The Addition of Tomato and Spinach Powder to Semolina Pasta: A Study of the Impact of the Production Process and Cooking on Phenolic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Cooking of Pasta
2.3. Extraction of Free and Bound Phenolic Compounds
2.4. Determination of Free Phenolic Compounds with HPLC-ESI-QqQ-MS
2.5. Statistical Analysis
3. Results and Discussion
The Individual Free and Bound Phenolic Compound Contents in Raw Materials and Uncooked and Cooked Pasta Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed]
- Liyana-Pathirana, C.; Shahidi, F. Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chem. 2007, 101, 1151–1157. [Google Scholar] [CrossRef]
- Zhou, K.; Su, L.; Yu, L. Phytochemicals and antioxidant properties in wheat bran. J. Agric. Food Chem. 2004, 52, 6108–6114. [Google Scholar] [CrossRef]
- Dykes, L.; Rooney, L.W. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 2007, 52, 105–111. [Google Scholar] [CrossRef]
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479–3485. [Google Scholar] [CrossRef]
- Piironen, V.; Lampi, A.M.; Ekholm, P.; Salmenkallio-Marttila, M.; Liukkonen, K.H. Micronutrients and Phytochemicals in Wheat Grain. In Wheat: Chemistry and Technology, 4th ed.; Khan, K., Shewry, P.R., Eds.; Cereal & Grains Association: Northwood Circle, MN, USA, 2009; pp. 179–222. [Google Scholar]
- Giuberti, G.; Rocchetti, G.; Lucini, L. Interactions between phenolic compounds, amylolytic enzymes and starch: An updated overview. Curr. Opin. Food Sci. 2020, 31, 102–113. [Google Scholar] [CrossRef]
- Cirkovic Velickovic, T.D.; Stanic-Vucinic, D.J. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Compr. Rev. Food Sci. Food Saf. 2018, 17, 82–103. [Google Scholar] [CrossRef]
- Baic, S. The way to go…. In The Food Fact Sheet by the British Dietetic Association; The British Dietetic Association: Birmingham, UK, 2015; pp. 1–2. [Google Scholar]
- Pinela, J.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Bioactive Compounds of Tomatoes as Health Promoters. In Natural Bioactive Compounds from Fruits and Vegetables as Health Promoters Part II; Rodrigues da Silva, L., Silva, B.M., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2016; pp. 48–91. [Google Scholar]
- Friedman, M. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food Chem. 2013, 61, 9534–9550. [Google Scholar] [CrossRef] [PubMed]
- Maiani, G.; Periago Castón, M.J.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, 194–218. [Google Scholar] [CrossRef]
- Di Mascio, P.; Kaiser, S.; Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 1989, 274, 532–538. [Google Scholar] [CrossRef]
- Martinez-Valverde, I.; Periago, M.J.; Provan, G.; Chesson, A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Capanoglu, E.; Beekwilder, J.; Boyacioglu, D.; Hall, R.; De Vos, R. Changes in antioxidant and metabolite profiles during production of tomato paste. J. Agric. Food Chem. 2008, 56, 964–973. [Google Scholar] [CrossRef]
