Analysis of Chemical Composition and Sources of PM10 in the Southern Gateway of Beijing
Abstract
:1. Introduction
2. Experiments and Methodology
2.1. Sampling Program
2.2. Chemical Analysis
2.3. Model
2.3.1. Positive Matrix Factorization (PMF) Model
2.3.2. Trajectory and Potential Source Contribution
2.3.3. WRF-Chem and Process Analysis
3. Results and Discussion
3.1. Chemical Characteristics of PM10
3.1.1. Heavy Metals
3.1.2. OC and EC
Concentration Distribution
Sources of OC and EC
SOC and SOC/EC
3.1.3. Water-Soluble Ions
Concentration Distribution
Nitrogen Oxidation Ratio (NOR) and Sulfur Oxidation Ratio (SOR)
Correlation of NH4+, NO3−, and SO42−
3.2. Source Identification by PMF Model
3.3. Trajectories and Source Area Distribution of OC and SNA
3.4. Progress Analysis of SNA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, T.; Hu, M.; Li, M.; Guo, Q.; Wu, Y.; Fang, X.; Gu, F.; Wang, Y.; Wu, Z. New insight into PM2.5 pollution patterns in Beijing based on one-year measurement of chemical compositions. Sci. Total Environ. 2018, 621, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.L.; Hu, W.; Wu, C.M.; Hu, S.H.; Gao, N.N.; Zhang, C.C.; Yue, L.; Wang, J.X.; Fan, J.S.; Niu, H.Y. Chemical Characteristics and Sources of Atmospheric Aerosols in the Surrounding District of a Heavily Polluted City in the Southern Part of North China. Huanjing Kexue 2022, 43, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, C.; Zhang, Y.; Xu, W.; Zhou, L.; Cheng, X.; Zheng, H.; Ji, D.; Li, J.; Tang, X.; et al. Rapid formation and evolution of an extreme haze episode in Northern China during winter 2015. Sci. Rep. 2016, 6, 27151. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhang, R.; Yang, W.; Bai, Z.; Ma, Z.; Zhang, W. Heavy haze episodes in Beijing during January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site. Sci. Total Environ. 2016, 544, 319–329. [Google Scholar] [CrossRef]
- Crilley, L.R.; Lucarelli, F.; Bloss, W.J.; Harrison, R.M.; Beddows, D.C.; Calzolai, G.; Nava, S.; Valli, G.; Bernardoni, V.; Vecchi, R. Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environ. Pollut. 2017, 220, 766–778. [Google Scholar] [CrossRef]
- Kumar, P.; Zavala-Reyes, J.C.; Kalaiarasan, G.; Abubakar-Waziri, H.; Young, G.; Mudway, I.; Dilliway, C.; Lakhdar, R.; Mumby, S.; Klosowski, M.M.; et al. Characteristics of fine and ultrafine aerosols in the London underground. Sci. Total Environ. 2023, 858, 159315. [Google Scholar] [CrossRef]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G.; Zhao, Q. Characteristics of PM2.5 speciation in representative megacities and across China. Atmos. Chem. Phys. 2011, 11, 5207–5219. [Google Scholar] [CrossRef]
- Cheng, N.L.; Li, Y.T.; Cheng, B.F.; Wang, X.; Meng, F.; Wang, Q.; Qiu, Q.H. Comparisons of two serious air pollution episodes in winter and summer in Beijing. J. Environ. Sci. 2018, 69, 141–154. [Google Scholar] [CrossRef]
- Saxena, M.; Sharma, A.; Sen, A.; Saxena, P.; Saraswati; Mandal, T.K.; Sharma, S.K.; Sharma, C. Water soluble inorganic species of PM10 and PM2.5 at an urban site of Delhi, India: Seasonal variability and sources. Atmos. Res. 2017, 184, 112–125. [Google Scholar] [CrossRef]
- Gao, J.; Wang, K.; Wang, Y.; Liu, S.; Zhu, C.; Hao, J.; Liu, H.; Hua, S.; Tian, H. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ. Pollut. 2018, 233, 714–724. [Google Scholar] [CrossRef]
