolitic imidazolate framework (ZIF-67) was carbonized by different routes to composite materials (cZIFs) composed of metallic Co, Co3O4, and N-doped carbonaceous phase. The effect of the carbonization procedure on the water pollutant removal properties of cZIFs was studied. Higher temperature and prolonged thermal treatment resulted in more uniform particle size distribution (as determined by nanoparticle tracking analysis, NTA) and surface charge lowering (as determined by zeta potential measurements). Surface-governed environmental applications of prepared cZIFs were tested using physical (adsorption) and electrochemical methods for dye degradation. Targeted dyes were methylene blue (MB) and methyl orange (MO), chosen as model compounds to establish the specificity of selected remediation procedures. Electrodegradation was initiated via an intermediate reactive oxygen species formed during oxygen reduction reaction (ORR) on cZIFs serving as electrocatalysts. The adsorption test showed relatively uniform adsorption sites at the surface of cZIFs, reaching a removal of over 70 mg/g for both dyes while governed by pseudo-first-order kinetics favored by higher mesoporosity. In the electro-assisted degradation process, cZIF samples demonstrated impressive efficiency, achieving almost complete degradation of MB and MO within 4.5 h. Detailed analysis of energy consumption in the degradation process enabled the calculation of the current conversion efficiency index and the amount of charge associated with O2•−/OH generation, normalized by the quantity of removed dye, for tested materials. Here, the proposed method will assist similar research studies on the removal of organic water pollutants to discriminate among electrode materials and procedures based on energy efficiency. Full article
Show Figures

Figure 1

20 pages, 1913 KB  
Article
Quantifying Radical Pathways in a 425 kHz Sonoreactor: Coupled Calorimetric–Multidosimetric Assessment and Process Variable Impacts in Sunset Yellow FCF Degradation
by Abdulmajeed Baker, Oualid Hamdaoui, Lahssen El Blidi, Mohamed K. Hadj-Kali and Abdulaziz Alghyamah
Processes 2025, 13(12), 3827; https://doi.org/10.3390/pr13123827 - 26 Nov 2025
Viewed by 361
Abstract
This study quantifies radical pathways and the influence of process variables in a 425 kHz sonoreactor through a coupled calorimetric and multidosimetric approach during Sunset Yellow FCF degradation. Reactive oxygen species were mapped with four complementary dosimeters. Potassium iodide (KI) tracked interfacial hydroxyl [...] Read more.
This study quantifies radical pathways and the influence of process variables in a 425 kHz sonoreactor through a coupled calorimetric and multidosimetric approach during Sunset Yellow FCF degradation. Reactive oxygen species were mapped with four complementary dosimeters. Potassium iodide (KI) tracked interfacial hydroxyl radicals (OH). KI with ammonium heptamolybdate (AHM) captured OH radicals together with hydrogen peroxide (H2O2). Bulk H2O2 accumulation integrated the recombination branch. Hydroxylation of 4-nitrophenol to 4-nitrocatechol acted as a selective near-interface OH probe. Calorimetry showed that acoustic power density increased with set power and decreased with liquid height. All four dosimeters rose coherently with this variable, indicating that stronger driving elevated OH generation while channeling a larger fraction into H2O2 through recombination. Process studies linked energy delivery to performance across operating conditions. Higher power accelerated pseudo-first order dye decay. Increasing initial dye concentration reduced fractional removal at fixed power, consistent with a radical-limited regime. Acidic media enhanced degradation by maintaining a stronger hydroxyl radical to water redox couple and by improving H2O2 persistence. Near neutral and alkaline media exhibited carbonate and bicarbonate scavenging of hydroxyl radicals and faster peroxide loss. Dissolved gas identity strongly modulated activity. Oxygen and argon outperformed air and carbon dioxide due to the combined thermophysical and chemical roles of the bubble gas. The calorimetry anchored and multidosimetric protocol provides a general route to compare reactors, optimize conditions, and support scale-up based on delivered energy density. Ultrasonication-driven degradation is a robust, practical technology for advanced treatment of dye-laden waters. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

