Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = dual-fuel (DF) engine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12535 KiB  
Article
Numerical Modelling Assessment of the Impact of Hydrogen on the Energy and Environmental Performance of a Car Using Dual Fuel (Gasoline–Hydrogen)
by Saugirdas Pukalskas, Tadas Vipartas, Alfredas Rimkus, Donatas Kriaučiūnas, Justas Žaglinskis, Saulius Stravinskas, Andrius Ušinskas, Romualdas Juknelevičius, Gabrielius Mejeras, Vidas Žuraulis, Vilius Mejeras and Aleksas Narkevičius
Appl. Sci. 2025, 15(4), 1939; https://doi.org/10.3390/app15041939 - 13 Feb 2025
Cited by 1 | Viewed by 984
Abstract
The utilization of “green” hydrogen in transportation areas gives rise to production- and supply infrastructure-related challenges; therefore, its wider application in automotive transport would lead to higher demand with cost reduction and a faster expansion of the hydrogen refuelling network. This study presents [...] Read more.
The utilization of “green” hydrogen in transportation areas gives rise to production- and supply infrastructure-related challenges; therefore, its wider application in automotive transport would lead to higher demand with cost reduction and a faster expansion of the hydrogen refuelling network. This study presents energy and environmental performance indicators analyses of a Nissan Qashqai J10 engine during the Worldwide Harmonised Light Vehicles Test Cycle (WLTC), replacing conventional fossil gasoline with dual-fuel (D-F) gasoline and hydrogen. Numerical modelling was conducted using AVL Cruise™ (Version R2022.2) software, utilizing the torque, fuel consumption, and environmental performance data of the HR16DE engine obtained through experimental testing across a wide range of loads and speeds on an engine test bench. The experimental investigation was carried out in two stages: using pure gasoline (G100); injecting a hydrogen additive into the intake air, constituting 5% of the gasoline mass (G95H5). Following similar stages, numerical modelling was conducted using the vehicle’s technical specifications to calculate engine load and speed throughout the WLTC range. Instant fuel consumption and pollutant emissions (CO, CH, NOx) were determined for various driving modes using experimental data maps. CO2 emissions were calculated considering fuel composition and consumption. By integrating the instant values, the total and specific fuel consumption and emissions were calculated. As a result, this study identified the effect of a 5% hydrogen additive in improving engine energy efficiency, reducing incomplete combustion products and lowering greenhouse gas (CO2) emissions under various driving modes. Finally, the results were compared with the requirements of EU standards. Full article
Show Figures

Figure 1

41 pages, 16927 KiB  
Article
Numerical Investigation on the Applicability of Variable Compression Ratio in a Marine Two-Stroke Dual-Fuel Engine for Fuel Economy Improvement
by Haosheng Shen and Daoyi Lu
Energies 2025, 18(1), 108; https://doi.org/10.3390/en18010108 - 30 Dec 2024
Cited by 2 | Viewed by 855
Abstract
Marine two-stroke dual-fuel (DF) engines with a low-pressure gas concept normally face the problem of inferior fuel economy in diesel mode, mainly due to their lower compression ratio. To address this issue, a numerical study is performed to investigate the applicability of variable [...] Read more.
Marine two-stroke dual-fuel (DF) engines with a low-pressure gas concept normally face the problem of inferior fuel economy in diesel mode, mainly due to their lower compression ratio. To address this issue, a numerical study is performed to investigate the applicability of variable compression ratio (VCR) in a marine two-stroke DF engine, aiming at improving fuel economy in diesel mode. First, an engine simulation model is established and validated. Then, parametric investigation is performed to obtain insights on the effects of VCR on engine combustion, performance, and emissions. Finally, regression models of selected engine response variables are determined based on the response surface methodology (RSM), which are then optimized by particle swarm optimization (PSO) to obtain the optimal solution of engine setting parameters. The results show that with the application of VCR, the brake specific fuel consumption (BSFC) decreases by 9.65, 11.38, 11.13, and 11.27% at 25, 50, 75, and 100% maximum continuous rating (MCR), respectively. Meanwhile, the nitrogen oxides (NOx) emissions are maintained at the original levels, and the engine’s operating parameters are within specified limits. This study contributes to the delineation of the benefits and limits of VCR and provides a feasible method to facilitate the implementation of VCR in marine engines. Full article
Show Figures