- Lv, L.; Chen, Y.; Han, Y.; Cui, M.; Wei, P.; Zheng, M.; Hu, J. High-time-resolution PM2.5 source apportionment based on multi-model with organic tracers in Beijing during haze episodes. Sci. Total Environ. 2021, 772, 144766. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Wang, S.; Zhao, B.; Xing, J.; Liu, X.; Wei, L.; Song, Y.; Wu, W.; Cai, S.; Zheng, H.; et al. Contributions of inter-city and regional transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei region and its implications on regional joint air pollution control. Sci. Total Environ. 2019, 660, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cheng, S.; Wang, X.; Yao, S.; Zhu, F. Continuous monitoring, compositions analysis and the implication of regional transport for submicron and fine aerosols in Beijing, China. Atmos. Environ. 2018, 195, 30–45. [Google Scholar] [CrossRef]
- Lu, Y.; Ni, S.; Wang, H.; Zhou, Y.; Du, J.; Meng, C.; Zhao, J. Estimation of vehicle emission based on traffic flow on national and provincial roads in Hebei Province. Acta Sci. Circumstantiae 2020, 40, 4483–4491. [Google Scholar]
- Gou, Y.-Y.; Zhang, K.; Li, J.-J.; Lu, W.-L.; Zhu, S.; Li, J.; He, S.-S.; Zheng, Y.; Zhi, M.-K. Variational Trend and Characteristics of Air Pollution in Baoding City. Huan Jing Ke Xue = Huanjing Kexue 2020, 41, 4413–4425. [Google Scholar] [CrossRef]
- Lang, J.; Li, S.; Cheng, S.; Zhou, Y.; Wang, H. Chemical Characteristics and Sources of Submicron Particles in a City with Heavy Pollution in China. Atmosphere 2018, 9, 388. [Google Scholar] [CrossRef]
- Zhang, Y.; Lang, J.; Cheng, S.; Li, S.; Zhou, Y.; Chen, D.; Zhang, H.; Wang, H. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ. 2018, 630, 72–82. [Google Scholar] [CrossRef]
- Li, Y.F.; Liu, B.S.; Xue, Z.G.; Zhang, Y.F.; Sun, X.Y.; Song, C.B.; Dai, Q.L.; Fu, R.C.; Tai, Y.G.; Gao, J.Y.; et al. Chemical characteristics and source apportionment of PM2.5 using PMF modelling coupled with 1-hr resolution online air pollutant dataset for Linfen, China. Environ. Pollut. 2020, 263, 114532. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Li, H.; Wu, N.; Zhang, Q. Chemical characteristics and source apportionment of ambient PM1.0 and PM2.5 in a polluted city in North China plain. Atmos. Environ. 2020, 242, 117867. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, Z.; Chen, K.; Tang, M.; Zheng, N.; Li, P.; Yang, N.; Yang, W.; Deng, X. Spatial and temporal distribution, chemical characteristics, and sources of ambient particulate matter in the Beijing-Tianjin-Hebei region. Sci. Total Environ. 2019, 658, 280–293. [Google Scholar] [CrossRef]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Bai, D.P.; Wang, H.L.; Cheng, M.T.; Gao, W.K.; Yang, Y.; Huang, W.; Ma, K.J.; Zhang, Y.; Zhang, R.J.; Zou, J.N.; et al. Source apportionment of PM2.5 and its optical properties during a regional haze episode over north China plain. Atmos. Pollut. Res. 2020, 12, 89–99. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Qu, Y.; Chen, Y.; Liu, X.; Zhang, J.; Guo, Y.; An, J. Seasonal effects of additional HONO sources and the heterogeneous reactions of N2O5 on nitrate in the North China Plain. Sci. Total Environ. 2019, 690, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Hammer, M.S.; Zheng, B.; Cohen, R.C. Accelerated reduction of air pollutants in China, 2017–2020. Sci. Total Environ. 2022, 803, 150011. [Google Scholar] [CrossRef]
- Li, H.; Cheng, J.; Zhang, Q.; Zheng, B.; Zhang, Y.; Zheng, G.; He, K. Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: Response to clean air actions. Atmos. Chem. Phys. 2019, 19, 11485–11499. [Google Scholar] [CrossRef]
- Li, J.; Gao, W.; Cao, L.; Xiao, Y.; Zhang, Y.; Zhao, S.; Liu, Z.; Liu, Z.; Tang, G.; Ji, D.; et al. Significant changes in autumn and winter aerosol composition and sources in Beijing from 2012 to 2018: Effects of clean air actions. Environ. Pollut. 2021, 268, 115855. [Google Scholar] [CrossRef]
