Predictive Analysis of Ventilation Dust Removal Time in Tunnel Blasting Operations Based on Numerical Simulation and Orthogonal Design Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Establishment of Tunnel Model and Mesh Division
2.2. Mesh Independence Verification
2.3. Numerical Simulation Calculation and Boundary Condition Setup
3. Analysis of Airflow and Dust Movement
3.1. Numerical Simulation of Airflow Field
- (1)
- Recirculation Zone: Airflow expelled from the duct outlet moves directly toward the tunneling face. Due to shear forces, the high-velocity jet airflow expands continuously. Upon contacting the tunneling face, the airflow is restricted, diffusing outward in all directions and resulting in a distinct recirculation area.
- (2)
- Vortex Zone (10–30 m): The high-velocity airflow creates a negative pressure zone near the duct outlet, imparting a positive velocity component along the tunnel’s longitudinal (X-axis) direction to the surrounding air. Some air is entrained into the jet flow field, mixing with recirculating air and forming circular vortices. Consequently, wind velocities at the center of this vortex zone are notably lower compared to adjacent areas.
- (3)
- Multi-directional Turbulent Zone: Beyond the vortex region, airflow becomes increasingly turbulent and multi-directional, generating complex airflow patterns. This region reflects significant airflow disturbances resulting from interactions between various flow streams.
- (4)
- Laminar Flow Zone: Further downstream, airflow gradually transitions from turbulent to laminar, characterized by stable and uniform flow conditions. The wind velocity stabilizes around 0.3 m/s, marking the laminar flow region.
3.2. Numerical Simulation of Dust Distribution
4. Orthogonal Experimental Design for Predicting Dust Removal Time in Tunnel Blasting Operations
4.1. Design of Orthogonal Experiment
4.2. Analysis of Orthogonal Experimental Results
4.2.1. Orthogonal Experimental Results
4.2.2. Range Analysis of Orthogonal Experiment
4.2.3. Variance Analysis of Orthogonal Experiment
4.3. Mathematical Model Establishment and Field Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, L.; Liu, S. Respirable nano-particulate generations and their pathogenesis in mining workplaces: A review. Int. J. Coal Sci. Technol. 2021, 8, 179–198. [Google Scholar] [CrossRef]
- Huang, R.; Tao, Y.; Chen, J.; Chen, J.; Li, S.; Wang, S. Review on dust control technologies in coal mines of China. Sustainability 2024, 16, 4038. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, W.; Wang, G.; Fan, L.; Zhang, R. Special Issue on mine dust research: Health effects and control technologies. Int. J. Coal Sci. Technol. 2021, 8, 177–178. [Google Scholar] [CrossRef]
- Yu, H.; Jin, Y.-C.; Cheng, W.; Yang, X.; Peng, X.; Xie, Y. Multiscale simulation of atomization process and droplet particles diffusion of pressure-swirl nozzle. Powder Technol. 2021, 379, 127–143. [Google Scholar] [CrossRef]
- Akbarzadeh, V.; Hrymak, A.N. Coupled CFD–DEM of particle-laden flows in a turning flow with a moving wall. Comput. Chem. Eng. 2016, 86, 184–191. [Google Scholar] [CrossRef]
- Mark, C.; Gauna, M. Evaluating the risk of coal bursts in underground coal mines. Int. J. Min. Sci. Technol. 2016, 26, 47–52. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, C.; Wang, M.; Khandelwal, M. Proposing a novel comprehensive evaluation model for the coal burst liability in underground coal mines considering uncertainty factors. Int. J. Min. Sci. Technol. 2021, 31, 799–812. [Google Scholar] [CrossRef]
- Chair, S.Y.; Chan, J.Y.W.; Law, B.M.H.; Waye, M.M.Y.; Chien, W.T. Genetic susceptibility in pneumoconiosis in China: A systematic review. Int. Arch. Occup. Environ. Health 2022, 96, 45–56. [Google Scholar] [CrossRef]