Figure 1

32 pages, 21135 KiB  
Article
Parametric Investigation on the Influence of Turbocharger Performance Decay on the Performance and Emission Characteristics of a Marine Large Two-Stroke Dual Fuel Engine
by Haosheng Shen, Fumiao Yang, Dingyu Jiang, Daoyi Lu, Baozhu Jia, Qingjiang Liu and Xiaochi Zhang
J. Mar. Sci. Eng. 2024, 12(8), 1298; https://doi.org/10.3390/jmse12081298 - 1 Aug 2024
Cited by 5 | Viewed by 1793
Abstract
Identifying and analyzing the engine performance and emission characteristics under the condition of performance decay is of significant reference value for fault diagnosis, condition-based maintenance, and health status monitoring. However, there is a lack of relevant research on the currently popular marine large [...] Read more.
Identifying and analyzing the engine performance and emission characteristics under the condition of performance decay is of significant reference value for fault diagnosis, condition-based maintenance, and health status monitoring. However, there is a lack of relevant research on the currently popular marine large two-stroke dual fuel (DF) engines. To fill the research gap, a detailed zero-/one-dimensional (0D/1D) model of a marine two-stroke DF engine employing the low-pressure gas concept is first established in GT-Power (Version 2020) and validated by comparing the simulation and measured results. Then, three typical types of turbocharger performance decays are defined including turbine efficiency decay, turbine nozzle ring area decay, and turbocharger shaft mechanical efficiency decay. Finally, the three types of decays are introduced to the engine simulation model and parametric runs are performed in both diesel and gas modes to identify and analyze their impacts on the performance and emission characteristics of the investigated marine DF engine. The results reveal that turbocharger performance decay has a significant impact on engine performance parameters, such as brake efficiency, engine speed, boost pressure, etc., as well as CO2 and NOx emissions, and the specified limit value on certain engine operational parameters will be exceeded when turbocharger performance decays to a certain extent. The changing trend of engine performance and emission parameters as turbocharger performance deteriorates are generally consistent in both operating modes but with significant differences in the extent and magnitude, mainly due to the distinct combustion process (Diesel cycle versus Otto cycle). Furthermore, considering the relative decline in brake efficiency, engine speed drop, and relative increase in CO2 emission, the investigated engine is less sensitive to the turbocharger performance decay in gas mode. The simulation results also imply that employing a variable geometry turbine (VGT) is capable of improving the brake efficiency of the investigated marine DF engine. Full article
(This article belongs to the Special Issue Performance and Emission Characteristics of Marine Engines)
Show Figures

