Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (156)

Search Parameters:
Keywords = duty ratio control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2447 KiB  
Article
Pilot Study: Effects of High-Intensity Training on Gait Symmetry and Locomotor Performance in Neurodivergent Children
by Noah D. Chernik, Melody W. Young, Reuben N. Jacobson, Stratos J. Kantounis, Samantha K. Lynch, James Q. Virga, Matthew J. Cannata, Hannah M. English, Pranav Krish, Anand Kanumuru, Alexander Lopez and Michael C. Granatosky
Symmetry 2025, 17(7), 1073; https://doi.org/10.3390/sym17071073 - 6 Jul 2025
Viewed by 303
Abstract
Neuromuscular gait deficits in children with autism spectrum disorder (ASD) are often overlooked. High-intensity training protocols may improve running performance, but their efficacy in pediatric populations is underexplored. This study evaluates the impact of a high-intensity running protocol on locomotor performance in neurotypical [...] Read more.
Neuromuscular gait deficits in children with autism spectrum disorder (ASD) are often overlooked. High-intensity training protocols may improve running performance, but their efficacy in pediatric populations is underexplored. This study evaluates the impact of a high-intensity running protocol on locomotor performance in neurotypical and neurodivergent children (children with ASD). Spatiotemporal gait characteristics (speed, stride frequency, stride length, and duty factor), gait symmetry (symmetry ratio), and kinematics were assessed for ten neurodivergent children (10–15 years old) during a 15 m sprint. Locomotor costs (cost of locomotion, transport, and locomotion per stride) were analyzed in six neurodivergent participants (11–14 years old) via open-flow respirometry during treadmill running. Participants completed a 5–12 week, twice-weekly program; neurotypical participants served as a control group. Neurodivergent and neurotypical children exhibited baseline differences in spatiotemporal variables. Following training, neurodivergent participants demonstrated statistically significant improvements in spatiotemporal metrics and locomotor costs. Differences in symmetry between the two groups were not present pre- or post-program. These findings highlight the efficacy of high-intensity running programs in improving sensorimotor function and coordination in children with ASD. This program provides valuable insights into gross motor rehabilitation for neurodivergent children, supporting its potential as an effective intervention. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Biomechanics and Gait Mechanics)
Show Figures

Figure 1

23 pages, 10259 KiB  
Article
A Real-Time Investigation of an Enhanced Variable Step PO MPPT Controller for Photovoltaic Systems Using dSPACE 1104 Board
by Abdelkhalek Chellakhi and Said El Beid
Energies 2025, 18(13), 3343; https://doi.org/10.3390/en18133343 - 26 Jun 2025
Viewed by 251
Abstract
This paper aims to maximize the performance of photovoltaic generators under varying atmospheric conditions by employing an improved variable-step current perturbation Perturb and Observe (IVSCP-PO) MPPT controller. The proposed approach overcomes the limitations of traditional controllers and significantly enhances tracking efficiency. The IVSCP-PO [...] Read more.
This paper aims to maximize the performance of photovoltaic generators under varying atmospheric conditions by employing an improved variable-step current perturbation Perturb and Observe (IVSCP-PO) MPPT controller. The proposed approach overcomes the limitations of traditional controllers and significantly enhances tracking efficiency. The IVSCP-PO controller locates the maximum power point (MPP) using current perturbation instead of voltage perturbation and employs a variable step iteration based on input variables such as power, voltage, and current for better adjustment of the boost converter’s duty ratio. Comprehensive simulations demonstrate the tracking effectiveness of the IVSCP-PO approach under varied and severe temperature and solar intensity conditions. The results indicate that the IVSCP-PO controller outperforms traditional and recently published methods by avoiding drift and oscillation and minimizing power loss. This translates to maximized static and dynamic tracking efficiencies, reaching 99.99% and 99.98%, respectively. Additionally, the IVSCP-PO controller boasts a record-breaking average tracking time of just 0.002 s, a substantial improvement over traditional and improved PO methods ranging from 0.036 to 0.6 s. To further validate these results, experiments were conducted using the dSPACE 1104 board, demonstrating the superior accuracy and effectiveness of the approach and providing a promising solution to optimize the performance of photovoltaic panels. Full article
Show Figures

