Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (343)

Search Parameters:
Keywords = dust physics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6014 KiB  
Article
Predictive Analysis of Ventilation Dust Removal Time in Tunnel Blasting Operations Based on Numerical Simulation and Orthogonal Design Method
by Yun Peng, Shunchuan Wu, Yongjun Li, Lei He and Pengfei Wang
Processes 2025, 13(8), 2415; https://doi.org/10.3390/pr13082415 - 30 Jul 2025
Viewed by 144
Abstract
To enhance the understanding of dust diffusion laws in tunnel blasting operations of metal mines and determine optimal ventilation dust removal times, a scaled physical model of a metal mine tunneling face under the China Zijin Mining Group was established based on field [...] Read more.
To enhance the understanding of dust diffusion laws in tunnel blasting operations of metal mines and determine optimal ventilation dust removal times, a scaled physical model of a metal mine tunneling face under the China Zijin Mining Group was established based on field measurements. Numerical simulation was employed to investigate airflow movement and dust migration in the tunneling roadway, and the fundamental features of airflow field and dust diffusion laws after tunnel blasting operations in the fully mechanized excavation face were revealed. The effects of three main factors included airflow rate (Q), ventilation distance (S), and tunnel length (L) on the dust removal time after tunnel blasting operations were investigated based on the orthogonal design method. Results indicated that reducing the dust concentration in the roadway to 10 mg/m3 required 53 min. The primary factors influencing dust removal time, in order of significance, were determined to be L, Q, and S. The lowest dust concentration occurs when the ventilation distance was 25 m. A predictive model for dust removal time after tunnel blasting operations was developed, establishing the relationship between dust removal time and the three factors as T = 20.7Q−0.73S0.19L0.86. Subsequent on-site validation confirmed the high accuracy of the predictive model, demonstrating its efficacy for practical applications. This study contributes a novel integration of orthogonal experimental design and validated CFD modeling to predict ventilation dust removal time, offering a practical and theoretically grounded approach for tunnel ventilation optimization. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

43 pages, 3721 KiB  
Review
Novel Strategies for the Formulation of Poorly Water-Soluble Drug Substances by Different Physical Modification Strategies with a Focus on Peroral Applications
by Julian Quodbach, Eduard Preis, Frank Karkossa, Judith Winck, Jan Henrik Finke and Denise Steiner
Pharmaceuticals 2025, 18(8), 1089; https://doi.org/10.3390/ph18081089 - 23 Jul 2025
Viewed by 671
Abstract
The number of newly developed substances with poor water solubility continually increases. Therefore, specialized formulation strategies are required to overcome the low bioavailability often associated with this property. This review provides an overview of novel physical modification strategies discussed in the literature over [...] Read more.
The number of newly developed substances with poor water solubility continually increases. Therefore, specialized formulation strategies are required to overcome the low bioavailability often associated with this property. This review provides an overview of novel physical modification strategies discussed in the literature over the past decades and focuses on oral dosage forms. A distinction is made between ‘brick-dust’ molecules, which are characterized by high melting points due to the solid-state properties of the substances, and ‘grease-ball’ molecules with high lipophilicity. In general, the discussed strategies are divided into the following three main categories: drug nanoparticles, solid dispersions, and lipid-based formulations. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

17 pages, 2124 KiB  
Article
Soiling Forecasting for Parabolic Trough Collector Mirrors: Model Validation and Sensitivity Analysis
by Areti Pappa, Johannes Christoph Sattler, Siddharth Dutta, Panayiotis Ktistis, Soteris A. Kalogirou, Orestis Spiros Alexopoulos and Ioannis Kioutsioukis
Atmosphere 2025, 16(7), 807; https://doi.org/10.3390/atmos16070807 - 1 Jul 2025
Viewed by 259
Abstract
Parabolic trough collector (PTC) systems, often deployed in arid regions, are vulnerable to dust accumulation (soiling), which reduces mirror reflectivity and energy output. This study presents a physically based soiling forecast algorithm (SFA) designed to estimate soiling levels. The model was calibrated and [...] Read more.
Parabolic trough collector (PTC) systems, often deployed in arid regions, are vulnerable to dust accumulation (soiling), which reduces mirror reflectivity and energy output. This study presents a physically based soiling forecast algorithm (SFA) designed to estimate soiling levels. The model was calibrated and validated using three meteorological data sources—numerical forecasts (YR), METAR observations, and on-site measurements—from a PTC facility in Limassol, Cyprus. Field campaigns covered dry, rainy, and red-rain conditions. The model demonstrated robust performance, particularly under dry summer conditions, with normalized root mean square errors (NRMSE) below 1%. Sedimentation emerged as the dominant soiling mechanism, while the contributions of impaction and Brownian motion varied according to site-specific environmental conditions. Under dry deposition conditions, the reflectivity change rate during spring and autumn was approximately twice that of summer, indicating a need for more frequent cleaning during transitional seasons. A red-rain event resulted in a pronounced drop in reflectivity, showcasing the model’s ability to capture abrupt soiling dynamics associated with extreme weather episodes. The proposed SFA offers a practical, adaptable tool for reducing soiling-related losses and supporting seasonally adjusted maintenance strategies for solar thermal systems. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