- Gahler, S.; Otto, K.; Bohm, V. Alterations of vitamin C, total phenolics and antioxidant capacity as affected by processing tomatoes to different products. J. Agric. Food Chem. 2003, 51, 7962–7968. [Google Scholar] [CrossRef]
- Koh, E.; Charoenprasert, S.; Mitchell, A.E. Effects of industrial tomato paste processing on ascorbic acid, flavonoids and carotenoids and their stability over one-year storage. J. Sci. Food Agric. 2012, 92, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.W.; Wong, T.Y.; Kreis, A.J.; Simpson, J.A.; Guymer, R.H. Dietary antioxidants and primary prevention of age related macular degeneration: Systematic review and meta-analysis. BMJ 2007, 335, 755. [Google Scholar] [CrossRef] [PubMed]
- Bergman, M.; Varshavsky, L.; Gottilieb, H.E.; Grossman, S. The antioxidant activity of aqueous spinach extract: Chemical identification of active fractions. Phytochemistry 2001, 58, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.R.; Pandjaitan, N.; Morelock, T.; Gil, M.I. Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J. Agric. Food Chem. 2002, 50, 5891–5896. [Google Scholar] [CrossRef]
- Gil, M.I.; Ferreres, F.; Tomas-Barberan, F.A. Effect of postharvest storage and processing on the antioxidant constituents (flavonoids and vitamin C) of fresh-cut spinach. J. Agric. Food Chem. 1999, 47, 2213–2217. [Google Scholar] [CrossRef] [PubMed]
- Kidmose, U.; Knuthsen, P.; Edelenbos, M.; Justesen, U.; Hegelund, E. Carotenoids and flavonoids in organically grown spinach (Spinacia oleracea L.) genotypes after deep frozen storage. J. Sci. Food Agric. 2001, 81, 918–923. [Google Scholar] [CrossRef]
- Mehmood, A.; Zeb, A. Effects of different cooking techniques on the carotenoids composition, phenolic contents, and antioxidant activity of spinach leaves. J. Food Meas. Charact. 2023, 17, 4760–4774. [Google Scholar] [CrossRef]
- AACC. Approved Methods of the American Association of Cereal Chemists, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Verardo, V.; Arráez-Román, D.; Segura-Carretero, A.; Marconi, E.; Fernández-Gutiérrez, A.; Caboni, M.F. Determination of free and bound phenolic compounds in buckwheat spaghetti by RP-HPLC-ESI-TOF-MS: Effect of thermal processing from farm to fork. J. Agric. Food Chem. 2011, 59, 7700–7707. [Google Scholar] [CrossRef] [PubMed]
- Borgonovi, S.M.; Chiarello, E.; Pasini, F.; Picone, G.; Marzocchi, S.; Capozzi, F.; Bordoni, A.; Barbiroli, A.; Marti, A.; Iametti, S.; et al. Effect of Sprouting on Biomolecular and Antioxidant Features of Common Buckwheat (Fagopyrum esculentum). Foods 2023, 12, 2047. [Google Scholar] [CrossRef]
- Fares, C.; Platani, C.; Baiano, A.; Menga, V. Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chem. 2010, 119, 1023–1029. [Google Scholar] [CrossRef]
