Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (265)

Search Parameters:
Keywords = dual phase steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 15301 KiB  
Article
Application of CH241 Stainless Steel with High Concentration of Mn and Mo: Microstructure, Mechanical Properties, and Tensile Fatigue Life
by Ping-Yu Hsieh, Bo-Ding Wu and Fei-Yi Hung
Metals 2025, 15(8), 863; https://doi.org/10.3390/met15080863 (registering DOI) - 1 Aug 2025
Viewed by 185
Abstract
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly [...] Read more.
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly manner and a two-stage heat treatment process, the hardness of as-cast CH241 was tailored from HRC 37 to HRC 29, thereby meeting the industrial specifications of cold-forged steel (≤HRC 30). X-ray diffraction analysis of the as-cast microstructure revealed the presence of a small amount of ferrite, martensite, austenite, and alloy carbides. After heat treatment, CH241 exhibited a dual-phase microstructure consisting of ferrite and martensite with dispersed Cr(Ni-Mo) alloy carbides. The CH241 alloy demonstrated excellent high-temperature stability. No noticeable softening occurred after 72 h for the second-stage heat treatment. Based on the mechanical and room-temperature tensile fatigue properties of CH241-F (forging material) and CH241-ST (soft-tough heat treatment), it was demonstrated that the CH241 stainless steel was superior to the traditional stainless steel 4xx in terms of strength and fatigue life. Therefore, CH241 stainless steel can be introduced into cold forging and can be used in precision fatigue application. The relevant data include composition design and heat treatment properties. This study is an important milestone in assisting the upgrading of the vehicle and aerospace industries. Full article
(This article belongs to the Special Issue Advanced High Strength Steels: Properties and Applications)
Show Figures

Graphical abstract

15 pages, 7394 KiB  
Communication
Experimental Investigation of Delayed Fracture Initiation in Advanced High-Strength Steel Under Accelerated Bending
by Kyucheol Jeong, Jaewook Lee and Jonghun Yoon
Materials 2025, 18(14), 3415; https://doi.org/10.3390/ma18143415 - 21 Jul 2025
Viewed by 296
Abstract
Predicting bending fractures in advanced high-strength steel (AHSS) is challenging due to complex microstructural behaviors and strain rate dependencies, particularly in industrial forming processes. Current models and standards primarily focus on quasi-static tension or slow bending speeds, leaving a gap in understanding the [...] Read more.
Predicting bending fractures in advanced high-strength steel (AHSS) is challenging due to complex microstructural behaviors and strain rate dependencies, particularly in industrial forming processes. Current models and standards primarily focus on quasi-static tension or slow bending speeds, leaving a gap in understanding the accelerated failure of AHSS without necking. In this study, direct bending experiments were conducted on dual-phase, complex-phase, and martensitic AHSS grades under varying bending speeds and radii. Since the bending crack is irrelevant to the load drop, surface crack evolution was measured using three-dimensional surface profile analysis. The results showed that accelerated bending significantly delayed crack initiation across all tested materials, with small-radius bending showing reduced strain localization due to strain rate hardening. Larger-radius bending benefited primarily from increased fracture strain. Full article
(This article belongs to the Special Issue Advanced High-Strength Steels: Processing and Characterization)
Show Figures

Figure 1

16 pages, 8314 KiB  
Article
Effect of the Heat Affected Zone Hardness Reduction on the Tensile Properties of GMAW Press Hardening Automotive Steel
by Alfredo E. Molina-Castillo, Enrique A. López-Baltazar, Francisco Alvarado-Hernández, Salvador Gómez-Jiménez, J. Roberto Espinosa-Lumbreras, José Jorge Ruiz Mondragón and Víctor H. Baltazar-Hernández
Metals 2025, 15(7), 791; https://doi.org/10.3390/met15070791 - 13 Jul 2025
Viewed by 381
Abstract
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, [...] Read more.
An ultra-high-strength press-hardening steel (PHS) and a high-strength dual-phase steel (DP) were butt-joined by the gas metal arc welding (GMAW) process, aiming to assess the effects of a high heat input welding process on the structure-property relationship and residual stress. The post-weld microstructure, the microhardness profile, the tensile behavior, and the experimentally obtained residual stresses (by x-ray diffraction) of the steels in dissimilar (PHS-DP) and similar (PHS-PHS, DP-DP) pair combinations have been analyzed. Results indicated that the ultimate tensile strength (UTS) of the dissimilar pair PHS-DP achieves a similar strength to the DP-DP joint, whereas the elongation was similar to that of the PHS-PHS weldment. The failure location of the tensile specimens was expected and systematically observed at the tempered and softer sub-critical heat-affected zone (SC-HAZ) in all welded conditions. Compressive residual stresses were consistently observed along the weldments in all specimens; the more accentuated negative RS were measured in the PHS joint attributed to the higher volume fraction of martensite; furthermore, the negative RS measured in the fusion zone (FZ) could be well correlated to weld restraint due to the sheet anchoring during the welding procedure, despite the presence of predominant ferrite and pearlite microstructures. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

