Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = dry pasta

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3046 KiB  
Article
The Effect of the Incorporation Level of Rosa rugosa Fruit Pomace and Its Drying Method on the Physicochemical, Microstructural, and Sensory Properties of Wheat Pasta
by Grażyna Cacak-Pietrzak, Agata Marzec, Aleksandra Rakocka, Andrzej Cendrowski, Sylwia Stępniewska, Renata Nowak, Anna Krajewska and Dariusz Dziki
Molecules 2025, 30(15), 3170; https://doi.org/10.3390/molecules30153170 - 29 Jul 2025
Viewed by 213
Abstract
This study investigated the effects of the addition of Rosa rugosa fruit pomace and drying methods on the properties of pasta, such as culinary properties, color, texture, microstructure, phenolics, antioxidant capacity, and sensory properties. In laboratory conditions, the pasta was produced using low-extraction [...] Read more.
This study investigated the effects of the addition of Rosa rugosa fruit pomace and drying methods on the properties of pasta, such as culinary properties, color, texture, microstructure, phenolics, antioxidant capacity, and sensory properties. In laboratory conditions, the pasta was produced using low-extraction wheat flour with the addition of pomace at 0, 2, 4, 6, and 8% (g/100 g flour) and dried using either convective or microwave–vacuum drying. The incorporation of pomace into the pasta caused a notable reduction in lightness and increased redness and yellowness, as well as a decrease in pasta hardness and sensory acceptability. The RFP addition also increased the polyphenol content and antioxidant potential. The microwave–vacuum drying resulted in pasta with shorter cooking times, lower cooking loss, and higher total phenolic content and antioxidant activity compared to convective drying. Although the drying method did not markedly affect sensory attributes, ultrastructural analysis revealed that samples subjected to convective drying had a more compact structure, while microwave–vacuum dried pasta exhibited larger pores and smaller starch granules. Total porosity was higher in microwave–vacuum dried pasta. Taking into account both the level of pomace enrichment and the drying technique, the most optimal outcomes were achieved when microwave–vacuum drying was applied and the pomace addition did not exceed 4%. Full article
Show Figures

Figure 1

19 pages, 2696 KiB  
Article
Effect of Ultrasound and Chemical Cross-Linking on the Structural and Physicochemical Properties of Malanga (Colocasia esculenta) Starch
by Ana Sofía Martínez-Cigarroa, Guadalupe del Carmen Rodríguez-Jimenes, Alejandro Aparicio-Saguilán, Violeta Carpintero-Tepole, Miguel Ángel García-Alvarado, Ceferino Carrera, Gerardo Fernández Barbero, Mercedes Vázquez-Espinosa and Lucio Abel Vázquez-León
Foods 2025, 14(15), 2609; https://doi.org/10.3390/foods14152609 - 25 Jul 2025
Viewed by 352
Abstract
Starch extracted from malanga (Colocasia esculenta) is a biopolymer with considerable industrial potential thanks to its high starch content (70–80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes [...] Read more.
Starch extracted from malanga (Colocasia esculenta) is a biopolymer with considerable industrial potential thanks to its high starch content (70–80% on a dry basis) and small granule size, which give it distinctive functional properties. To expand its applications in advanced processes such as encapsulation, it is necessary to modify its structural and physicochemical characteristics. This study evaluated the effects of ultrasound (US) and chemical cross-linking (CL) on the properties of this starch. US was applied at various times and amplitudes, while CL was performed using sodium trimetaphosphate and sodium tripolyphosphate, with sodium sulfate as a catalyst. US treatment reduced particle size and increased amylose content, resulting in lower viscosity and gelatinization temperature, without affecting granule morphology. Meanwhile, CL induced phosphate linkages between starch chains, promoting aggregation and reducing amylose content and enthalpy, but increasing the gelatinization temperature. The modified starches exhibited low syneresis, making them potentially suitable for products such as pastas, baby foods, and jams. Additionally, ultrasound modification enabled the production of fine starch microparticles, which could be applied in the microencapsulation of bioactive compounds in the food and pharmaceutical industries. These findings suggest that modified malanga starch can serve as a functional and sustainable alternative in industrial applications. Full article
Show Figures