- Oriente, M.; Díaz-de-Cerio, E.; Verardo, V.; Messia, M.C.; Gómez-Caravaca, A.M.; Marconi, E. Assessment of phytochemical compounds in functional couscous: Determination of free and bound phenols and alkylresorcinols. Food Res. Int. 2020, 130, 108970. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Oniszczuk, A.; Kasprzak, K.; Olech, M.; Mitrus, M.; Oniszczuk, T. Chemical composition and selected quality characteristics of new types of precooked wheat and spelt pasta products. Food Chem. 2020, 309, 125673. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, H.; Kozlowska, H.; Lewczuk, B. Bioactive compounds in the cereal grains before and after hydrothermal processing. Innov. Food Sci. Emerg. Technol. 2001, 2, 159–169. [Google Scholar] [CrossRef]
- Laddomada, B.; Caretto, S.; Mita, G. Wheat bran phenolic acids: Bioavailability and stability in whole wheat-based foods. Molecules 2015, 20, 15666–15685. [Google Scholar] [CrossRef] [PubMed]
- Dinelli, G.; Segura-Carretero, A.; Di Silvestro, R.; Marotti, I.; Arráez-Román, D.; Benedettelli, S.; Ghiselli, L.; Fernadez-Gutierrez, A. Profiles of phenolic compounds in modern and old common wheat varieties determined by liquid chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A 2011, 1218, 7670–7681. [Google Scholar] [CrossRef] [PubMed]
- Hirawan, R.; Ser, W.Y.; Arntfield, S.D.; Beta, T. Antioxidant properties of commercial, regular- and whole-wheat spaghetti. Food Chem. 2010, 119, 258–264. [Google Scholar] [CrossRef]
- Baiano, A.; Terracone, C.; Gambacorta, G.; La Notte, E. Evaluation of isoflavone content and antioxidant activity of soy-wheat pasta. Int. J. Food Sci. Technol. 2009, 44, 1304–1313. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Jáuregui, O.; Medina-Remón, A.; Lamuela-Raventós, R.M. Evaluation of a method to characterize the phenolic profile of organic and conventional tomatoes. J. Agric. Food Chem. 2012, 60, 3373–3380. [Google Scholar] [CrossRef]
- Rizzo, V.; Clifford, M.N.; Brown, J.E.; Siracusa, L.; Muratore, G. Effects of processing on the polyphenol and phenolic acid content and antioxidant capacity of semi-dried cherry tomatoes (Lycopersicon esculentum M.). J. Sci. Food Agric. 2016, 96, 2040–2046. [Google Scholar] [CrossRef] [PubMed]
- Fares, C.; Menga, V. Effects of toasting on the carbohydrate profile and antioxidant properties of chickpea (Cicer arietinum L.) flour added to durum wheat pasta. Food Chem. 2012, 131, 1140–1148. [Google Scholar] [CrossRef]
- Khan, I.; Yousif, A.; Johnson, S.K.; Gamlath, S. Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Res. Int. 2013, 54, 578–586. [Google Scholar] [CrossRef]
- Carcea, M.; Narducci, V.; Turfani, V.; Giannini, V. Polyphenols in raw and cooked cereals/pseudocereals/legume pasta and couscous. Foods 2017, 6, 80. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Katsuda, M.; Oda, Y.; Terao, J.; Kanazawa, K.; Oshima, S.; Iakuma, T.; Ishiguro, Y.; Takamura, H.; Matoba, T. Influence of polyphenol and ascorbate oxidases during cooking process on the radical scavenging activity of vegetables. Food Sci. Technol. Res. 2003, 9, 79–83. [Google Scholar] [CrossRef]
- Bergquist, S.A.M.; Gertsson, U.E.; Knuthsen, P.; Olsson, M.E. Flavonoids in baby spinach (Spinacia oleracea L.): Changes during plant growth and storage. J. Agric. Food Chem. 2005, 53, 9459–9464. [Google Scholar] [CrossRef]