15 pages, 8481 KiB  
Article
Mitigating Model Biases in Arid Region Precipitation over Northwest China Through Dust–Cloud Microphysical Interactions
by Anqi Wang, Xiaoning Xie, Zhibao Dong, Xiaoyun Li, Ke Shang, Xiaokang Liu and Zhijing Xue
Atmosphere 2025, 16(7), 800; https://doi.org/10.3390/atmos16070800 - 1 Jul 2025
Viewed by 285
Abstract
Accurate projection of future climate trends in arid regions critically depends on reliable precipitation simulations. However, most Coupled Model Intercomparison Project Phase 6 (CMIP6) models exhibit systematic overestimations of precipitation in Northwest China, a bias that undermines the credibility of climate projections for [...] Read more.
Accurate projection of future climate trends in arid regions critically depends on reliable precipitation simulations. However, most Coupled Model Intercomparison Project Phase 6 (CMIP6) models exhibit systematic overestimations of precipitation in Northwest China, a bias that undermines the credibility of climate projections for this vulnerable region. This persistent bias likely stems from the omission of key physical processes in traditional models. In this study, we incorporate a dust–ice-cloud interaction scheme into the Community Atmosphere Model version 5 (CAM5) model to investigate its role in regulating precipitation over dust-rich arid regions. This physical mechanism, which is rarely included in conventional models, is particularly relevant for Northwest China where dust aerosols are abundant. Our results show that accounting for dust-induced ice nucleation leads to a significant reduction in total precipitation, especially in the convective component, thereby alleviating the longstanding wet bias in the region. These findings underscore the critical importance of dust–ice-cloud interactions in simulating precipitation in arid environments. To improve the accuracy of future climate projections in Northwest China, climate models must incorporate realistic representations of dust-related microphysical processes. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

10 pages, 1248 KiB  
Article
Post-AGB Binaries as Interacting Systems
by Hans Van Winckel
Galaxies 2025, 13(3), 68; https://doi.org/10.3390/galaxies13030068 - 12 Jun 2025
Viewed by 617
Abstract
We present recent progress in our understanding of the physical interaction mechanisms at work in evolved binaries of low-to-intermediate initial mass, which are surrounded by a stable disc of gas and dust. These systems are known as post-asymptotic giant-branch (post-AGB) binaries, but recently, [...] Read more.
We present recent progress in our understanding of the physical interaction mechanisms at work in evolved binaries of low-to-intermediate initial mass, which are surrounded by a stable disc of gas and dust. These systems are known as post-asymptotic giant-branch (post-AGB) binaries, but recently, it has been shown that some systems are too low in luminosity and should be considered as post-red-giant branch (post-RGB) instead. While the systems are currently well within their Roche lobe, they still show signs of active ongoing interaction between the different building blocks. We end this contribution with some future research plans. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

17 pages, 1223 KiB  
Article
Foreground Emission Randomization Due to Dynamics of Magnetized Interstellar Medium: WMAP and Planck Frequency Bands
by Alexander Bershadskii
Foundations 2025, 5(2), 21; https://doi.org/10.3390/foundations5020021 - 10 Jun 2025
Viewed by 692
Abstract
Using the results of numerical simulations and astrophysical observations (mainly in the WMAP and Planck frequency bands), it is shown that Galactic foreground emission becomes more sensitive to the mean magnetic field with the frequency, resulting in the appearance of two levels of [...] Read more.
Using the results of numerical simulations and astrophysical observations (mainly in the WMAP and Planck frequency bands), it is shown that Galactic foreground emission becomes more sensitive to the mean magnetic field with the frequency, resulting in the appearance of two levels of its randomization due to the chaotic/turbulent dynamics of a magnetized interstellar medium dominated by magnetic helicity. The galactic foreground emission is more randomized at higher frequencies. The Galactic synchrotron and polarized dust emissions have been studied in detail. It is shown that the magnetic field imposes its level of randomization on the synchrotron and dust emission. The main method for the theoretical consideration used in this study is the Kolmogorov–Iroshnikov phenomenology in the frames of distributed chaos notion. Despite the vast differences in the values of physical parameters and spatio-temporal scales between the numerical simulations and the astrophysical observations, there is a quantitative agreement between the results of the astrophysical observations and the numerical simulations in the frames of the distributed chaos notion. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