- Nie, W.; Jiang, C.; Sun, N.; Guo, L.; Liu, Q.; Liu, C.; Niu, W. CFD-based simulation study of dust transport law and air age in tunnel under different ventilation methods. Environ. Sci. Pollut. Res. 2023, 30, 114484–114500. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, H.; Zhao, J.; Cheng, W.; Xie, Y. Research on the coupling diffusion law of airflow–dust–gas under the modularized airflow diverging dust control technology. Powder Technol. 2022, 407, 117703. [Google Scholar] [CrossRef]
- Geng, F.; Gui, C.; Wang, Y.; Zhou, F.; Hu, S.; Luo, G. Dust distribution and control in a coal roadway driven by an air curtain system: A numerical study. Process Saf. Environ. Prot. 2019, 121, 32–42. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Y.; Men, L. Ventilation control of tunnel drilling dust based on numerical simulation. J. Cent. South Univ. 2021, 28, 1342–1356. [Google Scholar] [CrossRef]
- Pang, B.; Ren, X.; Wang, S.; Yan, G.; Hou, J.; Li, L.; Li, L.; Liu, X. Gas–solid flow characteristics of airflow and dust particles in blasting excavation of underground metal mine tunnels. ACS Omega 2024, 9, 19320–19333. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Jiang, C.; Sun, N.; Guo, L.; Xue, Q.; Liu, Q.; Liu, C.; Cha, X.; Yi, S. Analysis of multi-factor ventilation parameters for reducing energy air pollution in coal mines. Energy 2023, 278, 127732. [Google Scholar] [CrossRef]
- Shi, L.; Yao, R.; Yan, J.; Luo, K.; Chang, Y.; An, L.; Hu, M. Simulation analysis of temporal and spatial distribution of side-blasting dust. Ind. Saf. Environ. Prot. 2024, 50, 90–93. [Google Scholar]
- Shi, J.; Zhang, W.; Guo, S.; An, H. Numerical modelling of blasting dust concentration and particle size distribution during tunnel construction by drilling and blasting. Metals 2022, 12, 547. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, G.; Ma, Y.; Jing, B.; Sun, B.; Han, F.; He, M.; Chen, X. Numerical analysis on spatial distribution for concentration and particle size of particulate pollutants in dust environment at fully mechanized coal mining face. Powder Technol. 2021, 383, 143–158. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, D.; Chen, J.; Ren, S.; Fan, J.; He, Y. Blasting dust diffuse characteristics of spiral tunnel and dust distribution model: Similar experiment and numerical modeling. Environ. Sci. Pollut. Res. 2023, 30, 52340–52357. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, Z.; Yang, B.; Yang, B.; Yao, S.; Peng, Y.; Wang, Y. Numerical simulation of the minimum mine dust exhausting wind speed under high-altitude environment. J. China Coal Soc. 2021, 46, 2294–2303. [Google Scholar] [CrossRef]
- Jiang, Z.; Zeng, F.; Feng, X.; Zhang, G.; Yang, B.; Wang, Y. Dynamic model and influencing factors of dust pollution after blasting in high-altitude tunnel. J. China Coal Soc. 2023, 48, 263–278. [Google Scholar]
- Hu, H.; Tao, Y.; Zhang, H.; Zhao, Y.; Lan, Y.; Ge, Z. Experimental study on the influence of longitudinal slope on airflow–dust migration behavior after tunnel blasting. Sci. Rep. 2023, 13, 19792. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, C.; Li, C. Dust control performance of an innovative arc device for metro system construction blasting. Sci. Pollut. Res. 2025, 30, 52480–52492. [Google Scholar]
- Nie, X.; Li, K.; Hong, Y. Study on dust migration characteristics and ventilation system layout in high-altitude tunnel construction. J. Saf. Environ. 2024, 24, 2269–2276. [Google Scholar]
- He, L.; Wang, X. Numerical simulation study on blasting dust diffusion during tunnel construction. Saf. Health 2024, 2024, 58–64. [Google Scholar]