22 pages, 16747 KiB  
Article
Development of a Technique for Toughness Estimation in Dual-Phase Steels Using Representative Volume Elements
by Amin Latifi Vanjani, Hari M. Simha and Alexander Bardelcik
Metals 2025, 15(7), 788; https://doi.org/10.3390/met15070788 - 11 Jul 2025
Viewed by 217
Abstract
A novel approach to estimating the absorbed energy (toughness) in a uniaxial tensile test with only knowledge of the microstructure is presented. The flow behavior of each Dual-Phase (DP) steel grade is predicted using idealized Representative Volume Elements (RVEs) up to uniform elongation. [...] Read more.
A novel approach to estimating the absorbed energy (toughness) in a uniaxial tensile test with only knowledge of the microstructure is presented. The flow behavior of each Dual-Phase (DP) steel grade is predicted using idealized Representative Volume Elements (RVEs) up to uniform elongation. To estimate the flow behavior beyond uniform elongation, the stress-modified fracture strain in a non-local damage model was implemented in Abaqus. Damage parameters were calibrated using Finite Element (FE) simulations of purely ferritic tensile specimens. The damage parameters remained unchanged, except for the coefficient of triaxiality. This coefficient was adjusted based on the average triaxiality of ferrite elements at the instability point of the uniaxially loaded RVEs for each DP steel grade. The proposed approach comprises two steps: micron-sized RVEs to predict the flow behavior up to the point of uniform elongation and the average triaxiality and full-scale tensile-test simulations to predict the rest of the curves. The results show that the damage parameters calibrated for high-strain ferrite effectively estimate the absorbed energy during failure in tension tests. This approach is also geometry-independent; varying the geometry of the tensile specimen, including miniature or notched specimens, still yields predicted absorbed energies that are in good agreement with the experimental results. Full article
Show Figures