Graphical abstract

16 pages, 390 KiB  
Article
Impact of Balkan and Banat Donkey Milk on the Technological Process, Microbiological Quality, Composition, and Consumer Acceptability of Rolled Cheese
by Suzana Vidaković Knežević, Jelena Vranešević, Nenad Popov, Slobodan Knežević, Dragana Ljubojević Pelić and Milica Živkov Baloš
Foods 2025, 14(12), 2041; https://doi.org/10.3390/foods14122041 - 10 Jun 2025
Viewed by 707
Abstract
Donkey milk is well known for its beneficial properties for human health, making it a valuable ingredient in the production of value-added cheese. Rolled cheese, a type of pasta filata cheese, is traditionally produced in the northern part of Serbia. In this study, [...] Read more.
Donkey milk is well known for its beneficial properties for human health, making it a valuable ingredient in the production of value-added cheese. Rolled cheese, a type of pasta filata cheese, is traditionally produced in the northern part of Serbia. In this study, we produced rolled cheese by adding a certain amount of donkey’s milk from the Balkan and Banat breeds to cow’s milk. The rolled cheese samples were analyzed for their microbiological quality, chemical composition, content of essential and trace elements, as well as sensory characteristics. Adding 10% and 20% donkey’s milk had no effect on the microbiological quality or hedonic scale of rolled cheeses compared with rolled cheese made from raw cow’s milk. However, the addition of donkey’s milk partially affected the chemical composition and mineral profile of the cheeses. The fat, fat in dry matter, calcium contents, and the ratio of calcium and phosphorus significantly (p < 0.05) decreased with the addition of donkey’s milk, while the ash, salt, sodium, and potassium contents significantly (p < 0.05) increased. The assessors successfully distinguished the rolled cheeses containing donkey’s milk from those made with cow’s milk, encouraging the future production of value-added cheese. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

20 pages, 1978 KiB  
Article
Pea and Lentil Flours Increase Postprandial Glycemic Response in Adults with Type 2 Diabetes and Metabolic Syndrome
by Donna M. Winham, Mariel Camacho-Arriola, Abigail A. Glick, Clifford A. Hall and Mack C. Shelley
Foods 2025, 14(11), 1933; https://doi.org/10.3390/foods14111933 - 29 May 2025
Viewed by 827
Abstract
Pea and lentil flours are added to baked foods, pastas, and snacks to improve nutritional quality and functionality compared to products made solely with refined wheat flour. However, the effect of whole pulses versus their serving size equivalent of flour on blood glucose [...] Read more.
Pea and lentil flours are added to baked foods, pastas, and snacks to improve nutritional quality and functionality compared to products made solely with refined wheat flour. However, the effect of whole pulses versus their serving size equivalent of flour on blood glucose has not been investigated in persons with altered glycemic response. Health claims for whole pulses are based on a ½ cup amount whereas commercial pulse flour servings are typically a smaller size. The glycemic responses of four treatment meals containing 50 g available carbohydrate as ½ cup whole pulse or the dry weight equivalent of pulse flour were compared with a control beverage (Glucola®). Eleven adults with type 2 diabetes mellitus (T2DM) and eight adults with metabolic syndrome (MetS) completed the study. Venous blood samples were collected at fasting and at 30 min intervals postprandial for three hours. Changes in net difference in plasma glucose over time from baseline and incremental area under the curve (iAUC) segments were analyzed. All four pulse meals attenuated the iAUC compared to the control from 0 to 120 min for T2DM participants and 0–180 min for MetS participants. Whole pulses produced a lower glycemic response than pulse flours in the early postprandial period for persons with T2DM and during the overall test period for those with MetS. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