15 pages, 5118 KB  
Article
Making Fluorescent Nylon, Polypropylene, and Polystyrene Microplastics for In Vivo and In Vitro Imaging
by Charles E. Bardawil, Jarrett Dobbins, Shannon Lankford, Saif Chowdrey, Jack Shumway, Gayathriy Balamayooran, Cedric Schaack and Rajeev Dhupar
Microplastics 2025, 4(4), 84; https://doi.org/10.3390/microplastics4040084 - 4 Nov 2025
Viewed by 1222
Abstract
Microplastics (MPs) are synthetic environmental pollutants increasingly linked to adverse human health effects. To study their biological impact, researchers require access to environmentally relevant MPs that can be accurately tracked in biological systems. However, most ambient MPs are composed of non-conjugated polymers that [...] Read more.
Microplastics (MPs) are synthetic environmental pollutants increasingly linked to adverse human health effects. To study their biological impact, researchers require access to environmentally relevant MPs that can be accurately tracked in biological systems. However, most ambient MPs are composed of non-conjugated polymers that lack intrinsic fluorescence, limiting their utility in live-cell or in vivo imaging. Addressing this challenge, we present two alternative labeling approaches that enable visualization, tracking, and quantification of MPs. First, we stained nylon and polypropylene MPs with Rhodamine 6G, a fluorescent dye known for its stability and compatibility with in vivo applications. These labeled MPs retained strong fluorescence in murine lung tissue for up to one week, as confirmed by fluorescent microscopy. Second, we conjugated aminated polystyrene microspheres with IRDye-800CW, a near-infrared fluorophore that enables high-resolution imaging with minimal tissue autofluorescence via an In Vivo Imaging System and confocal microscopy. In vivo experiments revealed organ-specific accumulation of IRDye-labeled MPs, with a 2.8-fold increase in the liver and a 5-fold increase in spleen compared to controls, detectable up to 72 h post-injection. These labeling strategies provide researchers with practical tools to visualize and study the biodistribution of MPs in biological systems, advancing efforts to understand their health implications. Full article
Show Figures

Graphical abstract

20 pages, 3419 KB  
Article
Anionic Azo Dyes: Wastewater Pollutants as Functionalizing Agents for Porous Polycarbonate Membranes Aiding in Water Decolorization
by Alan Jarrett Messinger, Isabella S. Mays, Brennon Craigo, Jeffrey Joering and Sean P. McBride
Sustainability 2025, 17(17), 7696; https://doi.org/10.3390/su17177696 - 26 Aug 2025
Viewed by 1052
Abstract
Efficient water decolorization techniques are vital for ensuring fresh water for future generations. Azo dyes are used heavily in the textile industry and are a challenge to remove from industrial wastewater. This research expands on recent innovative work where anionic azo dyes themselves [...] Read more.
Efficient water decolorization techniques are vital for ensuring fresh water for future generations. Azo dyes are used heavily in the textile industry and are a challenge to remove from industrial wastewater. This research expands on recent innovative work where anionic azo dyes themselves were used to functionalize track-etched porous polycarbonate filtration membranes with decolorized water obtained as a byproduct. The objective of this research is to determine whether the observed dye rejection is dependent on the magnitude of the intrinsic charge of the dye molecule or on its structure, using two selectively chosen anionic azo dye series during functionalization. The first group is a negative two intrinsic charge series with six dyes, each differing in structure, and the second group is a five-dye series that increases from −1 to −6 in intrinsic charge. Rejection measurements as a function of both time and concentration during functionalization are made using ultraviolet-visible light spectroscopy. For 100 µM aqueous dyes, comparing pre- and post-functionalization, a systematically increasing trend in the ability to functionalize porous polycarbonate based on the number of double 6-carbon ring structures in the dyes is illustrated and found to be independent of intrinsic charge. Full article
(This article belongs to the Special Issue Sustainable Solutions for Wastewater Treatment and Recycling)
Show Figures