Figure 1

17 pages, 1843 KiB  
Article
Comparison of Rectal and Gastrointestinal Core Temperatures During Heat Tolerance Testing
by Melissa J. Crowe, Michael T. Meehan and Rhondda E. Jones
Medicina 2025, 61(6), 1111; https://doi.org/10.3390/medicina61061111 - 19 Jun 2025
Viewed by 495
Abstract
Background and Objectives: Military capability may be reduced in hot environments with individuals at risk of exertional heat stroke (EHS). Heat tolerance testing (HTT) can be used to indicate readiness to return to duty following EHS. HTT traditionally relies on rectal core [...] Read more.
Background and Objectives: Military capability may be reduced in hot environments with individuals at risk of exertional heat stroke (EHS). Heat tolerance testing (HTT) can be used to indicate readiness to return to duty following EHS. HTT traditionally relies on rectal core temperature (Tre) assessment via a rectal probe. This study investigated the use of gastrointestinal core temperature (Tgi) as an alternative to Tre during HTT. A secondary aim was to compare physiological factors between heat-tolerant and heat-intolerant trials. Materials and Methods: Australian Defence Force personnel undergoing HTT following known or suspected heat stroke volunteered (n = 23 cases participating in 26 trials) along with 14 controls with no known heat illness history. Confusion matrices enabled comparison of HTT outcome based on Tgi and Tre. The validity of Tgi compared to Tre during HTT was assessed using correlation and bias. Comparisons between heat-tolerant and intolerant trials were performed using non-parametric tests. Results: Although Tgi correlated closely with Tre (Spearman’s rank correlation ρ = 0.893; median bias 0.2 °C) there was no consistent pattern in the differences between measures. Importantly, the two measures only agreed on heat tolerance outcome in 80% of trials with Tgi failing to detect heat intolerance identified by Tre in 6 of 8 trials. If Tgi was relied upon for diagnostic outcome, return to duty may occur before full recovery. None of the assessed covariates were related to the difference between Tre and Tgi. In addition, resting heart rate and systolic blood pressure were significantly lower and body surface area to mass ratio significantly higher in heat-tolerant compared to intolerant trials. Conclusions: It is not recommended to rely on Tgi instead of Tre during HTT. Resting heart rate and systolic blood pressure findings point to the importance of aerobic exercise in conveying heat tolerance along with body composition. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

20 pages, 8537 KiB  
Article
Digital Predictive Peak Current Control Strategy for the High-Order Superbuck Converter
by Yuanxun Wang, Yuchao Huang, Liangliang Lu, Qiao Zhang, Desheng Zhang and Run Min
Electronics 2025, 14(10), 1987; https://doi.org/10.3390/electronics14101987 - 13 May 2025
Viewed by 293
Abstract
This paper proposes a digital predictive peak current control (PPCC) strategy for superbuck converters. The proposed strategy incorporates a current predictor to calculate the output current and a peak current controller to calculate the required duty ratio for the next switching cycle. The [...] Read more.
This paper proposes a digital predictive peak current control (PPCC) strategy for superbuck converters. The proposed strategy incorporates a current predictor to calculate the output current and a peak current controller to calculate the required duty ratio for the next switching cycle. The duty ratio is precalculated ahead of a switching cycle, which creates a switching cycle for signal samplings and digital calculations. At the end of the next switching cycle, the output current peak value is regulated to match the reference value. The proposed strategy regulates the output current peak value to the reference value within two switching cycles. This increases the current loop bandwidth to π/T rad/s, which optimizes the transient performance. Moreover, a new damping parameter design method based on the damping ratio is given. Furthermore, a simplified version is proposed to facilitate digital realization. This version directly calculates the required duty ratio, which significantly reduces digital calculations. Finally, the experimental results demonstrate the effectiveness of the proposed control strategy in improving the transient performance of the superbuck converter. Full article
Show Figures