20 pages, 725 KiB  
Article
Bioconversion of Meat and Fish-Based Former Foodstuffs by Black Soldier Fly Larvae: A Sustainable Pathway for Reducing Food Waste, Enhancing Nutrient Recovery, with a Circular Economy Approach
by Antonio Franco, Valentina Pucciarelli, Seyed Ali Hosseini, Eric Schmitt, Fulvia Bovera, Carmen Scieuzo and Patrizia Falabella
Insects 2025, 16(5), 508; https://doi.org/10.3390/insects16050508 - 9 May 2025
Viewed by 862
Abstract
Food waste containing meat and fish presents a considerable environmental challenge due to regulatory constraints preventing its use in industrial insect farming. Although substrates derived from meat and fish are not currently approved for industrial insect feed production due to regulatory constraints, this [...] Read more.
Food waste containing meat and fish presents a considerable environmental challenge due to regulatory constraints preventing its use in industrial insect farming. Although substrates derived from meat and fish are not currently approved for industrial insect feed production due to regulatory constraints, this study explores their potential in bioconversion through Hermetia illucens larvae. In this study, five different former foodstuffs containing meat and/or fish were tested to evaluate their suitability for BSFL rearing. The substrates included pizza with salami (PIZZA), cheeseburger (CHB), pasta Bolognese with meat (PASTA), chicken salad (CHISA), and fish salad (FISA). Results showed that BSFL successfully developed on all tested substrates. The highest performance was observed for FISA, with a total larval weight of 35.21 ± 3.91 g, dry matter yield of 11.21 ± 0.45 g, survival rate of 96.63 ± 0.40%, and the most efficient feed conversion ratio (FCR, 4.11 ± 0.59). Heavy metal analysis revealed substantial bioaccumulation of lead (Pb) and cadmium (Cd) in larvae. In particular, larvae reared on PIZZA showed a Pb concentration of 4.68 μg/100 g, with a corresponding bioaccumulation factor (BAF) of approximately 1.5. Cadmium accumulation was most notable in larvae fed CHB, with a Cd concentration of 0.41 ± 0.33 μg/100 g and a BAF of about 2.1. Despite this bioaccumulation, all detected concentrations remained well below the regulatory limits set by the European Union for animal feed, indicating not only the feasibility of H. illucens larvae in sustainable waste management but also its use as a safe protein source in animal feed. This research highlights the viability of integrating such food waste into insect bioconversion systems. With appropriate risk management, this practice could significantly improve nutrient recycling, waste management, and the circular economy, urging a regulatory review to allow broader substrate utilization. These positive outcomes underscore the potential of integrating currently restricted animal-derived food waste streams into H. illucens-based bioconversion systems, unlocking additional value for the circular economy and contributing to more efficient waste management practices. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

