Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = drive systems and power electronics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5656 KiB  
Article
A Quantitative Analysis Framework for Investigating the Impact of Variable Interactions on the Dynamic Characteristics of Complex Nonlinear Systems
by Yiming Tang, Chongru Liu and Chenbo Su
Electronics 2025, 14(14), 2902; https://doi.org/10.3390/electronics14142902 - 20 Jul 2025
Viewed by 144
Abstract
The proliferation of power electronics in renewable-integrated grids exacerbates the challenges of nonlinearity and multivariable coupling. While the modal series method (MSM) offers theoretical foundations, it fails to provide tools to systematically quantify dynamic interactions in these complex systems. This study proposes a [...] Read more.
The proliferation of power electronics in renewable-integrated grids exacerbates the challenges of nonlinearity and multivariable coupling. While the modal series method (MSM) offers theoretical foundations, it fails to provide tools to systematically quantify dynamic interactions in these complex systems. This study proposes a unified nonlinear modal analysis framework integrating second-order analytical solutions with novel nonlinear indices. Validated across diverse systems (DC microgrids and grid-connected PV), the framework yields significant findings: (1) second-order solutions outperform linearization in capturing critical oscillation/damping distortions under realistic disturbances, essential for fault analysis; (2) nonlinear effects induce modal dominance inversion and generate governing composite modes; (3) key interaction mechanisms are quantified, revealing distinct voltage regulation pathways in DC microgrids and multi-path dynamics driving DC voltage fluctuations. This approach provides a systematic foundation for dynamic characteristic assessment and directly informs control design for power electronics-dominated grids. Full article
Show Figures

Figure 1

12 pages, 1874 KiB  
Article
Influence of 50 Hz and 20 kHz Plasma Generator Frequency on Ammonia Decomposition for Hydrogen Recovery
by Michalina Perron, Mateusz Wiosna, Wojciech Gajewski, Krzysztof Krawczyk and Michał Młotek
Energies 2025, 18(14), 3841; https://doi.org/10.3390/en18143841 - 19 Jul 2025
Viewed by 175
Abstract
The development of alternative energy is crucial to realizing the goals of the Paris Agreement. Hydrogen is a key energy carrier, and ammonia is considered its practical storage medium due to its high H2 content and efficient storage and transportation. However, efficient [...] Read more.
The development of alternative energy is crucial to realizing the goals of the Paris Agreement. Hydrogen is a key energy carrier, and ammonia is considered its practical storage medium due to its high H2 content and efficient storage and transportation. However, efficient NH3 decomposition methods are needed to recover stored hydrogen. Plasma-assisted decomposition offers a potential solution, but high energy consumption, mainly due to inefficient power supply systems, remains a challenge. This study examines the impact of varying the driving frequency of a gliding discharge plasma system on ammonia decomposition, comparing low-frequency 50 Hz and high-frequency 20 kHz power supplies. Results show that high-frequency plasma enhances electron density and energy distribution, increasing the amount of vibrationally excited nitrogen molecules. This improves catalyst activation, leading to higher ammonia conversion and hydrogen production. Compared to the thyristor-powered system, the high-frequency system increased ammonia decomposition productivity by 30% and reduced energy consumption by 36% using a coprecipitated catalyst. These findings emphasize the importance of a plasma generator optimizing plasma-assisted ammonia decomposition and improving efficiency in hydrogen production. Full article
(This article belongs to the Special Issue Searching for Ways of Optimizing the Attainment and Use of Energy)
Show Figures