- Bottino, A.; Degl’Innocenti, E.; Guidi, L.; Graziani, G.; Fogliano, V. Bioactive compounds during storage of fresh-cut spinach: The role of endogenous ascorbic acid in the improvement of product quality. J. Agric. Food Chem. 2009, 57, 2925–2931. [Google Scholar] [CrossRef] [PubMed]
- Bunea, A.; Andjelkovic, M.; Socaciu, C.; Bobis, O.; Neacsu, M.; Verhé, R.; Van Camp, J. Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem. 2008, 108, 649–656. [Google Scholar] [CrossRef]
- Mattila, P.; Hellstrom, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Comp. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J. Food Process. Preserv. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Q.; Liu, J.; Zhao, C.; Xue, F.; Zhao, Y. Decomposition of five phenolic compounds in high temperature water. J. Braz. Chem. Soc. 2014, 25, 2102–2107. [Google Scholar] [CrossRef]
Compounds | [M − H]− | Fragment Ions (m/z) | Quantification Transition |
---|---|---|---|
Phenolic acids | |||
Caffeic acid-O-hexoside 1 | 341 | 179-135 | 341→179 |
Caffeic acid-O-hexoside 2 | 341 | 179-135 | 341→179 |
Caffeic acid-O-hexoside 3 | 341 | 179 | 341→179 |
Neochlorogenic acid | 353 | 191-179-135 | 353→191 |
Coumaric acid-O-hexoside | 325 | 163-119 | 325→163 |
Cryptochlorogenic acid | 353 | 191-173-135 | 353→191 |
Vanillic acid | 167 | 108 | 167→108 |
Caffeic acid | 179 | 135-107 | 179→135 |
Syringic acid | 197 | 123 | 197→123 |
p-Hydroxybenzoic acid | 137 | 93 | 137→93 |
4-Feruloylquinic acid | 367 | 173 | 367→173 |
Vanillin | 153 | 93 | 153→93 |
p-Coumaric acid | 163 | 119 | 163→119 |
Ferulic acid | 193 | 178-149-134 | 193→178 |
Ferulic acid isomer 1 | 193 | 178-149-134 | 193→178 |
Sinapic acid | 223 | 164 | 223→164 |
Diferulic acid | 385 | 341 | 385→341 |
Dicaffeoylquinic acid | 515 | 353-335-191-173 | 515→353 |
Tricaffeoylquinic acid 1 | 677 | 515-353-191 | 677→515 |
Tricaffeoylquinic acid 2 | 677 | 515-353-173 | 677→515 |
Diferulic acid isomer 1 | 385 | 341 | 385→341 |
Diferulic acid isomer 2 | 385 | 341 | 385→341 |
Flavones-C-glycoside | |||
Apigenin-6-C-arabinoside-8-C-hexoside isomer 1 | 563 | 473-443 | 563→473 |
Apigenin-6-C-arabinoside-8-C-hexoside isomer 2 | 563 | 443 | 563→443 |
Coumarins (lactone) | |||
Coumarin | 145 | 89-101 | 145→89 |
Flavones | |||
Naringenin-C-diglycoside | 595 | 475-385-355 | 595→475 |
Naringenin-O-hexoside | 433 | 271 | 433→271 |
Naringenin-C-hexoside | 433 | 343-313 | 433→343 |
Naringenin-7-O-glucoside (prunin) | 433 | 271-151 | 433→271 |
Naringenin | 271 | 151-119 | 271→151 |
3,4,5-Trihydroxy-3,7-dimethylflavone | 329 | 197 | 329→197 |
Flavonols | |||
Rutin-O-hexoside | 771 | 609-300 | 771→609 |
Spinacetin-3-glucosyl-(1-6)-[apiosyl-(1-2)]-glucoside | 801 | 655-345 | 801→655 |
Patuletin-3-glucosyl-(1-6)-[apyosyl(1-2)]-glucoside | 787 | 655-331 | 787→655 |
Rutin-O-pentoside | 741 | 609-300 | 741→609 |
Patuletin-diglucoside | 655 | 331 | 655→331 |