Figure 1

23 pages, 10682 KiB  
Article
An Improved Variable Step-Size Maximum Power Point Tracking Control Strategy with the Mutual Inductance Identification for Series–Series Wireless Power Transfer Systems
by Wenmei Hao, Cai Sun and Yi Hao
Symmetry 2025, 17(4), 564; https://doi.org/10.3390/sym17040564 - 8 Apr 2025
Viewed by 410
Abstract
Series–series (SS) wireless power transfer (WPT) systems are used in many applications because of their simple circuit structure. Compared with higher-order complex compensation topology, they are suitable for more demanding applications, such as rail trams with high power requirements but limited space for [...] Read more.
Series–series (SS) wireless power transfer (WPT) systems are used in many applications because of their simple circuit structure. Compared with higher-order complex compensation topology, they are suitable for more demanding applications, such as rail trams with high power requirements but limited space for the coupling mechanism. However, the characteristics of their voltage source also put forward higher requirements for the control strategy. Improving the dynamic response performance of an SS compensation WPT system without any communication between the primary and secondary sides is the key issue. This paper proposes an improved variable step-size maximum power point tracking control strategy with the mutual inductance identification. Compared with the conventional P&O control, it can achieve a faster response and more accurate tracking, which are very important to the WPT for rail transit. A method of the mutual inductance identification based on the weight of parameter sensitivity is proposed. Based on the results of the identified mutual inductance, to make the system transfer the maximum power, the duty ratio of the receiver is adjusted to approach the corresponding equivalent load. To deal with the change of the mutual inductance, a condition of terminating the searching process of the maximum power point and re-identifying the mutual inductance is proposed. A simulation and experimental platform is built for verification. The results show that the proposed control strategy can quickly respond to the variation of the mutual inductance and load and achieve accurate maximum power point location, which improves the performance of the SS compensation WPT system. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

21 pages, 23010 KiB  
Article
Optimization Methodologies for Analyzing the Impact of Operational Parameters on a Light-Duty Methane/Diesel Reactivity-Controlled Compression Ignition (RCCI) Engine
by Anwer Hamed Salih Alattwani, Mehmet Zafer Gul and Mustafa Yilmaz
Appl. Sci. 2025, 15(7), 3849; https://doi.org/10.3390/app15073849 - 1 Apr 2025
Cited by 1 | Viewed by 505
Abstract
This study aims to evaluate and optimize the influences of operational factors, including the engine’s rotational speed, methane mass, diesel mass, and the duration of injected diesel fuel on the methane/diesel reactivity-controlled compression ignition (RCCI) light-duty engine’s performance and emissions by executing the [...] Read more.
This study aims to evaluate and optimize the influences of operational factors, including the engine’s rotational speed, methane mass, diesel mass, and the duration of injected diesel fuel on the methane/diesel reactivity-controlled compression ignition (RCCI) light-duty engine’s performance and emissions by executing the Nondominated Sorting Genetic Algorithm-II (NSGAII). The optimizations aimed to minimize peak firing pressure simultaneously, decrease indicated specific fuel consumption, and reduce tailpipe emissions. It is found that the excess air ratios of (2.22 to 2.37) are the range of feasible results of the RCCI engine, and the power should be less than 0.89 from the maximum design load of the diesel engine when it works without it after treatment. The methane/diesel RCCI engine achieves an indicative thermal efficiency of 51%. The Pareto results from the NSGA algorithm occur on multiple fronts, and there is a tradeoff between power and nitrogen oxide (NOx) in addition to unburned hydrocarbons (UHCs) and carbon monoxide (CO) with NOx emissions. Moreover, EURO IV emissions regulations can occur when using a start of injection (SOI) of −35 CA, a diesel mass of 1.82 mg, a methane mass of 9.74 mg, a diesel injection duration of 2.63 CA, and a rotational speed of 2540 rpm. This accomplished a reduction in indicative specific fuel consumption by 27.8%, higher indicative efficiency by 21.9%, and emissions reductions compared to a conventional diesel engine. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