Graphical abstract

13 pages, 9916 KB  
Article
Near-Infrared Dye-Loaded Thermosensitive Hydrogels as Novel Fluorescence Tissue Markers
by Seon Sook Lee and Yongdoo Choi
Gels 2025, 11(8), 649; https://doi.org/10.3390/gels11080649 - 15 Aug 2025
Viewed by 1187
Abstract
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies—including ink tattooing and metallic clips—are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and [...] Read more.
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies—including ink tattooing and metallic clips—are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and evaluated four thermosensitive injectable hydrogel systems incorporating indocyanine green-human serum albumin (ICG-HSA) complexes: (1) hexanoyl glycol chitosan (HGC), (2) Pluronic F-127, (3) PCL–PEG–PCL, and (4) PLA–PEG–PLA. All hydrogel formulations exhibited sol–gel transitions at physiological temperatures, facilitating in situ dye entrapment and prolonged fluorescence retention. In vivo fluorescence imaging revealed that HGC and Pluronic F-127 hydrogels retained signals for up to five and two days, respectively. In contrast, polyester-based hydrogels (PCL–PEG–PCL and PLA–PEG–PLA) preserved fluorescence for up to 21–30 days. PLA–PEG–PLA showed the highest signal-to-background ratios and sustained intensity, while PCL–PEG–PCL also achieved long-term retention. These findings suggest that thermosensitive hydrogels incorporating ICG-HSA complexes represent promising tissue marker platforms for real-time, minimally invasive, and long-term fluorescence-guided lesion tracking. Full article
Show Figures

Figure 1

20 pages, 4874 KB  
Article
Preparation of pH-Responsive PET TeMs by Controlled Graft Block Copolymerisation of Styrene and Methacrylic Acid for the Separation of Water–Oil Emulsions
by Indira B. Muslimova, Dias D. Omertassov, Nurdaulet Zhumanazar, Nazerke Assan, Zhanna K. Zhatkanbayeva and Ilya V. Korolkov
Polymers 2025, 17(16), 2221; https://doi.org/10.3390/polym17162221 - 14 Aug 2025
Cited by 1 | Viewed by 956
Abstract
To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, [...] Read more.
To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, followed by the grafting of poly(methacrylic acid) (PMAA) to introduce pH-responsive carboxyl groups. Optimized conditions (117 mM MAA, RAFT:initiator 1:10, 60 min UV exposure at 10 cm) resulted in PET TeMs-g-PS-g-PMAA surfaces exhibiting tunable wettability, with contact angles shifting from 90° at pH 2 to 65° at pH 9. Successful grafting was confirmed by FTIR, AFM, SEM, TGA, and TB dye sorption. The membranes showed high degree of rejection (up to 98%) for both direct and reverse emulsions. In direct emulsions, stable flux values (70 ± 2.8 to 60 ± 2.9 L m−2 h−1 for cetane-in-water and 195 ± 8.2 to 120 ± 6.9 L m−2 h−1 for o-xylene-in-water) were maintained over five cycles at 900 mbar, indicating excellent antifouling performance. Reverse emulsions initially exhibited higher flux, but stronger fouling; however, flux recovery reached 91% after cleaning. These findings demonstrate the potential of PET TeMs-g-PS-g-PMAA as switchable, pH-responsive membranes for robust emulsion separation. Full article
Show Figures

Figure 1

32 pages, 29621 KB  
Article
A Comparison of the Fading of Dyestuffs as Textile Colourants and Lake Pigments
by Jo Kirby and David Saunders
Heritage 2025, 8(7), 260; https://doi.org/10.3390/heritage8070260 - 3 Jul 2025
Cited by 1 | Viewed by 2602
Abstract
Dyed wool samples and lake pigments prepared from the same dyestuffs were exposed to light over the course of 14 months. Brazilwood or sappanwood, cochineal, madder, and weld were used for both wools and pigments, with the addition of dyer’s broom, indigo, and [...] Read more.
Dyed wool samples and lake pigments prepared from the same dyestuffs were exposed to light over the course of 14 months. Brazilwood or sappanwood, cochineal, madder, and weld were used for both wools and pigments, with the addition of dyer’s broom, indigo, and tannin-containing black dyes for the wools and eosin for the pigments. The wools were dyed within the MODHT European project on historic tapestries (2002–2005), using recipes derived from fifteenth- to seventeenth-century sources. The pigments were prepared according to European recipes of the same period, or using late nineteenth-century French or English recipes. Colour measurements made throughout the experiment allowed for overall colour difference (ΔE00) to be tracked and half-lives to be calculated for some of the colour changes. Alterations in the samples’ hue and chroma were also monitored, and spectral information was collected. The results showed that, for both textiles and pigments, madder is the most stable red dye, followed by cochineal, and then brazilwood. Eosin was the most fugitive sample examined. Comparisons of textile and lake samples derived from the same dyestuff, whether red or yellow, indicate that the colourants are more stable when used as textile dyes than in analogous lake pigments. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