20 pages, 5653 KiB  
Article
Exploring the Use of Tenebrio molitor Larvae Proteins to Functionalize Durum Wheat Pasta
by Serena Carpentieri, Agnieszka Orkusz, Joanna Harasym and Giovanna Ferrari
Foods 2025, 14(7), 1194; https://doi.org/10.3390/foods14071194 - 28 Mar 2025
Cited by 1 | Viewed by 639
Abstract
Background: Edible insects, such as Tenebrio molitor larvae (TM), offer a sustainable protein alternative to meet increasing dietary demands. The aim of this study is to investigate the functionalization of durum wheat pasta through the incorporation of TM flour (0–30%), focusing on how [...] Read more.
Background: Edible insects, such as Tenebrio molitor larvae (TM), offer a sustainable protein alternative to meet increasing dietary demands. The aim of this study is to investigate the functionalization of durum wheat pasta through the incorporation of TM flour (0–30%), focusing on how the addition of this non-conventional ingredient affects pasta production processing and its technological and chemical characteristics. Methods: Pasting properties, color, total phenolic content, antioxidant activity, and reducing sugars were determined for dry and cooked pasta. Texture profile and cooking properties were assessed for cooked samples. Results: The insect flour contributed to enhance polyphenols content in pasta, which increased from 0.06 and 0.03 mgGAE/g up to 0.19 and 0.10 mgGAE/g for dry and cooked pasta, respectively, and remained constant after the production process. The addition of TM flour altered the microstructure of wheat macromolecules, forming complex molecules, such as amylose–lipid complexes, and hydrogen and electrostatic interactions between proteins and polysaccharides, contributing to improved molecular stability and bioactivity. The pasta produced with insect flour up to 10% showed water absorption capacity, cooking properties, and consistency comparable to those of traditional pasta. Moreover, the addition of TM flour led to a reduction in peak viscosities from 2146.5 cP to 911.5 cP and roughness of pasta. Conclusions: The findings demonstrated the potential of TM flour as a unique source of bioactive compounds enhancing both the nutritional and functional properties of durum wheat pasta. Overcoming processing challenges through the optimization of product formulation and process parameters is crucial for exploring the production of insect flour enriched pasta at industrial scale while maintaining product uniformity and satisfying consumers expectations. Full article
(This article belongs to the Special Issue Cereal Processing and Quality Control Technology)
Show Figures

Figure 1

14 pages, 15062 KiB  
Article
FODMAP Profile of Wholegrain Pasta
by Aleksandra M. Torbica, Milorad Miljić and Miloš Radosavljević
Foods 2025, 14(4), 667; https://doi.org/10.3390/foods14040667 - 16 Feb 2025
Cited by 1 | Viewed by 922
Abstract
Pasta is a staple food consumed worldwide and is made from wholegrain semolina, which is a food rich in dietary fibre, proteins, minerals, vitamins, and bioactive compounds. However, fermentable oligo-, di-, and monosaccharides and polyols (FODMAP), part of soluble dietary fibre in pasta, [...] Read more.
Pasta is a staple food consumed worldwide and is made from wholegrain semolina, which is a food rich in dietary fibre, proteins, minerals, vitamins, and bioactive compounds. However, fermentable oligo-, di-, and monosaccharides and polyols (FODMAP), part of soluble dietary fibre in pasta, can trigger/worsen irritable bowel syndrome (IBS) symptoms and increase the prevalence of gastrointestinal disorders. These dietary fibres include lactose, excess fructose relative to glucose, polyols, fructans (mostly fructooligosaccharides), and galactooligosaccharides. Due to a lack of information on the FODMAP profile for pasta, this research conducted a detailed analysis using high-performance anion-exchange chromatography with pulsed amperometric detection to determine the FODMAP compound content in commercially available pasta, with a focus on wholegrain products. The results showed that fructooligosaccharides (FOSs) are the dominant group of FODMAPs, and kestose is the predominant oligosaccharide in all pasta samples both dry (67.1–95.0%) and cooked (27.1–93.9%). Almost all pasta samples are classified as high-FODMAP foods. The degree of reduction in FODMAP compound content during cooking varies between pasta types and is influenced by the wheat type, cooking time, amount of water used for cooking, pasta shapes, and pasta supplementation. In samples of dry pasta, there are statistically significant differences in the results between all samples, while after cooking, there is evident grouping of the results in four clusters. The reduction in FOS content of pasta after cooking was in the range from 30.9% to 84%. Further research should be focused on higher activity of FODMAP degrading enzymes during pasta production process. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