33 pages, 3134 KiB  
Article
Physical–Statistical Characterization of PM10 and PM2.5 Concentrations and Atmospheric Transport Events in the Azores During 2024
by Maria Gabriela Meirelles and Helena Cristina Vasconcelos
Earth 2025, 6(2), 54; https://doi.org/10.3390/earth6020054 - 6 Jun 2025
Viewed by 968
Abstract
This study presented a comprehensive physical–statistical analysis of atmospheric particulate matter (PM10 and PM2.5) and trace gases (SO2 and O3) over Faial Island in the Azores archipelago during 2024. We collected real-time data at the Espalhafatos rural [...] Read more.
This study presented a comprehensive physical–statistical analysis of atmospheric particulate matter (PM10 and PM2.5) and trace gases (SO2 and O3) over Faial Island in the Azores archipelago during 2024. We collected real-time data at the Espalhafatos rural background station, covering 35,137 observations per pollutant, with 15 min intervals. Descriptive statistics, probability distribution fitting (Normal, Lognormal, Weibull, Gamma), and correlation analyses were employed to characterize pollutant dynamics and identify extreme pollution episodes. The results revealed that PM2.5 (fine particles) concentrations are best modeled by a Lognormal distribution, while PM10 concentrations fit a Gamma distribution, highlighting the presence of heavy-tailed, positively skewed behavior in both cases. Seasonal and episodic variability was significant, with multiple Saharan dust transport events contributing to PM exceedances, particularly during winter and spring months. These events, confirmed by CAMS and SKIRON dust dispersion models, affected not only southern Europe but also the Northeast Atlantic, including the Azores region. Weak to moderate correlations were observed between PM concentrations and meteorological variables, indicating complex interactions influenced by atmospheric stability and long-range transport processes. Linear regression analyses between SO2 and O3, and between SO2 and PM2.5, showed statistically significant but low-explanatory relationships, suggesting that other meteorological and chemical factors play a dominant role. This result highlights the importance of developing air quality policies that address both local emissions and long-range transport phenomena. They support the implementation of early warning systems and health risk assessments based on probabilistic modeling of particulate matter concentrations, even in remote Atlantic locations such as the Azores. Full article
Show Figures

Figure 1

14 pages, 705 KiB  
Technical Note
Sensing Lunar Dust Density Using Radio Science Signals of Opportunity
by Kamal Oudrhiri, Yu-Ming Yang and Daniel Erwin
Remote Sens. 2025, 17(11), 1940; https://doi.org/10.3390/rs17111940 - 4 Jun 2025
Viewed by 597
Abstract
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions [...] Read more.
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions have laid a strong foundation for our current knowledge. However, due to insufficient near-surface observations, the scientific community has faced challenges in interpreting the phenomena of lunar dust lofting and levitation. This paper introduces the concept of signals of opportunity (SoOP), which utilizes radio occultation (RO) to retrieve the near-surface dust density profile on the Moon. Gravity Recovery and Interior Laboratory (GRAIL) radio science beacon (RSB) signals are used to demonstrate this method. By mapping the concentration of lunar near-surface dust using RO, we aim to enhance our understanding of how charged lunar dust interacts with surrounding plasma, thereby contributing to future research in this field and supporting human exploration of the Moon. Additionally, the introduced SoOP will be able to provide observational constraints to physical model development related to lunar surface particle sputtering and the reactions of near-surface dust in the presence of solar wind and electrostatically charged dust grains. Full article
Show Figures