Figure 1

14 pages, 2521 KiB  
Article
Experimental Optimization of Natural Gas Injection Timing in a Dual-Fuel Marine Engine to Minimize GHG Emissions
by Luigi De Simio, Luca Marchitto, Sabato Iannaccone, Vincenzo Pennino and Nunzio Altieri
Gases 2024, 4(3), 191-204; https://doi.org/10.3390/gases4030011 - 16 Jul 2024
Cited by 2 | Viewed by 1849
Abstract
Phased injection of natural gas into internal combustion marine engines is a promising solution for optimizing performance and reducing harmful emissions, particularly unburned methane, a potent greenhouse gas. This innovative practice distinguishes itself from continuous injection because it allows for more precise control [...] Read more.
Phased injection of natural gas into internal combustion marine engines is a promising solution for optimizing performance and reducing harmful emissions, particularly unburned methane, a potent greenhouse gas. This innovative practice distinguishes itself from continuous injection because it allows for more precise control of the combustion process with only a slight increase in system complexity. By synchronizing the injection of natural gas with the intake and exhaust valve opening and closing times while also considering the gas path in the manifolds, methane release into the atmosphere is significantly reduced, making a substantial contribution to efforts to address climate change. Moreover, phased injection improves the efficiency of marine engines, resulting in reduced overall fuel consumption, lower fuel costs, and increased ship autonomy. This technology was tested on a single-cylinder, large-bore, four-stroke research engine designed for marine applications, operating in dual-fuel mode with diesel and natural gas. Performance was compared with that of the conventional continuous feeding method. Evaluation of the effect on equivalent CO2 emissions indicates a potential reduction of up to approximately 20%. This reduction effectively brings greenhouse gas emissions below those of the diesel baseline case, especially when injection control is combined with supercharging control to optimize the air–fuel ratio. In this context, the boost pressure in DF was reduced from 3 to 1.5 bar compared with the FD case. Full article
(This article belongs to the Special Issue Gas Emissions from Combustion Sources)
Show Figures

Figure 1

51 pages, 11117 KiB  
Review
Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines
by Grzegorz Szamrej and Mirosław Karczewski
Energies 2024, 17(7), 1525; https://doi.org/10.3390/en17071525 - 22 Mar 2024
Cited by 7 | Viewed by 2084
Abstract
This paper presents a theoretical analysis of the selected properties of HCNG fuel calculations and a literature review of the other fuels that allow the storage of ecologically produced hydrogen. Hydrogen has the most significant CO2 reduction potential of all known fuels. [...] Read more.
This paper presents a theoretical analysis of the selected properties of HCNG fuel calculations and a literature review of the other fuels that allow the storage of ecologically produced hydrogen. Hydrogen has the most significant CO2 reduction potential of all known fuels. However, its transmission in pure form is still problematic, and its use as a component of fuels modified by it has now become an issue of interest for researchers. Many types of hydrogen-enriched fuels have been invented. However, this article will describe the reasons why HCNG may be the hydrogen-enriched fuel of the future and why internal combustion (IC) piston engines working on two types of fuel could be the future method of using it. CO2 emissions are currently a serious problem in protecting the Earth’s natural climate. However, secondarily, power grid stabilization with a large share of electricity production from renewable energy sources must be stabilized with very flexible sources—as flexible as multi-fuel IC engines. Their use is becoming an essential element of the electricity power systems of Western countries, and there is a chance to use fuels with zero or close to zero CO2 emissions, like e-fuels and HCNG. Dual-fuel engines have become an effective way of using these types of fuels efficiently; therefore, in this article, the parameters of hydrogen-enriched fuel selected in terms of relevance to the use of IC engines are considered. Inaccuracies found in the literature analysis are discussed, and the essential properties of HCNG and its advantages over other hydrogen-rich fuels are summarized in terms of its use in dual-fuel (DF) IC engines. Full article
(This article belongs to the Special Issue Unconventional Hydrogen Applications and Systems)
Show Figures