18 pages, 250 KiB  
Article
The Addition of Tomato and Spinach Powder to Semolina Pasta: A Study of the Impact of the Production Process and Cooking on Phenolic Compounds
by Silvia Marzocchi, Federica Pasini, Renzo Santi and Maria Fiorenza Caboni
Appl. Sci. 2025, 15(2), 634; https://doi.org/10.3390/app15020634 - 10 Jan 2025
Viewed by 820
Abstract
Pasta is a staple food with daily recommended consumption; thus, it can be an excellent vehicle for delivering bioactive compounds like phenols. However, the high-temperature drying process in pasta production, combined with cooking in boiling water, can significantly reduce the concentration of phenolic [...] Read more.
Pasta is a staple food with daily recommended consumption; thus, it can be an excellent vehicle for delivering bioactive compounds like phenols. However, the high-temperature drying process in pasta production, combined with cooking in boiling water, can significantly reduce the concentration of phenolic compounds. This study aimed to enhance the phenolic content of traditional semolina pasta by incorporating tomato and spinach powder into the recipe. High-performance liquid chromatography–electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-QqQ-MS) was employed to analyse the free and bound phenolic content in the raw materials, as well as in both dried uncooked and cooked pasta. The addition of tomato and spinach powders, known for their high content in bioactive compounds, increased the overall phenolic content of the final enriched pasta by three and two times, respectively, compared to the semolina and whole-wheat semolina pasta. These findings suggest that pasta enriched with tomato and spinach could serve as a functional food with a greater nutritional profile and health benefits through the enhanced delivery of phenolic compounds. Full article
14 pages, 6524 KiB  
Article
Effect of Microwave–Vacuum Drying and Pea Protein Fortification on Pasta Characteristics
by Nam Phuong Michalina Nguyen and Agata Marzec
Processes 2024, 12(11), 2508; https://doi.org/10.3390/pr12112508 - 11 Nov 2024
Cited by 3 | Viewed by 2661
Abstract
The widespread popularity of pasta has driven innovations in formulations and production technologies to enhance its versatility. Techniques such as alternative drying methods and fortification of wheat pasta seek to improve the nutritional value and functional properties of pasta products, thereby increasing their [...] Read more.
The widespread popularity of pasta has driven innovations in formulations and production technologies to enhance its versatility. Techniques such as alternative drying methods and fortification of wheat pasta seek to improve the nutritional value and functional properties of pasta products, thereby increasing their attractiveness to consumers. This study aimed to evaluate the effects of microwave–vacuum drying versus conventional drying on the characteristics of durum wheat semolina pasta, including moisture content, water activity, microstructure, colour, texture, weight gain factor, and cooking loss. Three types of pea protein concentrates (80, 84, and 88% dry matter) were used at levels of 3, 6, and 9% (g/100 g flour). Results indicated that microwave–vacuum drying had a significant impact on the physical properties and cooking quality of pasta. Microwave–vacuum drying caused material puffing, resulting in microstructure with high open porosity (64.1%) and minimal closed porosity (0.1%). This has likely contributed to the short rehydration time (2 min in boiling water) of produced pasta, effectively transforming it into an instant food product. All pasta samples had low water content (<9%) and water activity (<0.4), which ensure food safety. The microwave–vacuum-dried pasta weight gain factor (2.2) was lower than in the conventionally dried pasta (2.8). The firmness of microwave–vacuum-dried pasta was significantly higher (135 g) than that of conventional pasta (16 g). Fortification with pea protein enhanced porosity but did not affect pasta’s culinary parameters, such as weight gain or cooking loss, although it resulted in darker pasta (p = 0.001), especially notable with a 9% pea protein addition. Full article
(This article belongs to the Special Issue Quality of Plant Raw Materials and Their Processing)
Show Figures