Rutin | 609 | 301-151 | 609→301 |
Patuletin-3-O-β-d-(2″-coumaroglucosyl)-(1-6)-[apiosyl-(1-2)]-glucoside | 933 | 603-495-333 | 933→603 |
Patuletin-3-O-β-d-(2″-feruloylglucosyl)-(1-6)-[apiosyl-(1-2)]-glucoside | 963 | 333 | 963→333 |
Spinacetin-3-O-β-d-glucopyranosyl-(1-6)-glucopyranoside | 669 | 507-345 | 669→507 |
Spinacetin-3-(2″-coumaroglucosyl)-(1-6)-[apiosyl-(1-2)]-glucoside | 947 | 347-309-177 | 947→347 |
Spinacetin-3-(2″-feruloylglucosyl)-(1-6)-glucoside | 847 | 509-347-309 | 847→509 |
Kaempferol-3-O-rutinoside | 593 | 285-255 | 593→285 |
Spinacetin-3-(2″-feruloylglucosyl)-(1-6)-[apiosyl-(1-2)]-glucoside | 977 | 669-345 | 977→669 |
Patuletin-3-O-β-d-(2″-p-coumaroglucosyl)-(1-6)-β-d-glucoside | 801 | 681-333-309 | 801→681 |
Patuletin-3-O-β-d-(2″-feruloylglucosyl)-(1-6)-glucoside | 831 | 501-457-333 | 831→501 |
Patuletin derivative | 799 | 505-455-333 | 799→505 |
Patuletin derivative | 829 | 691-493-333 | 829→691 |
Spinacetin glucuronide | 521 | 345-330 | 521→345 |
Jaceidin glucuronide | 535 | 359 | 535→359 |
Quercetin | 301 | 151-121 | 301→151 |
5,3′,4′-Trihydroxy-3-methoxy-6:7-methoxylenedioxyflavone-4′-glucoronide | 519 | 343-328 | 519→343 |
5,4′-Dihydroxy-3-methoxy-6:7-methoxylenedioxyflavone-4′-glucoronide | 503 | 327-283 | 503→327 |
5,4′-Dihydroxy-3,3′-dimethoxy-6:7-methoxylenedioxyflavone-4′-glucoronide | 533 | 357-342 | 533→357 |
Compound | S | Uncooked P-S | Cooked P-S | |||
---|---|---|---|---|---|---|
FP | BP | FP | BP | FP | BP | |
Phenolic acids | ||||||
Vanillic acid | 0.6 ± 0.0 a | 1.0 ± 0.1 B | 0.8 ± 0.0 a | 1.8 ± 0.4 A | n.d. | 1.2 ± 0.1 AB |
p-Hydroxybenzoic acid | 7.7 ± 0.9 a | 0.5 ± 0.0 B | 7.8 ± 0.3 a | 0.2 ± 0.0 C | 7.5 ± 0.2 a | 0.9 ± 0.0 A |
4-Feruloylquinic acid | 1.1 ± 0.1 b | n.d. | 1.4 ± 0.1 a | n.d. | 1.5 ± 0.0 a | 0.8 ± 0.0 |
Vanillin | 0.1 ± 0.0 | 2.0 ± 0.2 | n.d. | n.d. | n.d. | n.d. |
p-coumaric acid | 0.2 ± 0.0 b | 1.4 ± 0.2 B | n.d. | 1.4 ± 0.1 B | 3.9 ± 0.1 a | 2.5 ± 0.1 A |
Ferulic acid | 2.2 ± 0.5 a | 71.0 ± 2.2 A | 1.3 ± 0.1 c | 71.4 ± 1.7 A | 1.6 ± 0.1 b | 50.2 ± 1.1 B |
Ferulic acid isomer 1 | n.d. | 22.4 ± 0.4 A | n.d. | 18.2 ± 0.5 B | n.d. | n.d. |
Diferulic acid | 0.3 ± 0.0 b | 0.8 ± 0.0 A | 0.8 ± 0.0 a | 0.1 ± 0.0 C | 0.3 ± 0.0 b | 0.3 ± 0.0 B |
Diferulic acid isomer 1 | n.d. | 0.4 ± 0.0 B | n.d. | 0.9 ± 0.0 A | n.d. | n.d. |
Diferulic acid isomer 2 | n.d. | 0.1 ± 0.0 | n.d. | n.d. | n.d. | n.d. |
Flavones-C-glycoside | ||||||
Apigenin-6-C-arabinoside-8-C-hexoside isomer 1 | 0.7 ± 0.0 a | n.d. | 0.5 ± 0.0 b | n.d. | 0.5 ± 0.0 b | n.d. |
Apigenin-6-C-arabinoside-8-C-hexoside isomer 2 | 0.7 ± 0.0 a | n.d. | 0.6 ± 0.0 b | n.d. | 0.1 ± 0.0 c | n.d. |
Total (single fraction) | 13.6 ± 1.5 a | 99.6 ± 3.1 A | 13.2 ± 0.5 a | 94.0 ± 2.7 A | 15.4 ± 0.4 a | 55.9 ± 1.3 B |
Total (FP + BP) | 113.2 ± 4.6 a | 107.2 ± 3.2 a | 71.3 ± 1.7 b |
Compound | WWS | Uncooked P-WWS | Cooked P-WWS | |||
---|---|---|---|---|---|---|
FP | BP | FP | BP | FP | BP | |
Phenolic acids | ||||||