Figure 1

21 pages, 6188 KiB  
Article
A Fault Diagnosis Method for Marine Engine Cross Working Conditions Based on Transfer Learning
by Longde Wang, Hui Cao, Zhichao Cui and Zeren Ai
J. Mar. Sci. Eng. 2024, 12(2), 270; https://doi.org/10.3390/jmse12020270 - 1 Feb 2024
Cited by 5 | Viewed by 1556
Abstract
Marine engines confront challenges of varying working conditions and intricate failures. Existing studies have primarily concentrated on fault diagnosis in a single condition, overlooking the adaptability of these methods in diverse working condition. To address the aforementioned issues, we propose a cross working [...] Read more.
Marine engines confront challenges of varying working conditions and intricate failures. Existing studies have primarily concentrated on fault diagnosis in a single condition, overlooking the adaptability of these methods in diverse working condition. To address the aforementioned issues, we propose a cross working condition fault diagnosis method named the Balanced Adaptation Domain Weighted Adversarial Network (BADWAN). This method combines transfer learning to tackle the challenges of cross working condition diagnosis with limited labels. Specifically tailored for scenarios with incomplete labeling in the target working conditions, we designed an Enhanced Centroid Balance scheme to balance the label space, thereby enhancing the model’s transfer capabilities. Additionally, we designed an Instance Affinity Weighting scheme on the foundation of Class-level Weighting, refining the model to the instance level for effective information interaction. Furthermore, we incorporated the Adaptive Uncertainty Suppression strategy to further boost the model’s classification prowess. Two experimental scenarios were designed to demonstrate the effectiveness of the proposed model using a Wärtsilä9L34DF dual-fuel engine as an experimental subject. The results demonstrate an over 90% diagnostic accuracy in scenarios with complete target working condition labels and 86% accuracy in scenarios with incomplete labels, outperforming other transfer learning models. The BADWAN model excels in cross-condition fault diagnosis tasks for marine engines with incomplete target working condition labels, offering a novel solution to this field. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 2616 KiB  
Article
Analysis of Carbon Particulate Matter Removal Performance of Dual-Fuel Marine Engine with DOC + CDPF
by Zhiyuan Yang, Zhiwen Tan, Qinming Tan and Shien Tu
Atmosphere 2023, 14(6), 1041; https://doi.org/10.3390/atmos14061041 - 17 Jun 2023
Cited by 4 | Viewed by 2143
Abstract
This study analyzes Diesel Oxidation Catalyst (DOC) and Carbon Diesel Particulate Filter (CDPF) after-treatment systems integrated into a WARTSILA W20DF marine dual-fuel engine. The CDPF was coated with a non-precious metal catalyst whose catalytic redox performance improved with increasing temperature. The carbon particulate [...] Read more.
This study analyzes Diesel Oxidation Catalyst (DOC) and Carbon Diesel Particulate Filter (CDPF) after-treatment systems integrated into a WARTSILA W20DF marine dual-fuel engine. The CDPF was coated with a non-precious metal catalyst whose catalytic redox performance improved with increasing temperature. The carbon particulate matter combustion reached up to 12.5 mg/s at 800 K and over 20 mg/s at 900 K. Then, the W20DF running at 230 kW, 450 kW, 680 kW, and 810 kW with 1000 rpm; a Tisch 10-8xx; and an AVL SPC 478 were used to sample and analyze the carbon particulate matter (CPM) before and after DOC + CDPF. The gaseous emissions (O2, CO2, CO, HC, NOx, and NO2) were analyzed with the flue gas analyzer AVL i60. The results show that the collected carbon particulate matter simultaneously became darker as the load decreased. This study finds that the maximum amount of CPM per unit volume of exhaust gas occurs under 50% working conditions and the lowest amount under 90% working conditions. After DOC + CDPF treatment with a non-precious metal coating, the CPM was reduced by about 50%. Furthermore, this type of catalyst’s efficiency rises with the temperature increase. The CPM combustion efficiency reached up to 20 mg/s at 900 K. The other gas components in the exhaust gas before and after DOC + CDPF also changed. These research results have a significant reference value for DOC + CDPF optimization to decrease the carbon particulate matter in marine engines. Full article
Show Figures