19 pages, 4318 KiB  
Article
Influence of Compression Ratio on Combustion and Emission Characteristics of Hydrogen Internal Combustion Engines Under Different Excess Air Coefficients
by Diming Lou, Yixuan Liu and Yunhua Zhang
Energies 2025, 18(7), 1656; https://doi.org/10.3390/en18071656 - 26 Mar 2025
Viewed by 812
Abstract
Hydrogen internal combustion engines (H2-ICEs) are a promising solution for decarbonizing heavy-duty transportation. This study investigates the effects of compression ratio (CR: 9, 11, 13) and excess air ratio (λ: 1–5) on the performance, emissions, and combustion characteristics of a turbocharged [...] Read more.
Hydrogen internal combustion engines (H2-ICEs) are a promising solution for decarbonizing heavy-duty transportation. This study investigates the effects of compression ratio (CR: 9, 11, 13) and excess air ratio (λ: 1–5) on the performance, emissions, and combustion characteristics of a turbocharged direct-injection H2-ICE under lean-burn conditions. A validated one-dimensional GT-POWER model, calibrated using experimental data (1500 rpm, 0.6 bar intake pressure), was employed to analyze volumetric efficiency (VE), indicated thermal efficiency (ITE), NOx emissions, and combustion stability. Results demonstrate that increasing λ reduces VE and indicated mean effective pressure (IMEP) but enhances ITE, peaking at 41.25% (CR = 13, λ = 2.5). NOx emissions exhibit a non-monotonic trend, reaching 1850 ppm at λ = 1.5 (CR = 13) before declining under leaner conditions. Higher CR extends the lean-burn limit (λ = 5.0 for CR = 13) and advances combustion phasing, though it elevates risks of abnormal combustion. Trade-offs between power, efficiency, and emissions highlight λ = 2.5 as optimal for balancing ITE and NOx control, while λ = 1 maximizes power output. This work provides critical insights into optimizing H2-ICE operation through CR and λ adjustments, supporting the transition toward sustainable heavy-duty transport systems. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

19 pages, 8720 KiB  
Article
High Step-Up Interleaved DC–DC Converter with Voltage-Lift Capacitor and Voltage Multiplier Cell
by Shin-Ju Chen, Sung-Pei Yang, Chao-Ming Huang and Po-Yuan Hu
Electronics 2025, 14(6), 1209; https://doi.org/10.3390/electronics14061209 - 19 Mar 2025
Viewed by 792
Abstract
In this article, a new high step-up interleaved DC–DC converter is presented for renewable energy systems. The converter circuit is based on the interleaved two-phase boost converter and integrates a voltage-lift capacitor and a voltage multiplier cell. A high voltage gain of the [...] Read more.
In this article, a new high step-up interleaved DC–DC converter is presented for renewable energy systems. The converter circuit is based on the interleaved two-phase boost converter and integrates a voltage-lift capacitor and a voltage multiplier cell. A high voltage gain of the converter can be achieved with a reasonable duty ratio and the voltage stresses of semiconductor devices are reduced. Because of low voltage stress, the switches with low on-resistance and the diodes with low forward voltage drops can be adopted to minimize the conduction losses. Additionally, the switching losses are reduced because the switches are turned on under zero-current switching (ZCS) conditions. Due to the existence of leakage inductances of the coupled inductors, the diode reverse-recovery problem is alleviated. Moreover, the leakage energy is recycled and the voltage spikes during switch turn-off are avoided. The parallel input architecture and interleaved operation reduce the input current ripple. The operating principles, steady-state characteristics, and design considerations of the presented converter are proposed in detail. Furthermore, a closed-loop control is designed to maintain a well-regulated output voltage despite variations in input voltage and output load. A prototype converter with a rated 1000 W output power is realized for demonstration. Finally, experimental results show the converter effectiveness and verify the theoretical analysis. Full article
(This article belongs to the Special Issue Efficient and Resilient DC Energy Distribution Systems)
Show Figures