Vanillic acid | 0.2 ± 0.0 | 0.6 ± 0.0 A | n.d. | 0.3 ± 0.0 B | n.d. | 0.2 ± 0.0 C |
Syringic acid | 2.2 ± 0.4 a | 4.4 ± 0.5 A | 0.7 ± 0.0 b | 3.6 ± 0.2 B | 0.4 ± 0.0 c | 2.7 ± 0.2 C |
p-Hydroxybenzoic acid | n.d. | 3.4 ± 0.3 A | n.d. | 1.2 ± 0.3 B | n.d. | 0.3 ± 0.0 C |
4-Feruloylquinic acid | 1.2 ± 0.1 a | n.d. | 1.1 ± 0.1 a | n.d. | 0.9 ± 0.0 b | n.d. |
Vanillin | n.d. | 0.5 ± 0.0 B | n.d. | 0.8 ± 0.1 A | n.d. | 0.3 ± 0.0 C |
p-coumaric acid | 0.7 ± 0.1 a | 2.2 ± 0.1 A | 0.8 ± 0.1 a | 0.6 ± 0.0 B | 0.8 ± 0.0 a | 0.7 ± 0.0 B |
Ferulic acid | 0.9 ± 0.1 a | 74.0 ± 3.1 A | 0.6 ± 0.0 b | 28.1 ± 1.6 B | 0.5 ± 0.0 c | 14.2 ± 0.8 C |
Ferulic acid isomer 1 | n.d. | 34.1 ± 2.0 A | n.d. | 32.3 ± 1.9 A | n.d. | 22.5 ± 1.4 B |
Sinapic acid | n.d. | 2.0 ± 0.2 B | n.d. | 3.3 ± 0.4 A | n.d. | 3.5 ± 0.1 A |
Diferulic acid | 0.6 ± 0.0 b | n.d. | 0.6 ± 0.0 b | n.d. | 0.8 ± 0.1 a | n.d. |
Coumarins (lactone) | ||||||
Coumarin | 0.3 ± 0.0 c | 0.5 ± 0.0 B | 0.8 ± 0.1 a | 0.8 ± 0.0 A | 0.5 ± 0.0 b | 0.3 ± 0.0 C |
Flavones-C-glycoside | ||||||
Apigenin-6-C-arabinoside-8-C-hexoside isomer 1 | 1.6 ± 0.1 a | n.d. | 1.2 ± 0.1 b | n.d. | 0.9 ± 0.0 c | n.d. |
Apigenin-6-C-arabinoside-8-C-hexoside isomer 2 | 1.1 ± 0.0 a | n.d. | 1.1 ± 0.1 a | n.d. | 0.7 ± 0.0 b | n.d. |
Flavones | ||||||
3,4,5-trihydroxy-3,7-dimethylflavone | 9.6 ± 0.8 a | 19.1 ± 1.1 A | 6.4 ± 0.5 b | 13.6 ± 0.9 B | 7.5 ± 0.4 b | 9.1 ± 0.7 C |
Total (single fraction) | 18.4 ± 1.6 a | 140.8 ± 7.3 A | 13.3 ± 1.0 b | 84.6 ± 5.4 B | 13.0 ± 0.5 b | 53.8 ± 3.2 C |
Total (FP + BP) | 159.2 ± 8.9 a | 97.9 ± 6.9 b | 66.8 ± 3.7 c |
Compound | S+TP | Uncooked P-ST | Cooked P-ST | |||
---|---|---|---|---|---|---|
FP | BP | FP | BP | FP | BP | |
Phenolic acids | ||||||
Caffeic acid-O-hexoside 1 | 21.7 ± 0.2 a | 6.6 ± 0.2 A | 13.3 ± 0.3 b | 3.3 ± 0.3 B | 4.3 ± 0.6 c | n.d |
Caffeic acid-O-hexoside 2 | 12.5 ± 0.6 a | 9.3 ± 0.6 A | 10.0 ± 1.0 b | 3.5 ± 0.4 B | 6.4 ± 0.7 c | 2.2 ± 0.2 C |
Caffeic acid-O-hexoside 3 | 1.2 ± 0.1 | n.d | n.d | n.d | n.d | n.d |
Neochlorogenic acid | 12.9 ± 0.8 a | n.d | 8.9 ± 0.8 b | n.d | 6.2 ± 0.5 c | n.d |
Coumaric acid-O-hexoside | 0.7 ± 0.0 a | 1.6 ± 0.1 | 0.8 ± 0.1 a | n.d | n.d | n.d |
Cryptochlorogenic acid | 12.0 ± 1.5 a | n.d | 7.4 ± 0.5 b | n.d | 3.7 ± 0.5 c | n.d |
Vanillic acid | 31.2 ± 2.8 | 4.8 ± 0.7 A | n.d | 3.6 ± 0.9 A | n.d | n.d |
Caffeic acid | 4.5 ± 0.8 a | 76.0 ± 1.5 A | 1.5 ± 0.2 b | n.d | 0.9 ± 0.0 c | n.d |
p-Hydroxybenzoic acid | 2.9 ± 0.8 a | 4.6 ± 0.8 A | 0.9 ± 0.0 b | 2.7 ± 0.4 B | n.d | n.d |
4-Feruloylquinic acid | n.d | 18.7 ± 0.5 A | n.d | 9.1 ± 0.4 B | n.d | 20.4 ± 2.4 A |
Vanillin | 27.2 ± 2.7 | 4.9 ± 0.7 | n.d | n.d | n.d | n.d |
p-coumaric acid | 1.1 ± 0.2 a | 15.0 ± 0.4 A | 0.5 ± 0.0 b | 7.8 ± 0.8 B | n.d | 4.0 ± 0.4 C |
Ferulic acid | 90.6 ± 9.8 a | 73.8 ± 2.8 A | 51.4 ± 4.1 b | 46.7 ± 5.2 B | 21.2 ± 2.4 c | 29.0 ± 1.5 C |
Ferulic acid isomer 1 | n.d | 62.6 ± 4.6 A | n.d | 57.8 ± 3.9 B | n.d | 37.3 ± 1.9 C |
Diferulic acid | 30.4 ± 2.6 a | 27.6 ± 0.9 B | 11.6 ± 0.7 b | 25.4 ± 1.5 B | 9.4 ± 0.9 c | 36.2 ± 3.1 A |