- Pang, N.; Gao, J.; Zhu, G.; Hui, L.; Zhao, P.; Xu, Z.; Tang, W.; Chai, F. Impact of clean air action on the PM2.5 pollution in Beijing, China: Insights gained from two heating seasons measurements. Chemosphere 2021, 263, 127991. [Google Scholar] [CrossRef]
- Dao, X.; Ji, D.; Zhang, X.; He, J.; Sun, J.; Hu, J.; Liu, Y.; Wang, L.; Xu, X.; Tang, G.; et al. Significant reduction in atmospheric organic and elemental carbon in PM2.5 in 2 + 26 cities in northern China. Environ. Res. 2022, 211, 113055. [Google Scholar] [CrossRef]
- Zhang, Q.; Geng, G. Impact of clean air action on PM2.5 pollution in China. Sci. China-Earth Sci. 2019, 62, 1845–1846. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Zhang, L.; Tang, A.; Goulding, K.; Collett, J.L.J., Jr. Evolution of secondary inorganic aerosols amidst improving PM2.5 air quality in the North China plain. Environ. Pollut. 2021, 281, 117027. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yin, D.; Yu, Y.; Kang, S.; Qin, D.; Dong, L. PM2.5 and O-3 pollution during 2015–2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts. Environ. Pollut. 2020, 264, 114694. [Google Scholar] [CrossRef]
- Xing, J.; Wang, J.; Mathur, R.; Wang, S.; Sarwar, G.; Pleim, J.; Hogrefe, C.; Zhang, Y.; Jiang, J.; Wong, D.C.; et al. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates. Atmos. Chem. Phys. 2017, 17, 9869–9883. [Google Scholar] [CrossRef]
- Couzo, E.; Lefer, B.; Stutz, J.; Yarwood, G.; Karamchandani, P.; Henderson, B.; Vizuete, W. Impacts of heterogeneous HONO formation on radical sources and ozone chemistry in Houston, Texas. Atmos. Environ. 2015, 112, 344–355. [Google Scholar] [CrossRef]
- Huang, Z.; Ou, J.; Zheng, J.; Yuan, Z.; Yin, S.; Chen, D.; Tan, H. Process Contributions to Secondary Inorganic Aerosols during Typical Pollution Episodes over the Pearl River Delta Region, China. Aerosol Air Qual. Res. 2016, 16, 2129–2144. [Google Scholar] [CrossRef]
- Huszar, P.; Karlicky, J.; Belda, M.; Halenka, T.; Pisoft, P. The impact of urban canopy meteorological forcing on summer photochemistry. Atmos. Environ. 2018, 176, 209–228. [Google Scholar] [CrossRef]
- Ma, S.M.; Shao, M.; Zhang, Y.F.; Dai, Q.L.; Xie, M.J. Sensitivity of PM2.5 and O-3 pollution episodes to meteorological factors over the North China Plain. Sci. Total Environ. 2021, 792, 148474. [Google Scholar] [CrossRef]
- Poupkou, A.; Markakis, K.; Liora, N.; Giannaros, T.M.; Zanis, P.; Im, U.; Daskalakis, N.; Myriokefalitakis, S.; Kaiser, J.W.; Melas, D.; et al. A modeling study of the impact of the 2007 Greek forest fires on the gaseous pollutant levels in the Eastern Mediterranean. Atmos. Res. 2014, 149, 1–17. [Google Scholar] [CrossRef]
- Shu, Q.; Koo, B.; Yarwood, G.; Henderson, B.H. Strong influence of deposition and vertical mixing on secondary organic aerosol concentrations in CMAQ and CAMx. Atmos. Environ. 2017, 171, 317–329. [Google Scholar] [CrossRef]
- Tchepel, O.; Ferreira, J.; Martins, H.; Silveira, C.; Miranda, A.I.; Borrego, C. Investigating the Contribution of Biogenic Emissions to the Formation of Secondary Pollutants in Portugal. In 33rd International Technical Meeting (ITM) on Air Pollution Modelling and Its Application; United States Environmental Protection Agency: Miami, FL, USA, 2013. [Google Scholar]
- Zhang, Y.; Vijayaraghavan, K.; Seigneur, C. Evaluation of three probing techniques in a three-dimensional air quality model. J. Geophys. Res.-Atmos. 2005, 110, D02305. [Google Scholar] [CrossRef]