- Huang, D.; Luo, Y.; Zhao, Z.; Chen, J.; Liu, W.; Feng, R.; Wu, T. Measurement and analysis of dust concentration in the service tunnel during “TBM + drilling and blasting” construction of the Tianshan Shengli Tunnel. Mod. Tunn. Technol. 2024, 61, 77–85. [Google Scholar]
- Si, J.; Wang, Y.; Li, L. Research progress and development trends of mine dust control technology. Met. Mine 2025, 64–79. [Google Scholar]
- Ma, F.; Yang, S.; Ren, J.; Chen, K. Study on dust migration law in press-in ventilation tunnel based on numerical simulation. Northwest. Hydropower 2024, 5, 38–44. [Google Scholar]
- Guo, Y. Quantitative visualization study of blasting dust based on Gaussian diffusion model. J. China Railw. Soc. 2022, 44, 153–159. [Google Scholar]
- Jiang, B.; Zhang, Y.; Yu, C.; Ji, B.; Wang, H.; Liu, Z. Prediction of coal dust particle size after spraying dust reduction in roadway based on orthogonal experiment and regression analysis. Coal Sci. Technol. 2024, 52, 143–153. [Google Scholar] [CrossRef]
- Liu, R.; Wang, P.; Zhang, D.; Chen, S. Study on Flow Ratio of Blowing to Drawing of Rotational Jet Shield Ventilation at Tunneling Working Face. China Saf. Sci. J. 2012, 22, 133–139. [Google Scholar]
- Liu, R.; Zhu, B.; Wang, P.; Shi, Y.; Gao, R.; Wu, G. Dust control mechanism of double radial swirl shielding ventilation in fully mechanized heading face. J. China Coal Soc. 2021, 46, 3902–3911. [Google Scholar]
- Chen, Z.; Zhao, S.; Wang, S.; Guo, Y.; Sun, B.; Chen, W.; Guo, C. Forced-exhaust air curtain dust removal measures of tunnel blasting dust based on CFD and orthogonal experiments. Tunn. Undergr. Space Technol. 2025, 155, 106223. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, S.; Dong, C.; Wang, S.; Guo, Y.; Gao, X.; Sun, B.; Chen, W.; Guo, C. Spray dust control measures of tunnel blasting dust based on CFD dust–droplet coupling model and orthogonal test. Tunn. Undergr. Space Technol. 2025, 156, 106233. [Google Scholar] [CrossRef]
- Geng, F.; Luo, G.; Wang, Y.; Peng, Z.; Hu, S.; Zhang, T.; Chai, H. Dust dispersion in a coal roadway driven by a hybrid ventilation system: A numerical study. Process Saf. Environ. Prot. 2018, 113, 388–400. [Google Scholar] [CrossRef]
- Toraño, J.; Torno, S.; Menéndez, M.; Gent, M. Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behaviour. Tunn. Undergr. Space Technol. 2011, 26, 201–210. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Sasmito, A.P.; Mujumdar, A.S. Dust dispersion and management in underground mining faces. Int. J. Min. Sci. Technol. 2014, 24, 39–44. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, Q.; Bai, R.; Fan, T.; Wang, G. The diffusion behavior law of respirable dust at fully mechanized caving face in coal mine: CFD numerical simulation and engineering application. Process Saf. Environ. Prot. 2017, 106, 117–128. [Google Scholar] [CrossRef]
- Chen, D.; Nie, W.; Cai, P.; Liu, Z. The diffusion of dust in a fully mechanized mining face with a mining height of 7 m and the application of wet dust-collecting nets. J. Clean. Prod. 2018, 205, 463–476. [Google Scholar] [CrossRef]
- Sun, Z. Study on Dust Migration Regularity and Control Technology in Drilling and Blasting Method of Highway Tunnel Construction; University of Science and Technology Beijing: Beijing, China, 2015. [Google Scholar]
- Xie, Z.; Huang, C.; Zhao, Z.; Xiao, Y.; Zhao, Q.; Lin, J. Review and prospect the development of dust suppression technology and influencing factors for blasting construction. Tunn. Undergr. Space Technol. 2022, 125, 104532. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H. The calculation and analysis of the dust discharge amount of open-pit blasting. Met. Mine 1996, 3, 41–44. [Google Scholar]