Figure 1

11 pages, 1587 KiB  
Article
Methane Emissions from a State-of-the-Art LNG-Powered Vessel
by Kati Lehtoranta, Niina Kuittinen, Hannu Vesala and Päivi Koponen
Atmosphere 2023, 14(5), 825; https://doi.org/10.3390/atmos14050825 - 4 May 2023
Cited by 17 | Viewed by 9045
Abstract
To meet stringent fuel sulfur limits, together with NOx limits, ships are increasingly utilizing dual-fuel (DF) engines operating with liquified natural gas (LNG) as the primary fuel. Compared to diesel, LNG combustion produces less CO2, which is needed in targeting [...] Read more.
To meet stringent fuel sulfur limits, together with NOx limits, ships are increasingly utilizing dual-fuel (DF) engines operating with liquified natural gas (LNG) as the primary fuel. Compared to diesel, LNG combustion produces less CO2, which is needed in targeting the reduction of the shipping impact on the climate; however, this could be significantly interfered with by the methane emission formation. In this study, the methane emissions, together with other emission components, were studied by measurements onboard a state-of-the-art RoPax ferry equipped with two different development-stage engines. The results from the current standard state-of-the-art DF engine showed methane levels that were, in general, lower than what has been reported earlier from onboard studies with similar sized DF engines. Meanwhile, the methane emission from the DF engine piloting the new combustion concept was even lower, 50–70% less than that of the standard DF engine setup. Although the CO2 was found to slightly increase with the new combustion concept, the CO2 equivalent (including both methane and CO2) was smaller than that from the standard DF engine, indicating that the recent development in engine technology is less harmful for the climate. Additionally, lower NOx and formaldehyde levels were recorded from the new combustion concept engine, while an increase in particle emissions compared to the standard DF engine setup was observed. These need to be considered when evaluating the overall impacts on the climate and health effects. Full article
(This article belongs to the Special Issue Atmospheric Shipping Emissions and Their Environmental Impacts)
Show Figures

Figure 1

18 pages, 3165 KiB  
Article
Experimental Investigations on Dual-Fuel Engine Fueled with Tertiary Renewable Fuel Combinations of Biodiesel and Producer—Hydrogen Gas Using Response Surface Methodology
by Sushrut S. Halewadimath, Nagaraj R. Banapurmath, V. S. Yaliwal, V. N. Gaitonde, T. M. Yunus Khan, Chandramouli Vadlamudi, Sanjay Krishnappa and Ashok M. Sajjan
Sustainability 2023, 15(5), 4483; https://doi.org/10.3390/su15054483 - 2 Mar 2023
Cited by 10 | Viewed by 2181
Abstract
The effects of producer gas (PG), hydrogen (H2), and neem oil methyl ester-blended fuel (NeOME B20) flow rate optimization on dual fuel (DF) engine performance were examined in the current work. PG and H2 were used as primary fuels, while [...] Read more.