Figure 1

14 pages, 495 KiB  
Protocol
Efficacy and Safety of Photobiomodulation in MELAS: Protocol for a Series of N-of-1 Trials
by E-Liisa Laakso, Tatjana Ewais, Katie McMahon, Josephine Forbes and Liza Phillips
J. Clin. Med. 2025, 14(6), 2047; https://doi.org/10.3390/jcm14062047 - 17 Mar 2025
Viewed by 2011
Abstract
Background: There is no cure for mitochondrial diseases which manifest in numerous ways including fatigue, muscle weakness, and exercise intolerance. Medical treatment varies and focuses on managing symptoms. Photobiomodulation (PBM) can decrease mitochondrial damage thereby increasing energy production and decreasing cell death. [...] Read more.
Background: There is no cure for mitochondrial diseases which manifest in numerous ways including fatigue, muscle weakness, and exercise intolerance. Medical treatment varies and focuses on managing symptoms. Photobiomodulation (PBM) can decrease mitochondrial damage thereby increasing energy production and decreasing cell death. This pilot study will apply PBM to people with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) to examine the safety of application, and if changes occur in symptoms and signs after cross-over application/withdrawal of a sham or active PBM treatment including a two-week period of washout. Methods: This study is an exploratory, prospective series N-of-1 (single patient) studies. The protocol is guided by the CONSORT extension for reporting N-of-1 trials (CENT 2015), chosen due to the rarity of mitochondrial diseases, the fluctuating symptomology, and heterogeneity of the clinical presentation. The primary outcome is patient-reported fatigue assessed using the Checklist of Individual Strength and with concomitant evaluation of safety. Secondary measures are of depression, anxiety and stress, sleepiness, physical activity, blood lactate and creatine kinase, physical measures of sit-to-stand, and heel raise capability. Mitochondrial function will be evaluated using hydrogen magnetic resonance spectroscopy for lactate. PBM will be a participant-administered, home-based therapy using a multiple diode flexible array (BeniLight iLED-Pro Multi-Wave Multi-Pulse belt; 465 nm, 660 nm, 850 nm; average irradiance 5.23 mW/cm2; total joules: 770.1 J/treatment, all sites; 5 KHz; 20% duty ratio) over the anterior thigh muscles, posterior calf muscles and abdomen for 10 min to each site, three times/week. The safety of the intervention will be assessed. Descriptive statistics, causal analyses of time series data and dynamic modelling will be applied as relevant to the variables collected. Hydrogen magnetic resonance spectra will be acquired and averaged to obtain the content of the targeted hydrogen levels. Discussion: The study will provide guidance on whether and how to progress to a larger, randomised cohort study with sham control. Full article
Show Figures

Figure 1

20 pages, 8921 KiB  
Article
A Survey of IEEE 802.11ax WLAN Temporal Duty Cycle for the Assessment of RF Electromagnetic Exposure
by Yizhen Yang, Günter Vermeeren, Leen Verloock, Mònica Guxens and Wout Joseph
Appl. Sci. 2025, 15(5), 2858; https://doi.org/10.3390/app15052858 - 6 Mar 2025
Viewed by 1241
Abstract
The increasing deployment of IEEE 802.11ax (Wi-Fi 6) networks necessitates an accurate assessment of radiofrequency electromagnetic field (RF-EMF) exposure under realistic usage scenarios. This study investigates the duty cycle (DC) and corresponding exposure levels of Wi-Fi 6 in controlled laboratory conditions, focusing on [...] Read more.
The increasing deployment of IEEE 802.11ax (Wi-Fi 6) networks necessitates an accurate assessment of radiofrequency electromagnetic field (RF-EMF) exposure under realistic usage scenarios. This study investigates the duty cycle (DC) and corresponding exposure levels of Wi-Fi 6 in controlled laboratory conditions, focusing on bandwidth variations, multi-user scenarios, and application types. DC measurements reveal significant variability across internet services, with FTP upload exhibiting the highest mean DC (94.3%) under 20 MHz bandwidth, while YouTube 4K video streaming showed bursts with a maximum DC of 89.2%. Under poor radio conditions, DC increased by up to 5× for certain applications, emphasizing the influence of degraded signal-to-noise ratio (SNR) on retransmissions and modulation. Weighted exposure results indicate a reduction in average electric-field strength by up to 10× when incorporating DC, with maximum weighted exposure at 4.2 V/m (6.9% of ICNIRP limits) during multi-user scenarios. These findings highlight the critical role of realistic DC assessments in refining exposure evaluations, ensuring regulatory compliance, and advancing the understanding of Wi-Fi 6’s EMF exposure implications. Full article
(This article belongs to the Special Issue Electromagnetic Radiation and Human Environment)
Show Figures