23 pages, 2993 KB  
Article
Ultra-Trace Monitoring of Methylene Blue Degradation via AgNW-Based SERS: Toward Sustainable Advanced Oxidation Water Treatment
by Isabela Horta, Nilton Francelosi Azevedo Neto, Letícia Terumi Kito, Felipe Miranda, Gilmar Thim, André Luis de Jesus Pereira and Rodrigo Pessoa
Sustainability 2025, 17(10), 4448; https://doi.org/10.3390/su17104448 - 14 May 2025
Cited by 7 | Viewed by 2192
Abstract
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically [...] Read more.
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically failing to detect MB below ~10−7 M. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) platform based on silver nanowire (AgNW) substrates that enables MB detection over an unprecedented dynamic range—from 1.5 × 10−4 M down to 1.5 × 10−16 M. Raman mapping confirmed the presence of individual signal hot spots at the lowest concentration, consistent with the theoretical number of analyte molecules in the probed area, thereby demonstrating near-single-molecule detection capability. The calculated enhancement factors reached up to 1.90 × 1012, among the highest reported for SERS-based detection platforms. A semi-quantitative calibration curve was established spanning twelve orders of magnitude, and this platform was successfully applied to monitor MB degradation during two advanced oxidation processes (AOPs): TiO2 nanotube-mediated photocatalysis under UV irradiation and atmospheric-pressure dielectric barrier discharge (DBD) plasma treatment. While UV–Vis and fluorescence techniques rapidly lost sensitivity during the degradation process, the SERS platform continued to detect the characteristic MB Raman peak at ~1626 cm−1 throughout the entire treatment duration. These persistent SERS signals revealed the presence of residual MB or partially degraded aromatic intermediates that remained undetectable by conventional optical methods. The results underscore the ability of AgNW-based SERS to provide ultra-sensitive, molecular-level insights into pollutant transformation pathways, enabling time-resolved tracking of degradation kinetics and validating treatment efficiency. This work highlights the importance of integrating SERS with AOPs as a powerful complementary strategy for advanced environmental monitoring and water purification technologies. By delivering an ultra-sensitive, low-cost sensor (<USD 0.16 per test) and promoting reagent-free treatment methods, this study directly advances SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

13 pages, 4116 KB  
Article
Excited-State-Altering Ratiometric Fluorescent Probes for the Response of β-Galactosidase in Senescent Cells
by Ya-Nan Han, Lei Dong, Lu-Lu Sun, Wen-Jia Li, Jianjing Xie, Congyu Li, Shuhui Ren, Zhan Zhang, Hai-Hao Han and Zhong Zhang
Molecules 2025, 30(6), 1221; https://doi.org/10.3390/molecules30061221 - 8 Mar 2025
Cited by 4 | Viewed by 1918
Abstract
β-galactosidase (β-Gal) has emerged as a pivotal biomarker for the comprehensive investigation of diseases associated with cellular senescence. The development of a fluorescent sensor is of considerable importance for precisely detecting the activity and spatial distribution of β-Gal. In [...] Read more.
β-galactosidase (β-Gal) has emerged as a pivotal biomarker for the comprehensive investigation of diseases associated with cellular senescence. The development of a fluorescent sensor is of considerable importance for precisely detecting the activity and spatial distribution of β-Gal. In this study, we developed two excited-state-altering responsive fluorescent sensors (TF1 and TF2) for ratiometric detection of β-Gal. Two TCF dyes, composed of tricyanofuran (TCF) and naphthol units, feature electron “pull–push” systems and are quenched fluorescence by β-Gal. Upon β-Gal hydrolysis, a significant ratiometric shift in absorption from ca. 475 nm to 630 nm is observed, accompanied by the emergence of a fluorescence signal at ca. 660 nm. The enzyme-responsive optical red-shifts are attributed to the excited-state transition from intramolecular charge transfer (ICT) state to local excited (LE) state, which was confirmed by density functional theory (DFT) calculations. Both fluorescent sensors display exceptional sensitivity and selectivity for the response of β-Gal in PBS solution and are capable of tracking β-Gal within senescent A549 cells. This study introduces a framework for developing multimodal optical probes by systematically modulating excited-state properties, demonstrating their utility in senescence studies, diagnostic assay design, and therapeutic assessment. Full article
(This article belongs to the Special Issue Fluorescent Probes in Biomedical Detection and Imaging)
Show Figures