The effects of producer gas (PG), hydrogen (H2), and neem oil methyl ester-blended fuel (NeOME B20) flow rate optimization on dual fuel (DF) engine performance were examined in the current work. PG and H2 were used as primary fuels, while NeOME B20 was used as a secondary pilot fuel in the DF engine. The DF engine’s performance and pollution levels were optimized using response surface methodology (RSM) and the results were compared with experimental values. The full factorial design (FFD) has been used to minimize the number of experiments. The design of experiments (DOEs) with an experimental design matrix of 27 distinct combinations were taken into consideration. The primary goal of the effort is to optimize different fuel flow rates for better brake thermal efficiency (BTE) and lower tail pipe exhaust pollutants. The developed RSM model is validated with experimental results for the selected fuel flow rates using a desirability approach. Experiments were carried out at a constant speed of 1500 rpm, compression ratio (CR) of 17.5, injector opening pressure (IOP) 240 bar, six-hole nozzle with 0.2 mm diameter, and injection timing (IT) of 27° before top dead center (bTDC). The flow rates of NeOME B20, PG, and H2 varied from 0.4 to 0.8 kg/h, 7 to 9 kg/h, and 0.029 to 0.059 kg/h, respectively. Optimum flow rates for NeOME B20, PG, and H2 were found to be 0.8, 7, and 0.044, kg/h respectively for the maximized break thermal efficiency (BTE) and reduced exhaust emission levels. However, a marginal increase in NOx was noticed. In addition, the delay period and combustion duration were reduced, and the cylinder pressure (CP) and heat release rate (HRR) were increased for the optimal condition with a desirability of 0.998. Overall, DF operation with selected fuel combinations was found to be smooth and satisfactory. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 5528 KiB  
Article
Effects of the Injector Spray Angle on Combustion and Emissions of a 4-Stroke Natural Gas-Diesel DF Marine Engine
by Van Chien Pham, Van Vang Le, Siljung Yeo, Jae-Hyuk Choi and Won-Ju Lee
Appl. Sci. 2022, 12(23), 11886; https://doi.org/10.3390/app122311886 - 22 Nov 2022
Cited by 8 | Viewed by 3967
Abstract
This work studied the effect of the injector spray angle (SA) on the combustion and emissions of a 4-stroke port-injection natural gas-diesel dual-fuel (NG-Diesel DF) marine engine to determine the optimal SA for the fuel injector, aiming to reduce exhaust gas emissions while [...] Read more.
This work studied the effect of the injector spray angle (SA) on the combustion and emissions of a 4-stroke port-injection natural gas-diesel dual-fuel (NG-Diesel DF) marine engine to determine the optimal SA for the fuel injector, aiming to reduce exhaust gas emissions while keeping the engine performance. Three-dimensional (3D) simulations of the combustion process and emission formations occurring in the engine cylinder in both diesel and DF modes were carried out using the AVL FIRE R2018a code. The engine’s in-cylinder temperature, pressure, and emission characteristics were analyzed. To clarify the effect of the injector SA on the combustion and emission characteristics of the engine, only the injector SA has been varied from 145 to 160°. Meanwhile, all other boundary conditions for the simulations and operating conditions of the engine have remained unchanged. The simulation results have been compared and showed a good agreement with the engine experimental results. The study has successfully investigated the effects of the injector SA on the combustion and emission characteristics of the engine. A better SA for the fuel injector, to reduce the NO emissions (145°) or soot and CO2 emissions (150°), while keeping the engine power almost unchanged, without the use of any exhaust gas post-treatment equipment, has also been suggested. Full article
Show Figures