Dicaffeoylquinic acid | 67.2 ± 9.7 a | n.d | 35.0 ± 2.8 b | n.d | 13.1 ± 0.7 c | n.d |
Tricaffeoylquinic acid 1 | 11.1 ± 1.5 a | n.d | 8.0 ± 0.9 b | n.d | 0.9 ± 0.1 c | n.d |
Tricaffeoylquinic acid 2 | 29.2 ± 2.6 a | n.d | 14.9 ± 1.6 b | n.d | 0.9 ± 0.2 c | n.d |
Diferulic acid isomer 1 | 5.9 ± 0.7 | n.d | n.d | n.d | n.d | n.d |
Diferulic acid isomer 2 | n.d | 20.7 ± 1.4 B | n.d | 15.2 ± 0.9 C | n.d | 31.5 ± 3.0 A |
Flavones | ||||||
Naringenin-C-diglycoside | 14.0 ± 0.5 | n.d | n.d | n.d | n.d | n.d |
Naringenin-O-hexoside | 17.5 ± 1.2 a | n.d | 3.6 ± 0.2 b | n.d | n.d | n.d |
Naringenin-C-hexoside | 2.3 ± 0.8 a | n.d | 0.5 ± 0.0 b | n.d | n.d | n.d |
Naringenin-7-O-glucoside (prunin) | 9.7 ± 0.4 a | 1.1 ± 0.0 | 0.8 ± 0.0 b | n.d | n.d | n.d |
Naringenin | 31.8 ± 0.8 a | n.d | 17.6 ± 1.4 b | n.d | n.d | n.d |
Flavones-C-glycoside | ||||||
Apigenin-6-C-arabinoside-8-C-hexoside isomer 1 | 0.7 ± 0.0 | n.d | n.d | n.d | n.d | n.d |
Apigenin-6-C-arabinoside-8-C-hexoside isomer 2 | 0.7 ± 0.0 | n.d | n.d | n.d | n.d | n.d |
Flavonols | ||||||
Rutin-O-hexoside | 13.2 ± 1.8 a | n.d | 8.3 ± 0.9 b | n.d | 4.2 ± 0.8 c | n.d |
Rutin-O-pentoside | 13.4 ± 0.7 a | n.d | 1.1 ± 0.3 b | n.d | n.d | n.d |
Rutin | 56.2 ± 3.6 a | 4.3 ± 0.6 | 18.7 ± 3.6 b | n.d | 7.4 ± 0.6 c | n.d |
Kaempferol-3-O-rutinoside | 6.4 ± 0.4 | 0.2 ± 0.0 | n.d | n.d | n.d | n.d |
Quercetin | 9.3 ± 0.1 a | 3.8 ± 0.4 A | 5.9 ± 0.8 b | 2.2 ± 0.4 B | 1.7 ± 0.4 c | 1.3 ± 0.2 C |
Total (single fraction) | 537.5 ± 47.7 a | 335.6 ± 16.2 A | 220.7 ± 20.2 b | 177.3 ± 15.1 B | 80.3 ± 8.4 c | 161.9 ± 13.1 B |
Total FP + BP | 873.1 ± 64.0 a | 398.0 ± 35.3 b | 242.2 ± 21.5 b |
Compound | S + SP | Uncooked P-SS | Cooked P-SS | |||
---|---|---|---|---|---|---|
FP | BP | FP | BP | FP | BP | |
Phenolic acids | ||||||
Vanillic acid | 3.3 ± 0.5 b | 7.2 ± 0.9 A | 0.7 ± 0.0 a | 5.6 ± 0.1 B | n.d | n.d |
p-Hydroxybenzoic acid | 9.2 ± 0.5 | 4.5 ± 0.4 A | n.d | 1.4 ± 0.1 B | n.d | n.d |
4-Feruloylquinic acid | 1.3 ± 0.2 | n.d | n.d | n.d | n.d | n.d |
Vanillin | 0.8 ± 0.0 c | 8.6 ± 0.9 A | 0.6 ± 0.0 a | 1.6 ± 0.2 B | 0.1 ± 0.0 b | n.d |
p-coumaric acid | 0.2 ± 0.0 c | 79.9 ± 5.4 A | n.d | 17.6 ± 1.0 B | n.d | 6.6 ± 0.9 C |
Ferulic acid | 2.6 ± 0.1 a | 173.4 ± 16.8 A | 1.6 ± 0.1 b | 82.6 ± 5.6 B | 0.5 ± 0.1 c | 86.5 ± 7.6 B |
Diferulic acid | 1.4 ± 0.2 c | 39.5 ± 2.9 A | 0.8 ± 0.1 b | 31.3 ± 1.3 B | 0.4 ± 0.4 a | 31.7 ± 2.8 B |
Flavones-C-glycoside | ||||||
Apigenin-6-C-arabinoside-8-C-hexoside isomer 1 | 0.7 ± 0.1 a | n.d | 0.4 ± 0.0 b | n.d | 0.8 ± 0.0 a | n.d |
Apigenin-6-C-arabinoside-8-C-hexoside isomer 2 | 0.7 ± 0.0 | n.d | n.d | n.d | n.d | n.d |
Flavonols | ||||||
Spinacetin-3-glucosyl-(1-6)-[apiosyl-(1-2)]-glucoside | 36.1 ± 5.5 a | n.d | n.d | n.d | n.d | n.d |
Patuletin-3-glucosyl-(1-6)-[apyosyl(1-2)]-glucoside | 85.1 ± 11.4 a | n.d | 46.6 ± 2.7 b | n.d | 1.8 ± 0.2 c | n.d |
Patuletin-diglucoside | 53.8 ± 9.9 a | n.d | 18.6 ± 1.0 b | n.d | 0.7 ± 0.1 c | n.d |