Figure 1

25 pages, 7875 KiB  
Article
A Comparative Study of Direct Power Control Strategies for STATCOM Using Three-Level and Five-Level Diode-Clamped Inverters
by Diyaa Mustaf Mohammed, Raaed Faleh Hassan, Naseer M. Yasin, Mohammed Alruwaili and Moustafa Ahmed Ibrahim
Energies 2025, 18(13), 3582; https://doi.org/10.3390/en18133582 - 7 Jul 2025
Viewed by 338
Abstract
For power electronic interfaces, Direct Power Control (DPC) has emerged as a leading control technique, especially in applications such as synchronous motors, induction motors, and other electric drives; renewable energy sources (such as photovoltaic inverters and wind turbines); and converters that are grid-connected, [...] Read more.
For power electronic interfaces, Direct Power Control (DPC) has emerged as a leading control technique, especially in applications such as synchronous motors, induction motors, and other electric drives; renewable energy sources (such as photovoltaic inverters and wind turbines); and converters that are grid-connected, such as Virtual Synchronous Generator (VSG) and Static Compensator (STATCOM) configurations. DPC accomplishes several significant goals by avoiding the inner current control loops and doing away with coordinating transformations. The application of STATCOM based on three- and five-level diode-clamped inverters is covered in this work. The study checks the abilities of DPC during power control adjustments during diverse grid operation scenarios while detailing how multilevel inverters affect system stability and power reliability. Proportional Integral (PI) controllers are used to control active and reactive power levels as part of the control approach. This study shows that combining DPC with Sinusoidal Pulse Width Modulation (SPWM) increases the system’s overall electromagnetic performance and control accuracy. The performance of STATCOM systems in power distribution and transient response under realistic operating conditions is assessed using simulation tools applied to three-level and five-level inverter topologies. In addition to providing improved voltage quality and accurate reactive power control, the five-level inverter structure surpasses other topologies by maintaining a total harmonic distortion (THD) below 5%, according to the main findings. The three-level inverter operates efficiently under typical grid conditions because of its straightforward design, which uses less processing power and computational complexity. Full article
Show Figures

Figure 1

23 pages, 11166 KiB  
Article
Small-Signal Input Impedance Modeling of PWM Induction Motor Drives and Interactive Stability Assessment with DC Link
by Dirui Yang, Zhewen Kan, Yuewu Wang, Wenlong Ren, Yebin Yang and Kun Xia
Machines 2025, 13(7), 580; https://doi.org/10.3390/machines13070580 - 4 Jul 2025
Viewed by 322
Abstract
DC link power supply systems that integrate power electronic converters are increasingly being adopted. In particular, emerging “source–load” systems, in which the DC link interfaces with converters, have attracted increasing research interest due to concerns about power quality and system stability. This paper [...] Read more.
DC link power supply systems that integrate power electronic converters are increasingly being adopted. In particular, emerging “source–load” systems, in which the DC link interfaces with converters, have attracted increasing research interest due to concerns about power quality and system stability. This paper addresses mid- and low-frequency oscillation issues in DC link voltage supplied induction motor drives (IMDs). It begins by constructing a multiple-input multiple-output (MIMO) state-space model of the induction motor. For the first time, the dq-axis control system is represented as an equivalent admittance model that forms two single-input single-output (SISO) loops. The PI controller and induction motor are integrated into the inverter’s input impedance model; Furthermore, the effectiveness and accuracy of the derived impedance model are experimentally validated under various operating conditions of the induction motor using a custom-built test platform. The experimental results offer a practical reference for system enhancement and stability evaluation. Full article
Show Figures

Figure 1

16 pages, 3101 KiB  
Article
Enhanced High-Resolution and Long-Range FMCW LiDAR with Directly Modulated Semiconductor Lasers
by Luís C. P. Pinto and Maria C. R. Medeiros
Sensors 2025, 25(13), 4131; https://doi.org/10.3390/s25134131 - 2 Jul 2025
Viewed by 493
Abstract
Light detection and ranging (LiDAR) sensors are essential for applications where high-resolution distance and velocity measurements are required. In particular, frequency-modulated continuous wave (FMCW) LiDAR, compared with other LiDAR implementations, provides superior receiver sensitivity, enhanced range resolution, and the capability to measure velocity. [...] Read more.
Light detection and ranging (LiDAR) sensors are essential for applications where high-resolution distance and velocity measurements are required. In particular, frequency-modulated continuous wave (FMCW) LiDAR, compared with other LiDAR implementations, provides superior receiver sensitivity, enhanced range resolution, and the capability to measure velocity. Integrating LiDARs into electronic and photonic semiconductor chips can lower their cost, size, and power consumption, making them affordable for cost-sensitive applications. Additionally, simple designs are required, such as FMCW signal generation by the direct modulation of the current of a semiconductor laser. However, semiconductor lasers are inherently nonlinear, and the driving waveform needs to be optimized to generate linear FMCW signals. In this paper, we employ pre-distortion techniques to compensate for chirp nonlinearity, achieving frequency nonlinearities of 0.0029% for the down-ramp and the up-ramp at 55 kHz. Experimental results demonstrate a highly accurate LiDAR system with a resolution of under 5 cm, operating over a 210-m range through single-mode fiber, which corresponds to approximately 308 m in free space, towards meeting the requirements for long-range autonomous driving. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