Figure 1

23 pages, 9774 KiB  
Article
Predictive Torque Control of Permanent Magnet Motor for New-Energy Vehicles Under Low-Carrier-Ratio Conditions
by Zhiqiang Wang, Zhichen Lin, Xuefeng Jin and Yan Yan
World Electr. Veh. J. 2025, 16(3), 146; https://doi.org/10.3390/wevj16030146 - 4 Mar 2025
Viewed by 692
Abstract
The model predictive-torque-control strategy of a permanent magnet synchronous motor (PMSM) has many advantages such as a fast dynamic response and the ease of implementation. However, when the permanent magnet motor has a large number of pole pairs or operates at high-speed, due [...] Read more.
The model predictive-torque-control strategy of a permanent magnet synchronous motor (PMSM) has many advantages such as a fast dynamic response and the ease of implementation. However, when the permanent magnet motor has a large number of pole pairs or operates at high-speed, due to constraints such as the inverter switching frequency, sampling time, and algorithm execution time, the motor carrier ratio (the ratio of control frequency to operating frequency) becomes relatively low. The discrete model derived from and based on the forward Euler method has a large model error when the carrier ratio decreases, which leads to voltage vector misjudgment and inaccurate duty cycle calculation, thus leading to the decline of control performance. Meanwhile, the shortcomings of the traditional model predictive-torque-control strategy limit the steady-state performance. In response to the above issues, this paper proposes an improved model predictive-torque-control strategy suitable for low-carrier-ratio conditions. The strategy consists of an improved discrete model that considers rotor-angle-position variations and a model prediction algorithm. It also analyzes the sensitivity of model predictive control to parameter changes and designs an online parameter optimization algorithm. Compared with the traditional forward Euler method, the improved discrete model proposed in this paper has obvious advantages under low-carrier-ratio conditions; at the same time, the parameter optimization process enhances the parameter robustness of the model prediction algorithm. Moreover, the proposed model predictive-torque-control strategy has high torque tracking accuracy. The experimental results verify the feasibility and effectiveness of the proposed strategy. Full article
Show Figures

Figure 1

30 pages, 22040 KiB  
Article
Optimal Driving Torque Control Strategy for Front and Rear Independently Driven Electric Vehicles Based on Online Real-Time Model Predictive Control
by Hang Yin, Chao Ma, Haifeng Wang, Zhihao Sun and Kun Yang
World Electr. Veh. J. 2024, 15(11), 533; https://doi.org/10.3390/wevj15110533 - 18 Nov 2024
Cited by 1 | Viewed by 2104
Abstract
This paper presents a novel driving torque control strategy for the front and rear independently driven electric vehicle (FRIDEV) to reduce energy consumption and enhance vehicle stability. The strategy is built on a comprehensive vehicle model that integrates vertical load transfer, tire slip [...] Read more.
This paper presents a novel driving torque control strategy for the front and rear independently driven electric vehicle (FRIDEV) to reduce energy consumption and enhance vehicle stability. The strategy is built on a comprehensive vehicle model that integrates vertical load transfer, tire slip dynamics, and an electric system model that accounts for losses in induction motors (IMs), permanent magnet synchronous motors (PMSMs), inverters, and batteries. The torque control problem is framed with a nonlinear model predictive control (MPC) method, utilizing state-space equations as representations of vehicle dynamics. The optimization targets adjust in real-time based on road traction conditions, with the slip rate of front and rear wheels determining the torque control strategy. Active slip control is applied when slip rates exceed critical thresholds, while under normal conditions, torque distribution is optimized to minimize energy losses. To enable online real-time implementation, an improved sparrow search algorithm (SSA) is designed. Simulations in MATLAB/Simulink confirm that the proposed online strategy reduces energy consumption by 2.3% under the China light-duty vehicle test cycle-passenger cars (CLTC-P) compared to a rule-based strategy. Under low-adhesion conditions, the proposed online strategy effectively manages slip ratios, ensuring stability and performance. Improved SSA also enhances computational efficiency by approximately 44%–52%, making the online strategy viable for real-time applications. Full article
Show Figures