Figure 1

28 pages, 11475 KiB  
Article
A Study of the Influence of Ion-Ozonized Water on the Properties of Pasta Dough Made from Wheat Flour and Pumpkin Powder
by Bauyrzhan Iztayev, Auyelbek Iztayev, Talgat Kulazhanov, Galiya Iskakova, Madina Yakiyayeva, Bayan Muldabekova, Meruyet Baiysbayeva and Sholpan Tursunbayeva
Foods 2024, 13(20), 3253; https://doi.org/10.3390/foods13203253 - 13 Oct 2024
Viewed by 1141
Abstract
Water treated with ion ozone improves the technological qualities of food products. Therefore, ion-ozonated water was used in the work, and whole-grain flour from soft wheat of the Almaly variety and pumpkin powder were used as raw materials to improve the quality and [...] Read more.
Water treated with ion ozone improves the technological qualities of food products. Therefore, ion-ozonated water was used in the work, and whole-grain flour from soft wheat of the Almaly variety and pumpkin powder were used as raw materials to improve the quality and nutritional value of the pasta. This study investigated the effects of ion-ozone concentration in ion-ozonated water Cio, water temperature tw, pumpkin powder content Cpp and drying temperature td on various characteristics affecting the quality of pasta, including its organoleptic physical, chemical, and rheological properties. These characteristics were assessed by conducting multiple experiments, a total of 25 indicators were determined, such as humidity, acidity, cooking properties, deformation, and other basic quality indicators. To reduce the number of experiments and obtain a reliable assessment of the influence of individual factors on the quality indicators of pasta, methods involving the multifactorial design of experiments were applied. Data processing and all necessary calculations were carried out using the PLAN sequential regression analysis program. Consequently, our findings indicate that minimizing dry water (DM) loss in cooking water requires a dual approach: increasing ion-ozone concentration and optimizing pasta composition and drying conditions, specifically by reducing pumpkin powder content and drying temperature. As a result, it was established that to obtain high-quality pasta from whole-grain flour with high quality and rheological properties, it is necessary to use the following optimal production modes: ion-ozone concentration in ion-ozonated water Cio = 2.5 × 10−6 mg/cm3, water temperature tw = 50 °C, pumpkin powder content Cpp = 3.0%, and pasta drying temperature td = 50 °C. The resulting pasta is an environmentally friendly product with a high content of biologically active substances. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 5759 KiB  
Article
Pasta Incorporating Olive Pomace: Impact on Nutritional Composition and Consumer Acceptance of a Prototype
by Diana Melo Ferreira, Bárbara C. C. Oliveira, Carla Barbosa, Anabela S. G. Costa, Maria Antónia Nunes, Maria Beatriz P. P. Oliveira and Rita C. Alves
Foods 2024, 13(18), 2933; https://doi.org/10.3390/foods13182933 - 16 Sep 2024
Cited by 3 | Viewed by 2015
Abstract
The food industry is encouraged to develop new sustainable foodstuffs, and agri-food by-products can serve as valuable ingredients in these formulations. In this work, olive pomace (OP), a by-product of olive oil production, was incorporated as an ingredient in pasta. The changes in [...] Read more.
The food industry is encouraged to develop new sustainable foodstuffs, and agri-food by-products can serve as valuable ingredients in these formulations. In this work, olive pomace (OP), a by-product of olive oil production, was incorporated as an ingredient in pasta. The changes in the nutritional composition and consumer acceptance were assessed, aiming to scale up the production. OP contains dietary fibre (55%), fat (9%), α-tocopherol (43 mg/kg), and oleic acid (76%) after moisture elimination. For that, the following two drying procedures were tested: 40 °C for 48 h (OP40) and 70 °C for 24 h (OP70). Both samples were sieved to remove the stone pieces. Drying at 70 °C (OP70) was the fastest method, revealed a better nutritional profile than OP40, and was the product selected for the incorporation into the pasta. The enriched pasta, containing 7.5% of OP70, was compared to a control. It showed an improved nutritional value with higher contents of fat, ash, fibre, vitamin E, oleic acid, phenolics, and flavonoids, a composition related to potential health benefits. Consumers appreciated the appearance, colour, shine, and aroma of the obtained pasta, making it a prototype with commercial viability. However, several improvements need to be implemented, namely, at the textural levels. Corrective actions, such as the optimisation of the amount of incorporated OP, the use of other ingredients for flavour masking, and textural adjustments, are advisable, thereby making this product more appealing and accepted by a larger number of consumers. This prototype can be a good approach for the circular economy, environmental sustainability, and food security. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