Patuletin-3-O-β-d-(2″-coumaroglucosyl)-(1-6)-[apiosyl-(1-2)]-glucoside | 6.2 ± 0.2 | n.d | n.d | n.d | n.d | n.d |
Patuletin-3-O-β-d-(2″-feruloylglucosyl)-(1-6)-[apiosyl-(1-2)]-glucoside | 15.9 ± 1.8 a | n.d | n.d | n.d | n.d | n.d |
Spinacetin-3-O-β-d-glucopyranosyl(1-6)-glucopyranoside | 16.7 ± 1.6 a | n.d | 11.3 ± 0.9 b | n.d | 0.7 ± 0.0 b | n.d |
Spinacetin-3-(2″-coumaroglucosyl)-(1-6)-[apiosyl-(1-2)]-glucoside | 2.0 ± 0.1 | n.d | n.d | n.d | n.d | n.d |
Spinacetin-3-(2″-feruloylglucosyl)-(1-6)-glucoside | 9.1 ± 0.9 | n.d | n.d | n.d | n.d | n.d |
Spinacetin-3-(2″-feruloylglucosyl)-(1-6)-[apiosyl-(1-2)]-glucoside | 7.6 ± 0.9 a | n.d | n.d | n.d | n.d | n.d |
Patuletin-3-O-β-d-(2″-p-coumaroglucosyl)-(1-6)-β-d-glucoside | 15.1 ± 0.7 | n.d | n.d | n.d | n.d | n.d |
Patuletin-3-O-β-d-(2″-feruloylglucosyl)-(1-6)-glucoside | 10.6 ± 0.8 | n.d | n.d | n.d | n.d | n.d |
Patuletin derivative | 51.9 ± 5.2 a | n.d | 59.0 ± 3.1 a | n.d | 11.9 ± 0.8 b | n.d |
Patuletin derivative | 22.4 ± 2.6 | n.d | n.d | n.d | n.d | n.d |
Spinacetin glucoronide | 61.6 ± 10.9 a | 2.2 ± 0.4 A | 10.9 ± 0.4 b | 2.3 ± 0.1 A | 0.9 ± 0.0 c | n.d |
Jaceidin glucoronide | 27.3 ± 2.1 a | 1.0 ± 0.2 | 5.5 ± 0.2 b | n.d | 0.6 ± 0.1 c | n.d |
5,3′,4′-Trihydroxy-3-methoxy-6:7-methoxylenedioxyflavone-4′-glucoronide | 25.8 ± 1.2 a | 3.5 ± 0.6 A | 3.5 ± 0.1 b | 2.5 ± 0.2 B | 0.6 ± 0.0 c | n.d |
5,4′-Dihydroxy-3-methoxy-6:7-methoxylenedioxyflavone-4′-glucoronide | 11.8 ± 1.0 a | 0.9 ± 0.0 | 6.3 ± 0.8 b | n.d | 0.6 ± 0.1 c | n.d |
5,4′-Dihydroxy-3,3′-dimethoxy-6:7-methoxylenedioxyflavone-4′-glucoronide | 17.7 ± 1.6 a | 1.9 ± 0.4 A | 5.3 ± 0.6 b | 1.1 ± 0.3 B | 0.9 ± 0.1 c | n.d |
Total (single fraction) | 496.9 ± 60.0 a | 322.6 ± 28.9 A | 171.1 ± 10.0 b | 146.0 ± 8.9 B | 20.5 ± 1.9 c | 124.8 ± 11.3 B |
Total (FP + BP) | 819.6 ± 88.9 a | 317.1 ± 18.9 b | 145.3 ± 13.2 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzocchi, S.; Pasini, F.; Santi, R.; Caboni, M.F. The Addition of Tomato and Spinach Powder to Semolina Pasta: A Study of the Impact of the Production Process and Cooking on Phenolic Compounds. Appl. Sci. 2025, 15, 634. https://doi.org/10.3390/app15020634
Marzocchi S, Pasini F, Santi R, Caboni MF. The Addition of Tomato and Spinach Powder to Semolina Pasta: A Study of the Impact of the Production Process and Cooking on Phenolic Compounds. Applied Sciences. 2025; 15(2):634. https://doi.org/10.3390/app15020634
Chicago/Turabian StyleMarzocchi, Silvia, Federica Pasini, Renzo Santi, and Maria Fiorenza Caboni. 2025. "The Addition of Tomato and Spinach Powder to Semolina Pasta: A Study of the Impact of the Production Process and Cooking on Phenolic Compounds" Applied Sciences 15, no. 2: 634. https://doi.org/10.3390/app15020634
APA StyleMarzocchi, S., Pasini, F., Santi, R., & Caboni, M. F. (2025). The Addition of Tomato and Spinach Powder to Semolina Pasta: A Study of the Impact of the Production Process and Cooking on Phenolic Compounds. Applied Sciences, 15(2), 634. https://doi.org/10.3390/app15020634