Figure 1

23 pages, 6825 KiB  
Article
Performance Optimization and Knock Investigation of Marine Two-Stroke Pre-Mixed Dual-Fuel Engine Based on RSM and MOPSO
by Weijie Jin, Huibing Gan, Yujin Cong and Guozhong Li
J. Mar. Sci. Eng. 2022, 10(10), 1409; https://doi.org/10.3390/jmse10101409 - 2 Oct 2022
Cited by 10 | Viewed by 2741
Abstract
The two-stroke pre-mixed dual-fuel marine engine is prone to knocking at full load in gas mode, which affects the overall dynamic and economic performance of the engine. In this paper, the 7X82DF engine produced by Winterthur Gas & Diesel Ltd. (WinGD) was selected [...] Read more.
The two-stroke pre-mixed dual-fuel marine engine is prone to knocking at full load in gas mode, which affects the overall dynamic and economic performance of the engine. In this paper, the 7X82DF engine produced by Winterthur Gas & Diesel Ltd. (WinGD) was selected as the research object, aiming to investigate the effect of different parameters on engine power and knocking. Multi-objective optimizations were carried out. First, we used the one-dimensional simulation software AVL-BOOST to build the gas mode model of 7X82DF. Second, the pilot fuel start of combustion timing (SOC), the gas injection pressure, and the mass of diesel were taken as independent variables. The response surface methodology analysis of the independent variables was completed using the Design-Expert software and corresponding prediction model equations were generated. Finally, we took ringing intensity (RI) as the knock intensity evaluation index, combined with multi-objective particle swarm optimization (MOPSO) to optimize multiple-parameters to improve the overall performance and reduce combustion roughness of the engine. The optimization results showed that when the SOC was −8.36 °CA ATDC, the gas injection pressure was 20.00 bar, the mass of diesel was 14.96 g, the corresponding power was 22,668 kW, which increased by 0.68%, the brake-specific fuel consumption was 156.256 g/kWh, which was reduced by 3.58%, the RI was 4.4326 MW/m2, and the knock intensity decreased by 6.49%. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 8370 KiB  
Article
Numerical Investigation on Mixing Characteristics and Mechanism of Natural Gas/Air in a Super-Large-Bore Dual-Fuel Marine Engine
by Long Liu, Shihai Liu, Qian Xia, Bo Liu and Xiuzhen Ma
Atmosphere 2022, 13(9), 1528; https://doi.org/10.3390/atmos13091528 - 19 Sep 2022
Cited by 11 | Viewed by 2387
Abstract
Premixed combustion mode dual-fuel (DF) engines are widely used in large-bore marine engines due to their great potential to solve the problem of CO2 emissions. However, detonation is one of the main problems in the development of marine engines based on the [...] Read more.
Premixed combustion mode dual-fuel (DF) engines are widely used in large-bore marine engines due to their great potential to solve the problem of CO2 emissions. However, detonation is one of the main problems in the development of marine engines based on the premixed combustion mode, which affects the popularization of liquefied natural gas (LNG) engines. Due to the large bore and long stroke, marine dual-fuel engines have unique flow characteristics and a mixture mechanism of natural gas and air. Therefore, the purpose of this study is to present a simulated investigation on the influence of swirl on multiscale mixing and the concentration field, which provides a new supplement for mass transfer theory and engineering applications. It is suggested that the phenomenon of abnormal combustion occurs on account of the distribution of the mixture being uneven in a super-large-bore dual-fuel engine. Further analysis showed that the level of swirl at the late compression stage and the turbulence intensity are the decisive factors affecting the transmission process of natural gas (NG) and distribution of methane (CH4) concentration. Finally, a strategy of improving mixture quality and the distribution of the mixture was proposed. Full article
(This article belongs to the Special Issue Shipping Emissions and Air Pollution)
Show Figures

Figure 1

21 pages, 17676 KiB  
Article
CFD Study of Dual Fuel Combustion in a Research Diesel Engine Fueled by Hydrogen
by Maria Cristina Cameretti, Roberta De Robbio, Ezio Mancaruso and Marco Palomba
Energies 2022, 15(15), 5521; https://doi.org/10.3390/en15155521 - 29 Jul 2022
Cited by 26 | Viewed by 4591
Abstract
Superior fuel economy, higher torque and durability have led to the diesel engine being widely used in a variety of fields of application, such as road transport, agricultural vehicles, earth moving machines and marine propulsion, as well as fixed installations for electrical power [...] Read more.
Superior fuel economy, higher torque and durability have led to the diesel engine being widely used in a variety of fields of application, such as road transport, agricultural vehicles, earth moving machines and marine propulsion, as well as fixed installations for electrical power generation. However, diesel engines are plagued by high emissions of nitrogen oxides (NOx), particulate matter (PM) and carbon dioxide when conventional fuel is used. One possible solution is to use low-carbon gaseous fuel alongside diesel fuel by operating in a dual-fuel (DF) configuration, as this system provides a low implementation cost alternative for the improvement of combustion efficiency in the conventional diesel engine. An initial step in this direction involved the replacement of diesel fuel with natural gas. However, the consequent high levels of unburned hydrocarbons produced due to non-optimized engines led to a shift to carbon-free fuels, such as hydrogen. Hydrogen can be injected into the intake manifold, where it premixes with air, then the addition of a small amount of diesel fuel, auto-igniting easily, provides multiple ignition sources for the gas. To evaluate the efficiency and pollutant emissions in dual-fuel diesel-hydrogen combustion, a numerical CFD analysis was conducted and validated with the aid of experimental measurements on a research engine acquired at the test bench. The process of ignition of diesel fuel and flame propagation through a premixed air-hydrogen charge was represented the Autoignition-Induced Flame Propagation model included ANSYS-Forte software. Because of the inefficient operating conditions associated with the combustion, the methodology was significantly improved by evaluating the laminar flame speed as a function of pressure, temperature and equivalence ratio using Chemkin-Pro software. A numerical comparison was carried out among full hydrogen, full methane and different hydrogen-methane mixtures with the same energy input in each case. The use of full hydrogen was characterized by enhanced combustion, higher thermal efficiency and lower carbon emissions. However, the higher temperatures that occurred for hydrogen combustion led to higher NOx emissions. Full article
Show Figures