19 pages, 3869 KiB  
Article
Use of Integral Forage Palm Flour as an Innovative Ingredient in New Fettuccine-Type Pasta: Thermomechanical and Technological Properties, and Sensory Acceptance
by Luiz Eliel Pinheiro da Silva, Sander Rodrigues Moreira, Nathalia de Andrade Neves, Etiene Valéria de Aguiar, Vanessa Dias Capriles, Tatiana Nunes Amaral and Marcio Schmiele
Foods 2024, 13(17), 2683; https://doi.org/10.3390/foods13172683 - 26 Aug 2024
Viewed by 1987
Abstract
Dehydrated integral forage palm cladode flour (FPF) presents a promising nutritional and functional approach to enriching fettuccine-type pasta. This study investigated the use of microwave-dehydrated FPF (at 810 W) as a partial wheat flour substitute (0, 5, 10, 15, and 20% w/ [...] Read more.
Dehydrated integral forage palm cladode flour (FPF) presents a promising nutritional and functional approach to enriching fettuccine-type pasta. This study investigated the use of microwave-dehydrated FPF (at 810 W) as a partial wheat flour substitute (0, 5, 10, 15, and 20% w/w) in fresh and dry fettuccine-type pasta. The thermomechanical properties of flour blends and the technological and sensory attributes of the resulting pasta were evaluated. FPF displayed a high protein (15.80%), mineral (15.13%), dietary fiber (67.35%), and total soluble phenolic compound (251 mg EAG·100 g−1) content. While water absorption (~58%) and dough stability remained consistent across formulations, a decrease in maximum torque during heating was observed (p < 0.05). Fettuccine-type pasta containing 10% FPF exhibited an acceptable optimal cooking time, solid loss, weight gain, and textural properties for both fresh and dry pasta. Sensory evaluation revealed acceptability above 63% for pasta with 10% FPF, with a slight preference for the fresh version. Fresh pasta flavored with garlic and extra virgin olive oil (garlic and oil pasta) achieved a sensory acceptance rate of 79.67%. These findings demonstrate the potential of FPF for fettuccine-type pasta production, contributing desirable technological characteristics and achieving acceptable sensory profiles. Full article
(This article belongs to the Special Issue Formulation and Nutritional Aspects of Cereal-Based Functional Foods)
Show Figures

Figure 1

12 pages, 450 KiB  
Article
Replacement of Native with Malted Triticale (x Triticosecale Wittmack) Flour in Dry Pasta: Technological and Nutritional Implications
by Mariasole Cervini, Chiara Lobuono, Federica Volpe, Francesco Matteo Curatolo, Francesca Scazzina, Margherita Dall’Asta and Gianluca Giuberti
Foods 2024, 13(15), 2315; https://doi.org/10.3390/foods13152315 - 23 Jul 2024
Cited by 2 | Viewed by 1173
Abstract
The use of native and malted triticale (MT) flour in dry pasta has been limited despite the potential of triticale in cereal-based food production. In this study, triticale-based dry spaghetti with increasing levels of substitution (0, 25, 50, and 75 g/100 g w [...] Read more.
The use of native and malted triticale (MT) flour in dry pasta has been limited despite the potential of triticale in cereal-based food production. In this study, triticale-based dry spaghetti with increasing levels of substitution (0, 25, 50, and 75 g/100 g w/w) of MT flour were formulated and analyzed. Samples were analyzed for technological and nutritional traits, including the in vitro starch and protein digestions. The gradual substitution of native triticale flour with MT increased (p < 0.05) the total dietary fiber content, whereas total starch decreased (p < 0.05). Adding MT flour increased the cooking loss and the stickiness of cooked pasta (p < 0.05). Using MT flour modulated the in vitro starch digestion, lowering the slowly digestible and resistant starch contents. The in vitro protein digestibility was positively affected using MT at the highest substitution level. Overall, MT could be used to formulate dry pasta products being the substitution to native triticale up to 50 g/100 g, a good compromise between nutritional quality and technological characteristics. Full article
Show Figures