Figure 1

18 pages, 251 KiB  
Article
Complex Riemannian Spacetime: Removal of Black Hole Singularities and Black Hole Paradoxes
by John W. Moffat
Axioms 2025, 14(6), 440; https://doi.org/10.3390/axioms14060440 - 4 Jun 2025
Viewed by 332
Abstract
An approach is presented to resolve key paradoxes in black hole physics through the application of complex Riemannian spacetime. We extend the Schwarzschild metric into the complex domain, employing contour integration techniques to remove singularities while preserving the essential features of the original [...] Read more.
An approach is presented to resolve key paradoxes in black hole physics through the application of complex Riemannian spacetime. We extend the Schwarzschild metric into the complex domain, employing contour integration techniques to remove singularities while preserving the essential features of the original solution. A new regularized radial coordinate is introduced, leading to a singularity-free description of black hole interiors. Crucially, we demonstrate how this complex extension resolves the long-standing paradox of event horizon formation occurring only in the infinite future of distant observers. By analyzing trajectories in complex spacetime, we show that the horizon can form in finite complex time, reconciling the apparent contradiction between proper and coordinate time descriptions. This approach also provides a framework for the analytic continuation of information across event horizons, resolving the Hawking information paradox. We explore the physical interpretation of the complex extension versus its projection onto real spacetime. The gravitational collapse of a dust sphere with negligible dust is explored in the complex spacetime extension. The approach offers a mathematically rigorous framework for exploring quantum gravity effects within the context of classical general relativity. Full article
(This article belongs to the Special Issue Complex Variables in Quantum Gravity)
23 pages, 10029 KiB  
Article
Lightweight Artificial Aggregates Produced from Water Reservoir Sediment and Industrial Waste—Ecological and Technological Aspect
by Adam Masłoń, Maksymilian Cieśla, Renata Gruca-Rokosz, Lesław Bichajło, Andrzej Nowotnik, Maciej Pytel, Kamil Gancarczyk, Marcin Chutkowski, Marek Potoczek, Małgorzata Franus and Katarzyna Kalinowska-Wichrowska
Materials 2025, 18(11), 2563; https://doi.org/10.3390/ma18112563 - 30 May 2025
Cited by 1 | Viewed by 809
Abstract
The use of mineral waste for the production of lightweight artificial aggregate is an important element of activities for sustainable development in construction and the implementation of the objectives of the circular economy. The article presents the physical, mechanical, and ecological properties of [...] Read more.
The use of mineral waste for the production of lightweight artificial aggregate is an important element of activities for sustainable development in construction and the implementation of the objectives of the circular economy. The article presents the physical, mechanical, and ecological properties of an innovative artificial aggregate produced from bottom sediments, concrete dust, and municipal solid waste incineration fly ash. The obtained research results confirm that the developed material achieves technological properties comparable to artificial aggregates available on the market, both commercial and those derived from recycling. However, the increased leachability of chlorides and sulphates remains a significant challenge, which may limit the scope of its applications. Despite this, the material shows the potential for use, among others, in the production of lightweight concrete. The analyses carried out have shown that the thermal hardening processes (200–400 °C) and autoclaving do not guarantee full immobilization of harmful substances contained in the raw materials for the production of this type of aggregate. Full article
(This article belongs to the Special Issue Low-Carbon Construction and Building Materials)
Show Figures

Figure 1

20 pages, 2087 KiB  
Article
Analysis of Chemical Composition and Sources of PM10 in the Southern Gateway of Beijing
by Yu Qu, Juan Yang, Xingang Liu, Yong Chen, Haiyan Ran, Junling An and Fanyeqi Yang
Atmosphere 2025, 16(6), 656; https://doi.org/10.3390/atmos16060656 - 29 May 2025
Viewed by 536
Abstract
PM10 samples were collected at an urban site of Zhuozhou, the southern gateway of Beijing, from 28 December 2021 to 29 January 2022, in order to explore the chemical composition, sources and physical and chemical formation processes of prominent components. The results [...] Read more.
PM10 samples were collected at an urban site of Zhuozhou, the southern gateway of Beijing, from 28 December 2021 to 29 January 2022, in order to explore the chemical composition, sources and physical and chemical formation processes of prominent components. The results showed that five trace elements (Mn, Cu, As, Zn and Pb) had high enrichment in PM10 and were closely related with anthropogenic combustion and vehicle emissions; organic and element carbon had a high correlation due to the same primary sources and similar evolution; nitrate dominated SNA (sulfate, nitrate, ammonium) and nitrate/sulfate ratios reached 2.35 on the polluted days owing to the significant contribution of motor vehicle emissions. Positive matrix factorization analysis indicated that secondary source, traffic, biomass burning, industry, coal combustion and crustal dust were the main sources of PM10, contributing 32.5%, 20.9%, 15.0%, 13.9%, 9.4% and 8.3%, respectively; backward trajectories and potential source contribution function analysis showed that short-distance airflow was the dominant cluster and accounted for nearly 50% of total trajectories. The Weather Research and Forecasting model with Chemistry, with integrated process rate analysis, showed that dominant gas-phase reactions (heterogeneous reaction) during daytime (nighttime) in presence of ammonia led to a significant enhancement of nitrate in Zhuozhou, contributing 12.6 μg/m3 in episode 1 and 22.9 μg/m3 in episode 2. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