- Zhao, K.; Wu, Y.; Yuan, Z.; Huang, J.; Liu, X.; Ma, W.; Xu, D.; Jiang, R.; Duan, Y.; Fu, Q.; et al. Understanding the underlying mechanisms governing the linkage between atmospheric oxidative capacity and ozone precursor sensitivity in the Yangtze River Delta, China: A multi-tool ensemble analysis. Environ. Int. 2022, 160, 107060. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhou, P.; Liu, Q.; Wang, T.; Zhuang, B.; Wang, X. Modeling tropospheric ozone formation over East China in springtime. J. Atmos. Chem. 2012, 69, 303–319. [Google Scholar] [CrossRef]
- Zhao, K.; Bao, Y.; Huang, J.; Wu, Y.; Moshary, F.; Arend, M.; Wang, Y.; Lee, X. A high-resolution modeling study of a heat wave-driven ozone exceedance event in New York City and surrounding regions. Atmos. Environ. 2019, 199, 368–379. [Google Scholar] [CrossRef]
- Chang, L.Y.; He, F.F.; Tie, X.X.; Xu, J.M.; Gao, W. Meteorology driving the highest ozone level occurred during mid-spring to early summer in Shanghai, China. Sci. Total Environ. 2021, 785, 147253. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.; Liao, H.; Zhu, J.; Wang, W.J.; Li, X. Impacts of aerosol-photolysis interaction and aerosol-radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes. Atmos. Chem. Phys. 2022, 22, 4101–4116. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, J.; Liao, H.; Gao, Y.; Qiu, Y.L.; Zhang, M.G.; Liu, Z.R.; Li, N.; Wang, Y.S. Assessing the formation and evolution mechanisms of severe haze pollution in the Beijing-Tianjin-Hebei region using process analysis. Atmos. Chem. Phys. 2019, 19, 10845–10864. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Liao, H.; Yang, H.; Yang, Y.; Yue, X. Enhanced PM2.5 Decreases and O-3 Increases in China During COVID-19 Lockdown by Aerosol-Radiation Feedback. Geophys. Res. Lett. 2021, 48, e2020GL090260. [Google Scholar] [CrossRef]
- Tao, W.; Liu, J.; Ban-Weiss, G.A.; Hauglustaine, D.A.; Zhang, L.; Zhang, Q.; Cheng, Y.; Yu, Y.; Tao, S. Effects of urban land expansion on the regional meteorology and air quality of eastern China. Atmos. Chem. Phys. 2015, 15, 8597–8614. [Google Scholar] [CrossRef]
- Wang, Z.B.; Zhu, B.; Kang, H.Q.; Lu, W.; Yan, S.Q.; Zhao, D.L.; Zhang, W.H.; Gao, J.H. A black carbon peak and its sources in the free troposphere of Beijing induced by cyclone lifting and transport from central China. Atmos. Chem. Phys. 2021, 21, 15555–15567. [Google Scholar] [CrossRef]
- Chen, D.L.; Liao, H.; Yang, Y.; Chen, L.; Zhao, D.L.; Ding, D.P. Simulated impacts of vertical distributions of black carbon aerosol on meteorology and PM2.5 concentrations in Beijing during severe haze events. Atmos. Chem. Phys. 2022, 22, 1825–1844. [Google Scholar] [CrossRef]
- Liu, B.; Sun, X.; Zhang, J.; Bi, X.; Li, Y.; Li, L.; Dong, H.; Xiao, Z.; Zhang, Y.; Feng, Y. Characterization and Spatial Source Apportionments of Ambient PM10 and PM2.5 during the Heating Period in Tian’jin, China. Aerosol Air Qual. Res. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Jiang, N.; Li, Q.; Su, F.; Wang, Q.; Yu, X.; Kang, P.; Zhang, R.; Tang, X. Chemical characteristics and source apportionment of PM2.5 between heavily polluted days and other days in Zhengzhou, China. J. Environ. Sci. 2018, 66, 188–198. [Google Scholar] [CrossRef]
- Wu, X.C.; Chen, B.; Wen, T.X.; Habib, A.; Shi, G.Y. Concentrations and chemical compositions of PM10 during hazy and non-hazy days in Beijing. J. Environ. Sci. 2020, 87, 1–9. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Air Quality Geneva; World Health Organization: Geneva, Switzerland, 2000.