Graphical abstract

14 pages, 4482 KiB  
Article
Influence of Pilot Injection on Combustion Characteristic of Methanol–Diesel Dual-Fuel Engine
by Ao Zhou, Hui Jin, Wenhan Cao, Ming Pang, Yangyang Li and Chao Zhu
Energies 2022, 15(10), 3578; https://doi.org/10.3390/en15103578 - 13 May 2022
Cited by 4 | Viewed by 2535
Abstract
An experimental study regarding methanol–diesel dual-fuel (DF) engines was conducted on a modified engine to explore the effects of pilot injection timing and period on the two-stage combustion process caused by the pilot injection strategy. In this study, the two-stage combustion process was [...] Read more.
An experimental study regarding methanol–diesel dual-fuel (DF) engines was conducted on a modified engine to explore the effects of pilot injection timing and period on the two-stage combustion process caused by the pilot injection strategy. In this study, the two-stage combustion process was determined according to the first two peaks of the second derivative of an in-cylinder pressure (d2p/2) curve. The results show that the peak pressure rise rate (PRR) tended to decrease with advancing pilot injection timing at a high co-combustion ratio (CCR), which reduced combustion noise. The start of the combustion of the main injection diesel (SOC2) could be advanced by increasing the pilot injection period or advancing pilot injection timing at a 42% CCR. At an 18% CCR, the pilot injection timing and period had no significant effect on SOC2. With the advancement of pilot injection timing, the start of the combustion of pilot injection diesel (SOC1) advanced, and generally, the coefficient of variation of the PRR (COVPRR) of the two-stage combustion process increased first and then decreased. However, with the increase in the pilot injection period, SOC1 almost always remained constant and the COVPRR of the two-stage combustion process generally increased. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

25 pages, 7733 KiB  
Article
A Numerical Study on Fuel Injection Optimization for a ME-GI Dual-Fuel Marine Engine Based on CFD Analysis
by Jun-Soo Kim, Won-Ju Lee, Van Chien Pham and Jae-Hyuk Choi
Appl. Sci. 2022, 12(7), 3614; https://doi.org/10.3390/app12073614 - 2 Apr 2022
Cited by 10 | Viewed by 3223
Abstract
A numerical study was carried out to investigate the effects of injector spray angle (SA) and injection position (IP) on the combustion and emission characteristics of a two-stroke ME-GI marine engine at full load. Three-dimensional (3D) simulations of the combustion process and emission [...] Read more.
A numerical study was carried out to investigate the effects of injector spray angle (SA) and injection position (IP) on the combustion and emission characteristics of a two-stroke ME-GI marine engine at full load. Three-dimensional (3D) simulations of the combustion process and emission formations inside the cylinder of the engine operating in the diesel and DF modes were performed using the ANSYS Fluent simulation software to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were compared and showed good agreement with the experimental results reported in the engine’s shop test technical data. The simulation results showed that the IP of 0.02 m with an SA of 40 degrees helps to enhance the engine performance; however, if the main target is reducing engine exhaust gas emissions, an IP of 0.01 m is highly recommended to be used. At this IP, the specific SA of 40, 45, or 50 degrees that should be used will depend on which emissions (NO, soot, CO2, etc.) need to be reduced. This study successfully investigated the effects of injector SA and IP on the combustion and emission characteristics of the researched engine and would be a good reference for engine design and operating engineers. Full article
Show Figures

Figure 1

Back to TopTop