Name | Parameter | Name | Parameter |
---|---|---|---|
Solver type | Pressure-based | Solver Time | Transient |
Turbulence | k-ε model | DPM Iteration Interval | 10 |
Energy model | Off | Unsteady Particle Tracking | On |
Velocity inlet | 8.96 m/s | Diameter Distribution | Rosin–Rammler |
Turbulent intensity | 2.77% | Initial Velocity | −6 m/s |
Hydraulic diameter | 1.4 m | Total Flow Rate | 0.251 kg/s |
Outlet type | Outflow | Min. Diameter | 1.0 × 10−6 m |
Roadway floor | Trap | Max. Diameter | 1.0 × 10−4 m |
Entrance and exit of roadway | Escape | Mean Diameter | 1.2 × 10−5 m |
Others | Reflect | Turbulent Dispersion | Discrete Random Orbit Model |
Gas phase | Ideal air | Particle density | 1.55 kg/m3 |
Level | Q (m3/s) | S (m) | L (m) |
---|---|---|---|
1 | 2 | 15 | 120 |
2 | 3 | 20 | 180 |
3 | 4 | 25 | 240 |
4 | 5 | 30 | 300 |
5 | 6 | 35 | 360 |
6 | 7 | 40 | 420 |
Level | Q (m3/s) | S (m) | L (m) | T (min) |
---|---|---|---|---|
1 | 2 | 35 | 360 | 112 |
2 | 3 | 15 | 120 | 44 |
3 | 4 | 25 | 240 | 58 |
4 | 5 | 40 | 420 | 93 |
5 | 6 | 20 | 180 | 31 |
6 | 7 | 30 | 300 | 37 |
7 | 5 | 15 | 300 | 43 |
8 | 6 | 25 | 420 | 62 |
9 | 7 | 35 | 180 | 37 |
10 | 2 | 40 | 180 | 75 |
11 | 3 | 20 | 300 | 71 |
12 | 4 | 30 | 420 | 97 |
13 | 5 | 35 | 360 | 81 |
14 | 6 | 15 | 360 | 47 |
15 | 7 | 25 | 120 | 14 |
16 | 2 | 30 | 120 | 37 |
17 | 3 | 40 | 240 | 65 |
18 | 4 | 20 | 360 | 74 |
19 | 2 | 15 | 240 | 77 |
20 | 4 | 35 | 120 | 32 |
21 | 2 | 20 | 420 | 133 |
22 | 3 | 30 | 180 | 63 |
23 | 4 | 40 | 300 | 59 |
24 | 5 | 30 | 360 | 71 |
25 | 6 | 40 | 120 | 27 |
26 | 7 | 20 | 240 | 32 |
27 | 5 | 25 | 180 | 42 |
28 | 6 | 35 | 300 | 32 |
29 | 7 | 15 | 420 | 48 |
30 | 5 | 20 | 120 | 17 |
31 | 6 | 30 | 240 | 46 |
32 | 7 | 40 | 360 | 45 |
33 | 2 | 25 | 300 | 94 |
34 | 3 | 35 | 420 | 106 |
35 | 4 | 15 | 180 | 35 |
36 | 3 | 20 | 360 | 93 |
Factor | Source of Variance | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|---|
Q (m3/s) | Between Groups | 79.667 | 29 | 2.747 | 0.651 | 0.799 |
Group | 25.333 | 6 | 4.222 | |||
Total | 105.000 | 35 | ||||
S (m) | Between Groups | 2257.639 | 29 | 77.850 | 1.121 | |
Group | 416.667 | 6 | 69.444 | 0.486 | ||
Total | 2674.306 | 35 | ||||
L (m) | Between Groups | 347,600.000 | 29 | 11,986.207 | 1.933 | 0.210 |
Group | 37,200.000 | 6 | 6200.000 | |||
Total | 384,800.000 | 35 |
L (m) | On-Site Measurement Time (min) | Simulate Ventilation Time (min) | Error |
---|---|---|---|
180 | 40 | 37 | 7.50% |
240 | 51 | 47 | 7.84% |
300 | 54 | 57 | 5.26% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Wu, S.; Li, Y.; He, L.; Wang, P. Predictive Analysis of Ventilation Dust Removal Time in Tunnel Blasting Operations Based on Numerical Simulation and Orthogonal Design Method. Processes 2025, 13, 2415. https://doi.org/10.3390/pr13082415
Peng Y, Wu S, Li Y, He L, Wang P. Predictive Analysis of Ventilation Dust Removal Time in Tunnel Blasting Operations Based on Numerical Simulation and Orthogonal Design Method. Processes. 2025; 13(8):2415. https://doi.org/10.3390/pr13082415
Chicago/Turabian StylePeng, Yun, Shunchuan Wu, Yongjun Li, Lei He, and Pengfei Wang. 2025. "Predictive Analysis of Ventilation Dust Removal Time in Tunnel Blasting Operations Based on Numerical Simulation and Orthogonal Design Method" Processes 13, no. 8: 2415. https://doi.org/10.3390/pr13082415
APA StylePeng, Y., Wu, S., Li, Y., He, L., & Wang, P. (2025). Predictive Analysis of Ventilation Dust Removal Time in Tunnel Blasting Operations Based on Numerical Simulation and Orthogonal Design Method. Processes, 13(8), 2415. https://doi.org/10.3390/pr13082415