- Yu, L.; Wang, G.; Zhang, R.; Zhang, L.; Song, Y.; Wu, B.; Li, X.; An, K.; Chu, J. Characterization and Source Apportionment of PM2.5 in an Urban Environment in Beijing. Aerosol Air Qual. Res. 2013, 13, 574–583. [Google Scholar] [CrossRef]
- Kauppinen, E.I.; Pakkanen, T.A. Coal combustion aerosols—A field study. Environ. Sci. Technol. 1990, 24, 1811–1818. [Google Scholar] [CrossRef]
- Duan, J.; Tan, J. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Nabizadeh, R.; Sowlat, M.H.; Momeniha, F.; Gholampour, A.; Arhami, M.; Kashani, H.; Zare, A.; et al. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Sci. Total Environ. 2015, 527, 100–110. [Google Scholar] [CrossRef]
- Wei, F.S.; Chen, J.S.; Wu, Y.Y.; Zheng, C.J. Introduction to Background Value of Soil Environment; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Hopke, P.K. An introduction to receptor modeling. Chemometr. Intell. Lab. 1991, 10, 21–43. [Google Scholar] [CrossRef]
- Querol, X.; Zhuang, X.; Alastuey, A.; Viana, M.; Lv, W.; Wang, Y.; Lopez, A.; Zhu, Z.; Wei, H.; Xu, S. Speciation and sources of atmospheric aerosols in a highly industrialised emerging mega-city in Central China. J. Environ. Monit. 2006, 8, 1049–1059. [Google Scholar] [CrossRef]
- Xia, L.; Gao, Y. Characterization of trace elements in PM2.5 aerosols in the vicinity of highways in northeast New Jersey in the US east coast. Atmos. Pollut. Res. 2011, 2, 34–44. [Google Scholar] [CrossRef]
- Tian, H.Z.; Wang, Y.; Xue, Z.G.; Cheng, K.; Qu, Y.P.; Chai, F.H.; Hao, J.M. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmos. Chem. Phys. 2010, 10, 11905–11919. [Google Scholar] [CrossRef]
- Feng, J.; Yu, H.; Mi, K.; Su, X.; Li, Y.; Li, Q.; Sun, J. One year study of PM2.5 in Xinxiang city, North China: Seasonal characteristics, climate impact and source. Ecotoxicol. Environ. Saf. 2018, 154, 75–83. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Y.; Sun, Y.; Tian, S.; Cheng, M. Size-resolved aerosol trace elements at a rural mountainous site in Northern China: Importance of regional transport. Sci. Total Environ. 2013, 461, 761–771. [Google Scholar] [CrossRef]
- Gao, X.M.; Gao, W.D.; Sun, X.Y.; Jiang, W.; Wang, Z.Y.; Li, W.S. Measurements of Indoor and Outdoor Fine Particulate Matter during the Heating Period in Jinan, in North China: Chemical Composition, Health Risk, and Source Apportionment. Atmosphere 2020, 11, 885. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.L.; Duan, F.K.; He, K.B.; Zhu, L.D.; Huang, T.; Kimoto, T.; Ma, X.; Ma, T.; Xu, L.L.; et al. Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution. Environ. Pollut. 2017, 229, 339–349. [Google Scholar] [CrossRef]
- Fang, G.C.; Wu, Y.S.; Chou, T.Y.; Lee, C.Z. Organic carbon and elemental carbon in Asia: A review from 1996 to 2006. J. Hazard. Mater. 2008, 150, 231–237. [Google Scholar] [CrossRef]
- Briggs, N.L.; Long, C.M. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States. Atmos. Environ. 2016, 144, 409–427. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Houck, J.E. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 2001, 43, 1141–1151. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Shao, M.; Zhang, Y.-H.; Zeng, L.-M.; He, L.-Y.; Zhu, B.; Wei, Y.-J.; Zhu, X.-L. Source profiles of particulate organic matters emitted from cereal straw burnings. J. Environ. Sci. 2007, 19, 167–175. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Lu, Z.Q.; Lowenthal, D.H.; Frazier, C.A.; Solomon, P.A.; Thuillier, R.H.; Magliano, K. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos. Environ. 1996, 30, 2079–2112. [Google Scholar] [CrossRef]