Figure 1

15 pages, 4715 KB  
Article
Comparison of Photochemically Sealed Commercial Biomembranes for Nerve Regeneration
by Maria Bejar-Chapa, Nicolò Rossi, Nicholas C. King, David M. Kostyra, Madison R. Hussey, Kalyn R. McGuire, Mark A. Randolph, Robert W. Redmond and Jonathan M. Winograd
J. Funct. Biomater. 2025, 16(2), 50; https://doi.org/10.3390/jfb16020050 - 6 Feb 2025
Viewed by 1778
Abstract
Peripheral nerve injuries affect 13–23 per 100,000 people annually in the U.S. and often result in motor and sensory deficits. Microsurgical suture repair (SR) is the standard treatment but is technically challenging and associated with complications. Photochemical tissue bonding (PTB), which uses light [...] Read more.
Peripheral nerve injuries affect 13–23 per 100,000 people annually in the U.S. and often result in motor and sensory deficits. Microsurgical suture repair (SR) is the standard treatment but is technically challenging and associated with complications. Photochemical tissue bonding (PTB), which uses light and a photoactivated dye to bond collagenous tissues, offers a promising alternative. We compared PTB with commercially available collagen membranes for SR and PTB using cryopreserved human amnion (HAM) in a rat sciatic nerve transection model. In total, 75 Lewis rats underwent nerve repair with one of five methods: SR, PTB-HAM, PTB with commercial collagenous membranes (human amnion monolayer (AML), human amnion–chorion–amnion trilayer (ATL), or swine intestinal submucosa (SIS)). Functional recovery was assessed with walking tracks and the Static Sciatic Index (SSI) at days 30, 60, 90, and 120; histological evaluations at days 30 and 120 examined inflammation, axon density, and fascicle structure. No significant differences in SSI scores were found between groups, though PTB-AML and PTB-SIS improved over time. Histology showed inflammation at day 30 that decreased by day 120. Histomorphometry revealed similar axon regeneration across groups. These results suggest that PTB with commercial membranes is a viable alternative to SR. Full article
Show Figures

Figure 1

14 pages, 23596 KB  
Article
Evaluating the In Situ Effects of Whole Protein Coronas on the Biosensing of Antibody-Immobilized Nanoparticles Using Two-Color Fluorescence Nanoparticle Tracking Analysis
by Heeju Joung, Gwi Ju Jang, Ji Yeon Jeong, Goeun Lim and Sang Yun Han
Nanomaterials 2025, 15(3), 220; https://doi.org/10.3390/nano15030220 - 30 Jan 2025
Cited by 1 | Viewed by 1770
Abstract
The formation of protein coronas around engineered nanoparticles (ENPs) in biological environments is critical in nanomedicine, as these coronas significantly influence the biological behavior of ENPs. Despite extensive research on protein coronas, understanding the in situ influence of whole (soft plus hard) protein [...] Read more.
The formation of protein coronas around engineered nanoparticles (ENPs) in biological environments is critical in nanomedicine, as these coronas significantly influence the biological behavior of ENPs. Despite extensive research on protein coronas, understanding the in situ influence of whole (soft plus hard) protein coronas has remained challenging. In this study, we demonstrate a strategy to assess the in situ effects of whole coronas on the model biosensing of anti-IgG using IgG-conjugated gold nanoparticles (IgG-AuNPs) through fluorescence nanoparticle tracking analysis (F-NTA), which enables the selective tracking of fluorescent particles within complex media. In our approach, anti-IgG and IgG-AuNPs were labeled with distinct fluorescent dyes. The accordance in hydrodynamic diameter distributions observed at two different wavelengths verifies the successful capture of anti-IgG on the IgG-AuNPs. The counting of fluorescent anti-IgG within the size distribution allows for a quantitative assessment of biosensing efficiency. This method was applied to evaluate the effects of four protein coronas—human serum albumin, high-density lipoproteins, immunoglobulin G, and fibrinogen—as well as their mixture across varying incubation times and concentrations. The results suggest that the physical presence of whole protein coronas surrounding the IgG-AuNPs may assist the biosensing interaction in situ rather than screening it. Full article
(This article belongs to the Special Issue Advanced Studies in Bionanomaterials)
Show Figures