Figure 1

20 pages, 13326 KiB  
Article
Stress–Strain and Structural Evolution on the Localized Interface of Stainless Steel Clad Plate
by Yinpeng Wang, Bo Gao, Qiqing Tian, Chunhui Jiang, Lu Zhu, Yanguang Cao, Wei Wei and Zhaodong Li
Materials 2025, 18(14), 3255; https://doi.org/10.3390/ma18143255 - 10 Jul 2025
Viewed by 329
Abstract
By applying different heat treatment processes (furnace cooling, air cooling, and water cooling), the stress–strain behavior of the localized interfacial region in weathering steel–stainless steel clad plates was investigated using nanoindentation, along with an analysis of interfacial microstructure formation and strengthening mechanisms. The [...] Read more.
By applying different heat treatment processes (furnace cooling, air cooling, and water cooling), the stress–strain behavior of the localized interfacial region in weathering steel–stainless steel clad plates was investigated using nanoindentation, along with an analysis of interfacial microstructure formation and strengthening mechanisms. The results show that samples in the as-rolled (R), furnace-cooled (FC), air-cooled (AC), and water-cooled (WC) conditions exhibit distinct interfacial morphologies and local mechanical properties. A well-defined interfacial layer forms between the base and cladding materials, where a high density of dislocations, grain boundaries, precipitates, and nanoscale oxides significantly enhances interfacial strength, resulting in a yield strength (Rp0.2) much higher than that of either adjacent metal. Across the transition from weathering steel to stainless steel, the interfacial region consists of ferrite—interfacial layer—“new austenite”—stainless steel austenite. Its formation is predominantly governed by element diffusion, which is strongly influenced by the applied heat treatment. Variations in diffusion behavior significantly affect the microstructural evolution of the dual-phase transition zone at the interface, thereby altering the local mechanical response. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 5802 KiB  
Article
Enhancing the Mechanical Performance of Dual-Phase Steel Through Multi-Axis Compression and Inter-Critical Annealing
by Pooja Dwivedi, Aditya Kumar Padap, Sachin Maheshwari, Faseeulla Khan Mohammad, Mohammed E. Ali Mohsin, SK Safdar Hossain, Hussain Altammar and Arshad Noor Siddiquee
Materials 2025, 18(13), 3139; https://doi.org/10.3390/ma18133139 - 2 Jul 2025
Viewed by 417
Abstract
This study examines the microstructural evolution, mechanical properties, and wear behavior of medium-carbon dual-phase steel (AISI 1040) processed via Multi-Axis Compression (MAC). The DP steel was produced through inter-critical annealing at 745 °C, followed by MAC at 500 °C, resulting in a refined [...] Read more.
This study examines the microstructural evolution, mechanical properties, and wear behavior of medium-carbon dual-phase steel (AISI 1040) processed via Multi-Axis Compression (MAC). The DP steel was produced through inter-critical annealing at 745 °C, followed by MAC at 500 °C, resulting in a refined grain microstructure. Optical micrographs confirmed the presence of ferrite and martensite phases after annealing, with significant grain refinement observed following MAC. The average grain size decreased from 66 ± 4 μm to 18 ± 1 μm after nine MAC passes. Mechanical testing revealed substantial improvements in hardness (from 145 ± 9 HV to 298 ± 18 HV) and ultimate tensile strength (from 557 ± 33 MPa to 738 ± 44 MPa), attributed to strain hardening and the Hall–Petch effect. Fractographic analysis revealed a ductile failure mode in the annealed sample, while DP0 and DP9 exhibited a mixed fracture mode. Both DP0 and DP9 samples demonstrated superior wear resistance compared to the annealed sample. However, the DP9 sample exhibited slightly lower wear resistance than DP0, likely due to the fragmentation of martensite induced by high accumulated strain, which could act as crack initiation sites during sliding wear. Furthermore, wear resistance was significantly enhanced due to the combined effects of the DP structure and Severe Plastic Deformation (SPD). These findings highlight the potential of MAC processing for developing high-performance steels suitable for lightweight automotive applications. Full article
Show Figures

Figure 1

15 pages, 5685 KiB  
Article
Microstructure and Mechanical Properties of Ultrafine-Grained Dual-Phase 0.1C3Mn Steel Processed by Warm Deformation
by Yongkang Wang, Chenglu Liu and Qingquan Lai
Metals 2025, 15(7), 699; https://doi.org/10.3390/met15070699 - 24 Jun 2025
Viewed by 343
Abstract
In this study, we have explored the thermomechanical processing on 0.1C3Mn steel to produce an ultrafine-grained (UFG) dual-phase (DP) microstructure. The composition was designed to allow a decrease in temperature for the warm deformation of austenite. It was found that the warm deformation [...] Read more.
In this study, we have explored the thermomechanical processing on 0.1C3Mn steel to produce an ultrafine-grained (UFG) dual-phase (DP) microstructure. The composition was designed to allow a decrease in temperature for the warm deformation of austenite. It was found that the warm deformation of austenite induced a dramatic ferrite transformation, in contrast to the absence of the formation of ferrite in the well-annealed state. Compression by 60% at 650 °C resulted in the generation of a UFG-DP microstructure with a ferrite grain size of 1.4 μm and a ferrite volume fraction of 62%. The UFG-DP 0.1C3Mn steel presents a good combination of strength, ductility and fracture resistance, and the fracture strain of the UFG-DP is higher than the as-quenched low-carbon martensite. The high fracture strain of the UFG-DP could be attributed to delayed void nucleation and constrained void growth, as revealed by the quantitative X-ray tomography. Full article
Show Figures