- Turpin, B.J.; Huntzicker, J.J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 1995, 29, 3527–3544. [Google Scholar] [CrossRef]
- Liu, B.S.; Bi, X.H.; Zhang, J.Y.; Yuan, J.; Xiao, Z.M.; Dai, Q.L.; Feng, Y.C.; Zhang, Y.F. Insight into the critical factors determining the particle number concentrations during summer at a megacity in China. J. Environ. Sci. 2019, 75, 169–180. [Google Scholar] [CrossRef]
- Wagener, S.; Langner, M.; Hansen, U.; Moriske, H.-J.; Endlicher, W.R. Assessing the Influence of Seasonal and Spatial Variations on the Estimation of Secondary Organic Carbon in Urban Particulate Matter by Applying the EC-Tracer Method. Atmosphere 2014, 5, 252–272. [Google Scholar] [CrossRef]
- Almeida, S.M.; Lage, J.; Fernandez, B.; Garcia, S.; Reis, M.A.; Chaves, P.C. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry. Sci. Total Environ. 2015, 521, 411–420. [Google Scholar] [CrossRef]
- Liu, B.; Li, T.; Yang, J.; Wu, J.; Wang, J.; Gao, J.; Bi, X.; Feng, Y.; Zhang, Y.; Yang, H. Source apportionment and a novel approach of estimating regional contributions to ambient PM2.5 in Haikou, China. Environ. Pollut. 2017, 223, 334–345. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, R.; Yu, Y.; Yan, Y.; Liu, Y.; Di, Y.a.; Wu, D.; Zhang, W. Size-resolved aerosol water-soluble ions at a regional background station of Beijing, Tianjin, and Hebei, North China. J. Environ. Sci. 2017, 55, 146–156. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Iwasaka, Y. Nitrate and sulfate in individual Asian dust-storm particles in Beijing, China in spring of 1995 and 1996. Atmos. Environ. 1999, 33, 3213–3223. [Google Scholar] [CrossRef]
- Behrooz, R.D.; Esmaili-Sari, A.; Bahramifar, N.; Kaskaoutis, D.G.; Saeb, K.; Rajaei, F. Trace-element concentrations and water-soluble ions in size-segregated dust-borne and soil samples in Sistan, southeast Iran. Aeolian Res. 2017, 25, 87–105. [Google Scholar] [CrossRef]
- Aikawa, M.; Hiraki, T.; Suzuki, M.; Tamaki, M.; Kasahara, M. Separate chemical characterizations of fog water, aerosol, and gas before, during, and after fog events near an industrialized area in Japan. Atmos. Environ. 2007, 41, 1950–1959. [Google Scholar] [CrossRef]
- Urban, R.C.; Lima-Souza, M.; Caetano-Silva, L.; Queiroz, M.E.C.; Nogueira, R.F.P.; Allen, A.G.; Cardoso, A.A.; Held, G.; Campos, M.L.A.M. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols. Atmos. Environ. 2012, 61, 562–569. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, Z.F.; Du, W.; Zhang, Q.; Wang, Q.Q.; Fu, P.Q.; Pan, X.L.; Li, J.; Jayne, J.; Worsnop, D.R. Long-term real-time measurements of aerosol particle composition in Beijing, China: Seasonal variations, meteorological effects, and source analysis. Atmos. Chem. Phys. 2015, 15, 10149–10165. [Google Scholar] [CrossRef]
- Wang, C.J.; Hui, F.; Wang, Z.W.; Zhu, X.L.; Zhang, X.S. Chemical characteristics of size-fractioned particles at a suburban site in Shijiazhuang, North China: Implication of secondary particle formation. Atmos. Res. 2021, 259, 105680. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, D.; Liu, B.; Li, Y.; Chen, T.; Sun, F.; Yang, D.; Liang, Y.; Chang, M.; Yang, L.; et al. Analysis of chemical characteristics of PM2.5 in Beijing over a 1-year period. J. Atmos. Chem. 2016, 73, 407–425. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, J.J.; Tie, X.X.; Shen, Z.X.; Liu, S.X.; Ding, H.; Han, Y.M.; Wang, G.H.; Ho, K.F.; Qiang, J.; et al. Water-soluble ions in atmospheric aerosols measured in Xi’an, China: Seasonal variations and sources. Atmos. Res. 2011, 102, 110–119. [Google Scholar] [CrossRef]