Figure 1

16 pages, 2445 KB  
Review
Aggregation-Caused Quenching Dyes as Potent Tools to Track the Integrity of Antitumor Nanocarriers: A Mini-Review
by Xiye Wang, Jiayue Huang, Mengqin Guo, Yiling Zhong and Zhengwei Huang
Pharmaceuticals 2025, 18(2), 176; https://doi.org/10.3390/ph18020176 - 27 Jan 2025
Cited by 8 | Viewed by 1881
Abstract
Cancer has become one of the major causes of death worldwide. Chemotherapy remains a cornerstone of cancer treatment. To enhance the tumor-targeting efficiency of chemotherapy agents, pharmaceutical scientists have developed nanocarriers. However, the in vivo structural integrity and dynamic changes in nanocarriers after [...] Read more.
Cancer has become one of the major causes of death worldwide. Chemotherapy remains a cornerstone of cancer treatment. To enhance the tumor-targeting efficiency of chemotherapy agents, pharmaceutical scientists have developed nanocarriers. However, the in vivo structural integrity and dynamic changes in nanocarriers after administration are not well understood, which may significantly impact their tumor-targeting abilities. In this paper, we propose the use of environmentally responsive fluorescent probes to track the integrity of antitumor nanocarriers. We compare three main types of dyes: fluorescence resonance energy transfer (FRET) dyes, aggregation-induced emission (AIE) dyes, and aggregation-caused quenching (ACQ) dyes. Among them, ACQ dyes, possessing sensitive water-quenching properties and easily detected “on–off” switching behavior, are regarded as the most promising choice. We believe that ACQ dyes are suitable for investigating the in vivo fate of antitumor nanocarriers and can aid in designing improved nanoformulations for chemotherapy agents. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