Graphical abstract

11 pages, 1657 KiB  
Article
Pasta Drying Defects as a Novel Ingredient for Hard Dough Biscuits: Effect of Drying Temperature and Granulation on Its Functionality
by Jafar Mohammadzadeh Milani, Saeed Moammaei, Sepideh Haghighat Kharazi and Maryam Mohammadi Berenjestanaki
Foods 2024, 13(10), 1487; https://doi.org/10.3390/foods13101487 - 11 May 2024
Cited by 4 | Viewed by 1931
Abstract
Various drying temperatures impact the texture of pasta and cause different drying defects. These by-products could reflect techno-functional characteristics which are suitable for cereal products. This research addresses the influence of low (LT) and high (HT) drying pasta defects with two granulations on [...] Read more.
Various drying temperatures impact the texture of pasta and cause different drying defects. These by-products could reflect techno-functional characteristics which are suitable for cereal products. This research addresses the influence of low (LT) and high (HT) drying pasta defects with two granulations on the theoretical and functional characteristics of hard dough biscuits. By shifting from a LT to HT drying temperature, a higher onset and peak temperature was found due to the higher mobility of starch molecules with increasing crystalline stability. The lowest transition enthalpy of biscuit formulation was also observed for higher incorporation of fine HT pasta regrinds. The algebraic model of dough with consistography determined the poor-extensible gluten and a high resistance with a greater value of P/L and P indices for LT regrinds. Scanning electron microscopy revealed a heavy and dense texture with immersed starch granules for additional fine regrinds while coarse samples caused swell granules with greater diameter. Moreover, fine HT regrinds reflected the lowest L* value for biscuit due to heat gradient tension with the hard milling process which leads to protein denaturation with decreasing nitrogenous. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

22 pages, 1971 KiB  
Review
Innovative Methods of Encapsulation and Enrichment of Cereal-Based Pasta Products with Biofunctional Compounds
by Weronika Bińkowska, Arkadiusz Szpicer, Iwona Wojtasik-Kalinowska and Andrzej Półtorak
Appl. Sci. 2024, 14(4), 1442; https://doi.org/10.3390/app14041442 - 9 Feb 2024
Cited by 9 | Viewed by 2528
Abstract
Nowadays, cognizant consumers expect products that, in addition to fulfilling a nutritional role, exhibit health-promoting properties and contribute to overall well-being. They expect an increase in the nutritional value of the staple foods that they often consume, such as pasta, through the incorporation [...] Read more.
Nowadays, cognizant consumers expect products that, in addition to fulfilling a nutritional role, exhibit health-promoting properties and contribute to overall well-being. They expect an increase in the nutritional value of the staple foods that they often consume, such as pasta, through the incorporation of bioactive compounds. Due to their susceptibility to photo- and thermolability, it is necessary to protect biocompounds against external factors. A modern approach to protecting bioactive compounds is microencapsulation. The aim of this article was to present various microencapsulation methods (including spray-drying, freeze-drying, liposomes, and others) and a review of research on the use of microencapsulated bioactive compounds in pasta. The discussed literature indicates that it is possible to use microencapsulated bioactive compounds, such as fatty acids or phenolic compounds, in this product. However, further research is necessary to develop the possibility of reducing the costs of such a procedure so that the benefits for consumers are greater than the disadvantages, which are an increase in food prices. There is also little research on the use of microencapsulated probiotics, vitamins, and minerals in pasta, which also represents an opportunity for development in this aspect. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

Back to TopTop