- Meng, Z.Y.; Seinfeld, J.H. On the Source of the Submicrometer Droplet Mode of Urban and Regional Aerosols. Aerosol Sci. Technol. 1994, 20, 253–265. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, Z.; Zhao, N.; Wei, P.; Li, G.; Zhang, H. Variations in characteristics and transport pathways of PM2.5 during heavy pollution episodes in 2013–2019 in Jinan, a central city in the north China Plain. Environ. Pollut. 2021, 284, 117450. [Google Scholar] [CrossRef]
- Pathak, R.K.; Wu, W.S.; Wang, T. Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 2009, 9, 1711–1722. [Google Scholar] [CrossRef]
- Li, Q.; Yang, Z.; Li, X.; Ding, S.; Du, F. Seasonal Characteristics of Sulfate and Nitrate in Size-segregated Particles in Ammonia-poor and -rich Atmospheres in Chengdu, Southwest China. Aerosol Air Qual. Res. 2019, 19, 2697–2706. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Zhang, J.; Wen, T.; Ji, D.; Wang, Y. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. Atmos. Res. 2016, 168, 70–79. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Ji, D.; Wen, T.; Pan, Y.; Sun, Y.; Wang, Y. Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability, size distribution and sources. Atmos. Environ. 2013, 77, 250–259. [Google Scholar] [CrossRef]
- Liu, B.; Wu, J.; Zhang, J.; Wang, L.; Yang, J.; Liang, D.; Dai, Q.; Bi, X.; Feng, Y.; Zhang, Y.; et al. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut. 2017, 222, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Contini, D.; Genga, A.; Cesari, D.; Siciliano, M.; Donateo, A.; Bove, M.C.; Guascito, M.R. Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmos. Res. 2010, 95, 40–54. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, L.; Zhou, X.; Duan, J.; Li, Y.; Hu, J.; He, K. Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China. Sci. Total Environ. 2017, 601, 1743–1752. [Google Scholar] [CrossRef]
- Jaiprakash; Habib, G. Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Sci. Total Environ. 2017, 586, 900–916. [Google Scholar] [CrossRef]
- Hleis, D.; Fernandez-Olmo, I.; Ledoux, F.; Kfoury, A.; Courcot, L.; Desmonts, T.; Courcot, D. Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. J. Hazard. Mater. 2013, 250, 246–255. [Google Scholar] [CrossRef]
- Qiu, X.; Duan, L.; Gao, J.; Wang, S.; Chai, F.; Hu, J.; Zhang, J.; Yun, Y. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China. J. Environ. Sci. 2016, 40, 75–83. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, P.; Zhang, W.; Tian, Y.; Zheng, Y.; Wang, L. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China. Renew. Sustain. Energy Rev. 2010, 14, 3050–3058. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, W.; Cai, T.; Fang, D.; Wang, Y.; Song, J.; Hu, M.; Zhang, Y. Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing. Atmos. Res. 2016, 174, 62–69. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Fujita, S. An analysis of wet deposition of sulfate using a trajectory model for East Asia. Water Air Soil Pollut. 1995, 85, 1927–1932. [Google Scholar] [CrossRef]
- Qu, Y.; An, J.L.; He, Y.J.; Zheng, J. An overview of emissions of SO2 and NOx and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia. J. Environ. Sci. 2016, 44, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; He, Y.; Sun, Y.; Xu, J.; Wang, J.; Shen, Y.; Chen, M. Characteristics and Formation Mechanisms of Fine Particulate Nitrate in Typical Urban Areas in China. Atmosphere 2017, 8, 62. [Google Scholar] [CrossRef]