Figure 1

14 pages, 6281 KiB  
Article
Martensitic Transformation Mechanism In Situ Observation for the Simulated Coarse-Grained Heat-Affected Zone of DP1180 Steel
by Wenjuan Li, Jinfeng Wang, Wenchao Su, Zhiyuan Wei, Jiaxin Wu, Xiaofei Xu and Jiaan Wei
Materials 2025, 18(12), 2721; https://doi.org/10.3390/ma18122721 - 10 Jun 2025
Viewed by 438
Abstract
The martensitic transformation mechanism in the heat-affected zone of DP1180 steel plays a decisive role in the strength of welded joints. In this work, the nucleation and growth kinetics of martensite laths in the coarse grain heat-affected zone (CGHAZ) are analyzed by a [...] Read more.
The martensitic transformation mechanism in the heat-affected zone of DP1180 steel plays a decisive role in the strength of welded joints. In this work, the nucleation and growth kinetics of martensite laths in the coarse grain heat-affected zone (CGHAZ) are analyzed by a high-temperature laser scanning confocal microscope (LSCM). The grain distribution and stress distribution of the samples after in situ observation are analyzed by electron backscatter diffraction (EBSD). The results reveal that austenite grain growth is realized by continuous grain boundary annexation and grain boundary migration of small grains by large grains during the heating process. Seven growth modes of CGHAZ martensitic laths under laser welding conditions are proposed. Additionally, the end growth of martensitic laths is mostly attributed to the collision with grain boundaries or other laths to form a complex interlocking structure. The results of this study could provide important data support for the development of dual-phase steel materials and improvement of welding quality. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

11 pages, 1670 KiB  
Article
Multiphase Identification Through Automatic Classification from Large-Scale Nanoindentation Mapping Compared to an EBSD-Machine Learning Approach
by Carl Slater, Bharath Bandi, Pedram Dastur and Claire Davis
Metals 2025, 15(6), 636; https://doi.org/10.3390/met15060636 - 5 Jun 2025
Viewed by 373
Abstract
Characterising and quantifying complex multiphase steels is a challenging and time-consuming process, which is often open to subjectivity when based on image analysis of optical metallographic or SEM images. The properties of multiphase steels are highly sensitive to their individual phase properties and [...] Read more.
Characterising and quantifying complex multiphase steels is a challenging and time-consuming process, which is often open to subjectivity when based on image analysis of optical metallographic or SEM images. The properties of multiphase steels are highly sensitive to their individual phase properties and fractions, necessitating the development of robust characterisation tools. This paper presents a method for classifying nanoindentation maps into proportional fractions of up to five distinct microstructural regions in dual-phase and complex-phase steels. The phases/regions considered are ferrite, ferrite containing mobile dislocations, bainite, tempered martensite, and untempered martensite. A range of microstructures with varying fractions of phases were evaluated using both SEM/EBSD and nanoindentation. A machine learning (ML) approach applied to EBSD data showed good consistency in characterising a two-phase system. However, as the microstructural system complexity increased, variations were observed between different analysts and the sensitivity to the ML training data increased when four phases were present (reaching up to ~11% difference in the ferrite phase fraction determined). The proposed nanoindentation mapping technique does not show operator sensitivity and enables the quantification of additional microstructural features, such as identifying and quantifying ferrite regions with a high density of mobile dislocations and the degree of martensite tempering. Full article
Show Figures

Figure 1

13 pages, 5966 KiB  
Article
Effect of Nb on Laves Phase Formation and Wear Resistance in Laser-Cladding CrFeNi Medium-Entropy Alloy Coatings
by Zehuan Chen, Fangyan Luo, Hongtao Jin, Zhen Peng, Wenqing Shi and Jiang Huang
Coatings 2025, 15(6), 667; https://doi.org/10.3390/coatings15060667 - 30 May 2025
Viewed by 408
Abstract
In this study, 20 wt.% of Nb was incorporated into a CrFeNi medium-entropy alloy (MEA) powder system to prepare CrFeNi-Nb composite coatings on a Q235B mild steel substrate by laser cladding technology. The effects of Nb addition on the phase composition, microstructure, and [...] Read more.
In this study, 20 wt.% of Nb was incorporated into a CrFeNi medium-entropy alloy (MEA) powder system to prepare CrFeNi-Nb composite coatings on a Q235B mild steel substrate by laser cladding technology. The effects of Nb addition on the phase composition, microstructure, and wear resistance of CrFeNi coatings were systematically investigated. Microstructural characterization revealed that the CrFeNi coating exhibited a single face-centered cubic (FCC) phase structure, while the CrFeNi-Nb composite coating demonstrated a dual-phase structure comprising FCC phase and Laves phase. The Laves phase significantly enhanced the microhardness and wear resistance of the coating. The average microhardness of the CrFeNi-Nb coating increased by 259.62% compared to the substrate and 190.58% compared to the Nb-free CrFeNi coating. The average coefficient of friction (COF) of the coating decreased from 0.74 to 0.68; the wear rate reduced from 5.77 × 10−4 mm3 N−1 m−1 to 2.26 × 10−4 mm3 N−1 m−1; and the weight loss decreased from 10.77 mg to 4.3 mg. The experimental results demonstrated that the addition of Nb promoted the formation of the Laves phase in the CrFeNi MEA, which effectively improved the wear resistance of the coating. Full article
Show Figures