Figure 1

11 pages, 2958 KiB  
Proceeding Paper
Design and Construction of a Controlled Solid-State Relay with Variable Duty Ratio for DOMOTIC Applications
by Jorge Medina, Kevin Barros, William Chamorro and Juan Ramírez
Eng. Proc. 2024, 77(1), 14; https://doi.org/10.3390/engproc2024077014 - 18 Nov 2024
Viewed by 804
Abstract
This paper proposes the design and construction of the prototype of a solid-state relay (SSR) that is controlled remotely through an interface developed in an Android application using a WIFI connection. Likewise, the prototype has a system for measuring electrical variables such as [...] Read more.
This paper proposes the design and construction of the prototype of a solid-state relay (SSR) that is controlled remotely through an interface developed in an Android application using a WIFI connection. Likewise, the prototype has a system for measuring electrical variables such as voltage, current, and power factor, whose values are also visualized in the application for monitoring the system’s load. Experimental results demonstrate the effective control of various load profiles, including resistive and resistive–inductive loads. The SSR successfully regulates the firing angle of an electronic device called TRIAC, allowing precise control over the load. Key features include a network snubber and heatsink, enhancing the durability and reliability of the system. The main contribution of this work is the integration of IoT-based remote control and monitoring with a robust SSR design, offering enhanced functionality and reliability for domotic applications. This integration facilitates improved productivity, resource management, and equipment monitoring in smart home environments, addressing the current gap in the availability of intelligent SSR solutions. Full article
(This article belongs to the Proceedings of The XXXII Conference on Electrical and Electronic Engineering)
Show Figures

Figure 1

16 pages, 4404 KiB  
Article
Dual-Fuzzy Regenerative Braking Control Strategy Based on Braking Intention Recognition
by Yaning Qin, Zhu’an Zheng and Jialing Chen
World Electr. Veh. J. 2024, 15(11), 524; https://doi.org/10.3390/wevj15110524 - 14 Nov 2024
Cited by 1 | Viewed by 1304
Abstract
Regenerative braking energy recovery is of critical importance for electric vehicles due to their range limitations. To further enhance regenerative braking energy recovery, a dual-fuzzy regenerative braking control strategy based on braking intention recognition is proposed. Firstly, the distribution strategy for braking force [...] Read more.
Regenerative braking energy recovery is of critical importance for electric vehicles due to their range limitations. To further enhance regenerative braking energy recovery, a dual-fuzzy regenerative braking control strategy based on braking intention recognition is proposed. Firstly, the distribution strategy for braking force is devised by considering classical curves like ideal braking force allocation and ECE regulations; secondly, taking the brake pedal opening and its opening change rate as inputs, the braking intention recognition fuzzy controller is designed for outputting braking strength. Based on the recognized braking strength, and considering the battery charging state and the speed of the vehicle as inputs, a regenerative braking duty ratio fuzzy controller is developed for regenerative braking force regulation to improve energy recovery. Furthermore, a control experiment is established to evaluate and compare the four models and their respective nine braking modes, aiming to define the dual fuzzy logic controller model. Ultimately, simulation validation is conducted using Matlab/Simulink R2019b and CRUISE 2019. The results show that the strategy in this paper has higher energy savings compared to the single fuzzy control and parallel control methods, with energy recovery improved by 26.26 kJ and 96.13 kJ under a single New European Driving Cycle (NEDC), respectively. Full article
Show Figures

Figure 1

20 pages, 1652 KiB  
Article
A Novel High-Gain Multi-Stage Switched-Capacitor-Based DC-DC Boost Converter with Closed-Loop Control
by Priyanshu Kumar, Moina Ajmeri, Ashutosh Kumar Singh, Rajib Kumar Mandal and Akshay Kumar Saha
Energies 2024, 17(21), 5501; https://doi.org/10.3390/en17215501 - 3 Nov 2024
Viewed by 1673
Abstract
In this manuscript, a direct current (DC) boost converter based on a switched-capacitor circuit with closed-loop control, tailored for applications with high-voltage gain, is introduced. The converter utilizes a network with switching capacitors to enhance voltage gain without relying on inductors, making it [...] Read more.
In this manuscript, a direct current (DC) boost converter based on a switched-capacitor circuit with closed-loop control, tailored for applications with high-voltage gain, is introduced. The converter utilizes a network with switching capacitors to enhance voltage gain without relying on inductors, making it ideal for high-voltage scenarios. An active disturbance rejection control (ADRC)-based control scheme is used to maintain output voltage stability in the presence of disturbances. The proposed converter’s functionality and performance are assessed through simulations and experimental tests under various load conditions. A loss analysis, considering the losses from switches and diodes, is provided to determine the net efficiency. The results from both simulations and experiments show that the proposed converter achieves a high-voltage gain, excellent load regulation, and rapid transient response, highlighting its potential for applications that require a high-voltage boosting operation. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

Back to TopTop