- Chan, Y.-C.; Evans, M.J.; He, P.; Holmes, C.D.; Jaegle, L.; Kasibhatla, P.; Liu, X.-Y.; Sherwen, T.; Thornton, J.A.; Wang, X.; et al. Heterogeneous Nitrate Production Mechanisms in Intense Haze Events in the North China Plain. J. Geophys. Res.-Atmos. 2021, 126, e2021JD034688. [Google Scholar] [CrossRef]
- Chuang, M.-T.; Wu, C.-F.; Lin, C.-Y.; Lin, W.-C.; Chou, C.C.K.; Lee, C.-T.; Lin, T.-H.; Fu, J.S.; Kong, S.S.-K. Simulating nitrate formation mechanisms during PM2.5 events in Taiwan and their implications for the controlling direction. Atmos. Environ. 2022, 269, 118856. [Google Scholar] [CrossRef]
- Xie, X.; Hu, J.; Qin, M.; Guo, S.; Hu, M.; Wang, H.; Lou, S.; Li, J.; Sun, J.; Li, X.; et al. Modeling particulate nitrate in China: Current findings and future directions. Environ. Int. 2022, 166, 107369. [Google Scholar] [CrossRef]
- Yang, J.; Qu, Y.; Chen, Y.; Zhang, J.; Liu, X.; Niu, H.; An, J. Dominant physical and chemical processes impacting nitrate in Shandong of the North China Plain during winter haze events. Sci. Total Environ. 2024, 912, 169065. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Xue, C.; Chen, H.; Zhang, Q.; Liu, X.; Mu, Y.; Guo, Y.; Wang, D.; Chen, Y.; et al. Impacts of six potential HONO sources on HOx budgets and SOA formation during a wintertime heavy haze period in the North China Plain. Sci. Total Environ. 2019, 681, 110–123. [Google Scholar] [CrossRef]
Zhuozhou | Baoding Winter a | Langfang Winter a | Beijing Winter a | Tianjin Winter b | Averaged Level in China c | NAAQS GB3095-2012 | WHO | |
---|---|---|---|---|---|---|---|---|
Al | 2.96 | 2.63 | 2.04 | 2.05 | 1.3 | |||
Ca | 2.37 | 3.02 | 2.99 | 2.36 | 3.4 | |||
Fe | 2.47 | 1.95 | 1.82 | 2.18 | 1.9 | |||
K | 0.60 | 2.92 | 1.81 | 2.13 | 1.0 | |||
Zn | 0.69 | 1.17 | 0.41 | 0.31 | 0.43 | |||
Mn | 0.53↑ | 0.75 | 0.09 | 0.07 | 0.20 | 0.15 | ||
Pb | 0.12 | 0.46 | 0.18 | 0.15 | 0.26 | 0.5 | 0.5 | |
Cu | 0.05 | 0.19 | 0.12 | 0.20 | 0.12 | |||
As | 0.02↑ | 0.07 | 0.02 | 0.01 | 0.05 | 0.006 | 0.0066 | |
Hg | 0.003 | 0.05 | 1 |
City | NOR | SOR | Observation Period | Reference |
---|---|---|---|---|
Zhuozhou | 0.12 | 0.20 | December 2021–January 2022 | in this study |
Shijiazhuang | 0.17 | 0.38 | May 2016–January 2017 | Wang et al. (2021) [86] |
Tianjin | 0.14 | 0.17 | June 2015 | Liu et al. (2020 ) [53] |
Beijing | 0.25 | 0.43 | August 2012–July 2013 | Wang et al. (2016) [87] |
Handan | 0.21 | 0.23 | 6–31 December 2015 | Chen et al. (2020) [19] |
Jinan | 0.13–0.34 | 0.14–0.57 | 1 January–14 Feberary 2017 | Wang et al. (2021) [90] |
Zibo | 0.2 | 0.1 | 11–25 January 2015 | Li et al. (2017) [69] |
Linfen | 0.26 | 0.22 | 15 November 2018–20 January 2019 | Li et al. (2020) [18] |
Xinxiang | 0.03–0.07 | 0.04–0.11 | 2015 | Feng et al. (2018) [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Yang, J.; Liu, X.; Chen, Y.; Ran, H.; An, J.; Yang, F. Analysis of Chemical Composition and Sources of PM10 in the Southern Gateway of Beijing. Atmosphere 2025, 16, 656. https://doi.org/10.3390/atmos16060656
Qu Y, Yang J, Liu X, Chen Y, Ran H, An J, Yang F. Analysis of Chemical Composition and Sources of PM10 in the Southern Gateway of Beijing. Atmosphere. 2025; 16(6):656. https://doi.org/10.3390/atmos16060656
Chicago/Turabian StyleQu, Yu, Juan Yang, Xingang Liu, Yong Chen, Haiyan Ran, Junling An, and Fanyeqi Yang. 2025. "Analysis of Chemical Composition and Sources of PM10 in the Southern Gateway of Beijing" Atmosphere 16, no. 6: 656. https://doi.org/10.3390/atmos16060656
APA StyleQu, Y., Yang, J., Liu, X., Chen, Y., Ran, H., An, J., & Yang, F. (2025). Analysis of Chemical Composition and Sources of PM10 in the Southern Gateway of Beijing. Atmosphere, 16(6), 656. https://doi.org/10.3390/atmos16060656