Graphical abstract

15 pages, 12622 KiB  
Article
Impacts of Morphology on the Fracture Resistance of the High-Strength Dual-Phase Steels
by Hao Xu, Zhihong Jia and Qingquan Lai
Materials 2025, 18(10), 2253; https://doi.org/10.3390/ma18102253 - 13 May 2025
Cited by 1 | Viewed by 402
Abstract
A good combination of strength and fracture resistance is highly desired for the development of high-strength ferrite–martensite dual-phase (DP) steels for automotive application. But the increase in strength is usually compromised by a reduction in fracture resistance, and the guideline for microstructure optimization [...] Read more.
A good combination of strength and fracture resistance is highly desired for the development of high-strength ferrite–martensite dual-phase (DP) steels for automotive application. But the increase in strength is usually compromised by a reduction in fracture resistance, and the guideline for microstructure optimization remains to be established. This study is dedicated to the DP steels with tensile strength above 1 GPa, and the influences of the equiaxed and fibrous morphologies on the mechanical properties were investigated by both the uniaxial tensile tests and the essential work of fracture (EWF) method. The fibrous morphology is efficient in increasing strength due to the ferrite grain refinement effect. Under uniaxial tension, the fibrous DP morphology does not lead to higher fracture strain. But when evaluating with the EWF method, the fibrous DP steels present a superior fracture resistance, which is attributed to the larger crack tip necking. The interpretation of the fracture resistance measurements was substantiated by the detailed damage observations. Therefore, the fibrous DP concept could provide an efficient pathway to improve the combination of strength and fracture resistance. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 3769 KiB  
Article
Effect of Inter-Pass Temperature and Time on Martensite Formation in the Heat-Affected Zone During Multi-Pass Welding of P91 Steel
by Druce Dunne, Huijun Li and Elena Pereloma
Metals 2025, 15(5), 501; https://doi.org/10.3390/met15050501 - 30 Apr 2025
Viewed by 581
Abstract
Dilatometry was used to simulate and analyze martensite formation in the grain-coarsened heat-affected zone (GCHAZ) of P91 steel for high inter-pass temperatures during multi-pass welding. The inter-pass temperature of 360 °C was within the dual-phase temperature range (~400 °C to 240 °C), but [...] Read more.
Dilatometry was used to simulate and analyze martensite formation in the grain-coarsened heat-affected zone (GCHAZ) of P91 steel for high inter-pass temperatures during multi-pass welding. The inter-pass temperature of 360 °C was within the dual-phase temperature range (~400 °C to 240 °C), but because of the unexpected formation of isothermal martensite, the microstructure at the inter-pass temperature was substantially martensitic and similar in microstructure and hardness to those obtained using lower, conventional inter-pass temperatures (about 250 °C). The results for martensite formation indicate that kinetic classifications for transformation in carbon and alloyed steels should take into account the overlapping effects of the diffusionless transformation and thermally activated processes associated with dislocation motion and the diffusion of interstitial elements. Furthermore, the MS temperature was found to be highly sensitive to the microstructural state of the austenite and the availability of nucleating sites for martensite formation. The data for the kinetics of martensite formation were inconsistent with the widely used Koistinen and Marburger (KM) equation for predicting the volume fraction of martensite as a function of quench temperature. It is concluded that the KM equation has limited applicability Full article
Show Figures

Figure 1

19 pages, 7040 KiB  
Article
Research on an Online Intelligent Monitoring System for Resistance Spot Welding Based on Wireless Communication
by Shuwan Cui, Xuan Zhou, Baoyan Zhang, Leigang Han, Bin Xue and Feiyang Liu
Sensors 2025, 25(9), 2658; https://doi.org/10.3390/s25092658 - 23 Apr 2025
Viewed by 2480
Abstract
Resistance spot welding (RSW) faces critical monitoring challenges in industrial applications due to nonlinear coupling characteristics and production line disturbances. This study developed a Zigbee-enabled real-time monitoring system to address the precision limitations of conventional methods in tracking RSW parameters. Using DP780/DP590 dual-phase [...] Read more.
Resistance spot welding (RSW) faces critical monitoring challenges in industrial applications due to nonlinear coupling characteristics and production line disturbances. This study developed a Zigbee-enabled real-time monitoring system to address the precision limitations of conventional methods in tracking RSW parameters. Using DP780/DP590 dual-phase steel specimens with thickness variations, we implemented a dedicated data acquisition system capturing welding current, voltage, and barometric pressure dynamics. The experimental results demonstrated measurement accuracies within ±0.49% for current, ±0.25% for voltage, and 3.72% average relative error for barometric pressure with stable operational deviations (0.017–0.024 MPa). Full article
(This article belongs to the Special Issue Computer Vision Recognition and Communication Sensing System)
Show Figures