15 pages, 669 KiB  
Systematic Review
Basalt Rock Powder in Cementitious Materials: A Systematic Review
by Maryane Pipino Beraldo Almeida, Lays da Silva Sá Gomes, Alex Ramos Silva, Jacqueline Roberta Tamashiro, Fábio Friol Guedes Paiva, Lucas Henrique Pereira Silva and Angela Kinoshita
Resources 2025, 14(6), 86; https://doi.org/10.3390/resources14060086 - 23 May 2025
Cited by 1 | Viewed by 811
Abstract
Concrete and mortar production consumes significant natural resources, leading to environmental concerns and sustainability challenges. Sustainable alternatives, such as industrial byproducts, have been explored to replace clinkers and aggregates. Basalt rock powder (BRP) is a promising option due to its physical and chemical [...] Read more.
Concrete and mortar production consumes significant natural resources, leading to environmental concerns and sustainability challenges. Sustainable alternatives, such as industrial byproducts, have been explored to replace clinkers and aggregates. Basalt rock powder (BRP) is a promising option due to its physical and chemical properties, including its better particle size distribution and compatibility with cementitious composites, and studies have highlighted its pozzolanic activity and its potential to improve mechanical properties (compressive strength, flexural strength, and durability). Reusing rock dust as a raw material could transform it into a mineral byproduct, benefiting the new material and reducing waste volumes. This article presents a systematic literature review on the use of BRP in construction materials, conducted using the Scopus, ScienceDirect, PubMed, and Web of Science databases and following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) procedures. The search resulted in 787 articles (up to December 2024) and, after the screening process, 17 met the inclusion criteria. From the selected articles, information regarding the utilization of this waste product; its influence on mechanical properties, pozzolanic activity, and durability; and the sustainability associated with its use was compiled. The risk of bias was low as the search was comprehensive, all the papers were peer-reviewed, and all authors reviewed the papers independently. In conclusion, the studies demonstrate the potential of using BRP as a component of cementitious materials, indicating it as a possible innovative solution to the current challenges in the construction industry. Full article
Show Figures

Figure 1

31 pages, 18126 KiB  
Article
Eco-Friendly Conversion of Waste Zeolite Dust into Dual Oil/Water Affinity Sorbents via HPGR-Based Agglomeration–Deagglomeration
by Ewelina Pabiś-Mazgaj, Agata Stempkowska and Tomasz Gawenda
Sustainability 2025, 17(10), 4359; https://doi.org/10.3390/su17104359 - 12 May 2025
Viewed by 517
Abstract
This study presents an innovative, eco-friendly approach for converting waste zeolite dust into efficient petroleum sorbents through an integrated agglomeration–deagglomeration process using high-pressure grinding rolls (HPGRs). This method generates secondary porosity without calcination, enhancing sorption while reducing greenhouse gas emissions and supporting sustainable [...] Read more.
This study presents an innovative, eco-friendly approach for converting waste zeolite dust into efficient petroleum sorbents through an integrated agglomeration–deagglomeration process using high-pressure grinding rolls (HPGRs). This method generates secondary porosity without calcination, enhancing sorption while reducing greenhouse gas emissions and supporting sustainable development by valorizing industrial by-products for environmental remediation. The study aimed to assess the influence of binder and water content on petroleum sorption performance, textural properties, and mechanical strength of the produced sorbents, and to identify correlations between these parameters. Sorbents were characterized using mercury porosimetry (MIP), sorption measurements, mechanical resistance tests, scanning electron microscopy (SEM), and digital microscopy. Produced zeolite sorbents (0.5–1 mm) exceeded the 50 wt.% sorption threshold required for oil spill cleanup in Poland, outperforming diatomite sorbents by 15–50% for diesel and 40% for used engine oil. The most effective sample, 3/w/22.5, reached capacities of 0.4 g/g for petrol, 0.8 g/g for diesel, and 0.3 g/g for used oil. The sorption mechanism was governed by physical processes, mainly diffusion of nonpolar molecules into meso- and macropores via van der Waals forces. Sorbents with dominant pores (~4.8 µm) showed ~15% higher efficiency than those with smaller pores (~0.035 µm). The sorbents demonstrated amphiphilic behavior, enabling simultaneous uptake of polar (water) and nonpolar (petrochemical) substances. Full article
Show Figures