32 pages, 10992 KB  
Article
Small Extracellular Vesicles from Breast Cancer Cells Induce Cardiotoxicity
by Jhon Jairo Osorio-Méndez, Luis Alberto Gómez-Grosso, Gladis Montoya-Ortiz, Susana Novoa-Herrán and Yohana Domínguez-Romero
Int. J. Mol. Sci. 2025, 26(3), 945; https://doi.org/10.3390/ijms26030945 - 23 Jan 2025
Cited by 2 | Viewed by 3323
Abstract
Cardiovascular diseases and cancer are leading global causes of morbidity and mortality, necessitating advances in diagnosis and treatment. Doxorubicin (Doxo), a potent chemotherapy drug, causes long-term heart damage due to cardiotoxicity. Small extracellular vesicles (sEVs) carry bioactive molecules—such as proteins, lipids, and nucleic [...] Read more.
Cardiovascular diseases and cancer are leading global causes of morbidity and mortality, necessitating advances in diagnosis and treatment. Doxorubicin (Doxo), a potent chemotherapy drug, causes long-term heart damage due to cardiotoxicity. Small extracellular vesicles (sEVs) carry bioactive molecules—such as proteins, lipids, and nucleic acids—that can modulate gene expression and signaling pathways in recipient cells, including cardiomyocytes. Through the delivery of cytokines, microRNAs, and growth factors, sEVs can influence cell survival, which plays a critical role in the development of cardiotoxicity. This study investigates the role of sEVs derived from breast cancer cells treated or not with Doxo and their potential to induce cardiomyocyte damage, thereby contributing to cardiotoxicity. We isolated sEVs from MCF-7 cells treated or not to Doxo using ultracentrifugation and characterized them through Nanoparticle Tracking Analysis (NTA), Scanning Electron Microscopy (SEM), and Western Blotting (WB) for the markers CD63, CD81, and TSG101. We analyzed cytokine profiles using a Multiplex Assay and Cytokine Membrane Array. We exposed Guinea pig cardiomyocytes to different concentrations of sEVs. We assessed their viability (MTT assay), shortening, reactive oxygen species (ROS–DHE dye) production, mitochondrial membrane potential (JC-1 dye), and calcium dynamics (FLUO-4 dye). We performed statistical analyses, including t-tests, ANOVA, Cohen’s d, and η2 to validate the robustness of the results. Treatment of MCF-7 cells with 0.01 μM Doxorubicin resulted in increased sEVs production, particularly after 48 h of exposure (~1.79 × 108 ± 2.77 × 107 vs. ~5.1 × 107 ± 1.28 × 107 particles/mL, n = 3, p = 0.0019). These sEVs exhibited protein profiles in the 130–25 kDa range and 93–123 nm sizes. They carried cytokines including TNF-α, IL-1β, IL-4, IFN-γ, and IL-10. Exposure of cardiomyocytes to sEVs (0.025 μg/mL to 2.5 μg/mL) from both Doxo-treated and untreated cells significantly reduced cardiomyocyte viability, shortened cell length by up to 20%, increased ROS production, and disrupted calcium homeostasis and mitochondrial membrane potential, indicating severe cellular stress and cardiotoxicity. These findings suggest that Doxo enhances sEVs production from breast cancer cells, which plays a key role in cardiotoxicity through their cytokine cargo. The study highlights the potential of these sEVs as biomarkers for early cardiotoxicity detection and as therapeutic targets to mitigate cardiovascular risks in chemotherapy patients. Future research should focus on understanding the mechanisms by which Doxorubicin-induced sEVs contribute to cardiotoxicity and exploring their diagnostic and therapeutic potential to improve patient safety and outcomes in cancer therapy. Full article
(This article belongs to the Special Issue Exosomes and Non-Coding RNA Research in Health and Disease)
Show Figures

Figure 1

17 pages, 18470 KB  
Article
Photonic Band Gap Engineering by Varying the Inverse Opal Wall Thickness
by Dániel Attila Karajz, Levente Halápi, Tomasz Stefaniuk, Bence Parditka, Zoltán Erdélyi, Klára Hernádi, Csaba Cserháti and Imre Miklós Szilágyi
Int. J. Mol. Sci. 2024, 25(23), 12996; https://doi.org/10.3390/ijms252312996 - 3 Dec 2024
Cited by 2 | Viewed by 2448
Abstract
We demonstrate the band gap programming of inverse opals by fabrication of different wall thickness by atomic layer deposition (ALD). The opal templates were synthesized using polystyrene and carbon nanospheres by the vertical deposition method. The structure and properties of the TiO2 [...] Read more.
We demonstrate the band gap programming of inverse opals by fabrication of different wall thickness by atomic layer deposition (ALD). The opal templates were synthesized using polystyrene and carbon nanospheres by the vertical deposition method. The structure and properties of the TiO2 inverse opal samples were investigated using Scanning Electron Microscope (SEM) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD) and Finite Difference Time Domain (FDTD) simulations. The photonic properties can be well detected by UV-Vis reflectance spectroscopy, while diffuse reflectance spectroscopy appears to be less sensitive. The samples showed visible light photocatalytic properties using Raman microscopy and UV-Visible spectrophotometry, and a newly developed digital photography-based detection method to track dye degradation. In our work, we stretch the boundaries of a working inverse opal to make it commercially more available while avoiding fully filling and using cheaper, but lower-quality, carbon nanosphere sacrificial templates. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

Back to TopTop