Figure 1

25 pages, 8651 KiB  
Article
Study on FEM Simulation Algorithm of Local Warm Forming of Advanced High-Strength Steel
by Tao Wang, Di Li, Xiao-Kun Wang, Hong-Pai Zhu, Jun-Jie Liu, Ning Jiang, Xiao-Zhi Feng and Shao-Xun Liu
Materials 2025, 18(9), 1900; https://doi.org/10.3390/ma18091900 - 22 Apr 2025
Cited by 1 | Viewed by 358
Abstract
Advanced high-strength steels (AHSSs) are prone to process defects such as fracture and springback during forming operations. Local warm forming technology represents an innovative forming process that applies targeted heating to specific stamping features of high-strength steel blanks. This study focuses on dual-phase [...] Read more.
Advanced high-strength steels (AHSSs) are prone to process defects such as fracture and springback during forming operations. Local warm forming technology represents an innovative forming process that applies targeted heating to specific stamping features of high-strength steel blanks. This study focuses on dual-phase steel DP780 as the research material, obtaining mechanical property parameters at various temperatures through uniaxial tensile tests. Based on investigations into temperature-dependent constitutive models and heat-transfer analysis methods, Abaqus VUMAT and UMAT subroutines were developed using Fortran language to establish a local warm forming simulation algorithm that incorporates predictions of fracture failure and springback. A U-shaped component was designed for local warm forming bend-stretch tests, with experimental data compared against results from the developed algorithm. This validation confirmed the algorithm’s capability to accurately predict local warm forming behaviors of U-shaped components. Leveraging the validated algorithm, sensitivity analyses were conducted to examine the influence of local warm forming process parameters on springback, with the response surface methodology employed to quantitatively assess the effects of heating temperature and localized heating zones on springback characteristics. Full article
Show Figures

Figure 1

21 pages, 78310 KiB  
Article
Effect of Laser Power on Formation and Joining Strength of DP980-CFRP Joint Fabricated by Laser Circle Welding
by Sendong Ren, Yihao Shen, Taowei Wang, Hao Chen, Ninshu Ma and Jianguo Yang
Polymers 2025, 17(7), 997; https://doi.org/10.3390/polym17070997 - 7 Apr 2025
Viewed by 489
Abstract
In the present research, laser circle welding (LCW) was proposed to join dual-phase steel (DP980) and carbon fiber-reinforced plastic (CFRP). The welding appearance, cross-section of the welded joint and fracture surfaces were subjected to multi-scale characterizations. Joining strength was evaluated by the single-lap [...] Read more.
In the present research, laser circle welding (LCW) was proposed to join dual-phase steel (DP980) and carbon fiber-reinforced plastic (CFRP). The welding appearance, cross-section of the welded joint and fracture surfaces were subjected to multi-scale characterizations. Joining strength was evaluated by the single-lap shear test. Moreover, a numerical model was established based on the in-house finite element (FE) code JWRIAN-Hybrid to reproduce the thermal process of LCW. The results showed that successful bonding was achieved with a laser power higher than 300 W. The largest joining strength increased to about 1353.2 N (12.2 MPa) with 450 W laser power and then decreased under higher heat input. While the welded joint always presented brittle fracture, the joining zone could be divided into a squeezed zone (SZ), molten zone (MZ) and decomposition zone (DZ). The morphology of CFRP and chemical bonding information were distinct in each subregion. The chemical reaction between the O-C=O bond on the CFRP surface and the -OH bond on the DP980 sheet provided the joining force between dissimilar materials. Additionally, the developed FE model was effective in predicting the interfacial maximum temperature distribution of LCW. The influence of laser power on the joining strength of LCW joints was dualistic in character. The joining strength variation reflected the competitive result between joining zone expansion and local bonding quality change. Full article
(This article belongs to the Special Issue Advanced Joining Technologies for Polymers and Polymer Composites)
Show Figures

Figure 1

Back to TopTop