Figure 1

28 pages, 12842 KiB  
Article
Research on Cooling and Dust Removal Technology of Circulating Airflow in Metal Mine Working Face
by Dejun Miao, Qian Feng and Wanbao Zeng
Processes 2025, 13(5), 1374; https://doi.org/10.3390/pr13051374 - 30 Apr 2025
Viewed by 515
Abstract
To address ventilation challenges in the working face of metal mine excavation, an equal-scale physical model was established with a mine section as the test site, combined with field-measured data and relevant parameters of spent air reuse equipment. Numerical simulations were carried out [...] Read more.
To address ventilation challenges in the working face of metal mine excavation, an equal-scale physical model was established with a mine section as the test site, combined with field-measured data and relevant parameters of spent air reuse equipment. Numerical simulations were carried out using Fluent 2020 R2 software to analyse the characteristics of the airflow field, temperature field, and dust distribution in the excavation roadway. The results show that when the cold air outlet temperature (T0) is 22 °C, the temperature within the cooling zone does not exceed 26.3 °C, thereby demonstrating effective cooling. The equipment parameters significantly impacted cooling and dust removal. When the distance from the cold air outlet to the heading face was set to Zm = 8 m, the air outlet temperature was T0 = 22 °C, and the ventilation circulation rate was F = 40%, the working area achieved better cooling and dust removal effects. On-site application showed that within 15 m of the working face, temperatures dropped by 3–3.5 °C, reaching a low of 25.1 °C. The relative humidity at a point 1 m away from the working face decreased from 90.6% to 70.2%, and the average dust removal efficiency was 44.9%, which significantly improved the comfort and safety of the working environment at the heading face. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

29 pages, 12981 KiB  
Article
Study on the Effect and Mechanism of Plasma-Activated Water to Improve the Wettability of Coal Dust
by Xu Zheng, Shaocheng Ge and Hongwei Liu
Sustainability 2025, 17(8), 3647; https://doi.org/10.3390/su17083647 - 17 Apr 2025
Viewed by 393
Abstract
Coal dust seriously affects the underground working environment. The current water-spray dust reduction technology uses a large amount of water and has a poor effect on coal dust with poor wettability. This study proposed a clean and sustainable technology using plasma-activated water (PAW) [...] Read more.
Coal dust seriously affects the underground working environment. The current water-spray dust reduction technology uses a large amount of water and has a poor effect on coal dust with poor wettability. This study proposed a clean and sustainable technology using plasma-activated water (PAW) to alter the wettability of coal dust and improve its dust control effect. The PAW was prepared and its physical and mathematical properties were tested by a device designed in-house. The influence of PAW on the wettability of coal dust was determined by the coal dust contact angle experiments. The effect of PAW on the surface morphology of coal dust was analyzed by a scanning electron microscope. The effect of PAW on the pore structure of coal dust was analyzed through the specific surface area and pore size experiments. The results showed that PAW contained a large number of active substances such as H2O2, NO3, and NO2, showing strong and stable oxidation. PAW could significantly reduce the instantaneous contact angle of coal dust, and the higher the degree of coal dust metamorphism, the more significant the reduction effect. The surface morphology, pore volume, specific surface area, and fractal dimension of the coal dust were significantly changed after PAW treatment. PAW could transform the non-uniform three-dimensional spatial distribution of the coal dust surface into an approximate two-dimensional planar distribution, thus enhancing the wettability of the coal dust. With the increase in PAW ionization intensity, the contact angle of long-flame coal was negatively correlated with the mesoporous pore volume. The contact angle of gas coal was negatively correlated with the micropore volume and micropore specific surface area, and was positively correlated with the mesopore volume. The contact angle of meager lean coal was positively correlated with the macropore specific surface area. The surface morphology, pore volume, specific surface area, and fractal dimension changes in coal dust treated with PAW can reveal the wettability enhancement mechanism to some extent. The results of the study can provide pre-theoretical guidance for the field application of PAW coal mine dust reduction technology. Full article
Show Figures

Figure 1

Back to TopTop