52 pages, 6455 KiB  
Review
Recent Advancements in Multilevel Inverters: Topologies, Modulation Techniques, and Emerging Applications
by Taha Abdulsalam Taha, Mohamed Shalaby, Noor Izzri Abdul Wahab, Hussein Ibzir Zaynal, Mohd Khair Hassan, Sulaiman Al-Sowayan and Mohamad A. Alawad
Symmetry 2025, 17(7), 1010; https://doi.org/10.3390/sym17071010 - 26 Jun 2025
Viewed by 473
Abstract
Multilevel inverters (MLIs) have become fundamental in contemporary power electronics, providing enhanced performance compared to conventional two-level inverters regarding their output voltage quality, efficiency, and scalability. This study comprehensively assesses multilevel inverter technologies, including their topologies, control systems, and various applications. The study [...] Read more.
Multilevel inverters (MLIs) have become fundamental in contemporary power electronics, providing enhanced performance compared to conventional two-level inverters regarding their output voltage quality, efficiency, and scalability. This study comprehensively assesses multilevel inverter technologies, including their topologies, control systems, and various applications. The study starts with a comprehensive examination of the core concepts of MLIs, subsequently embarking on a detailed evaluation of both conventional and innovative topologies, such as diode-clamped, flying capacitor, cascaded H-bridge, and modular multilevel converters. The study further examines the control systems used in MLIs, including Pulse Width Modulation (PWM), space vector modulation (SVM), and Model Predictive Control (MPC), emphasizing their benefits and drawbacks. The applications of MLIs in renewable energy systems, electric cars, industrial drives, and grid integration are comprehensively examined. The study closes by examining growing trends, difficulties, and future research paths, emphasizing the ability of MLIs to transform power conversion systems. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

40 pages, 5193 KiB  
Review
A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges
by Arash Yahyazadeh
Physchem 2025, 5(3), 25; https://doi.org/10.3390/physchem5030025 - 23 Jun 2025
Viewed by 521
Abstract
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid [...] Read more.
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid carbon, and ammonia. However, several solutions have been proposed to overcome various technical issues and to allow for stable operation in dry methane, without coking in the anode layer. To avoid coke formation thermodynamically, methane is typically reformed, contributing to an increased degradation rate through the addition of oxygen-containing gases into the fuel gas to increase the O/C ratio. The performance achieved by reforming catalytic materials, comprising active sites, supports, and electrochemical testing, significantly influences catalyst performance, showing relatively high open-circuit voltages and coking-resistance of the CH4 reforming catalysts. In the next step, the operating principles and thermodynamics of methane reforming are explored, including their traditional catalyst materials and their accompanying challenges. This work explores the components and functions of SOFCs, particularly focusing on anode materials such as perovskites, Ruddlesden–Popper oxides, and spinels, along with their structure–property relationships, including their ionic and electronic conductivity, thermal expansion coefficients, and acidity/basicity. Mechanistic and kinetic studies of common reforming processes, including steam reforming, partial oxidation, CO2 reforming, and the mixed steam and dry reforming of methane, are analyzed. Furthermore, this review examines catalyst deactivation mechanisms, specifically carbon and metal sulfide formation, and the performance of methane reforming and partial oxidation catalysts in SOFCs. Single-cell performance, including that of various perovskite and related oxides, activity/stability enhancement by infiltration, and the simulation and modeling of electrochemical performance, is discussed. This review also addresses research challenges in regards to methane reforming and partial oxidation within SOFCs, such as gas composition changes and large thermal gradients in stack systems. Finally, this review investigates the modeling of catalytic and non-catalytic processes using different dimension and segment simulations of steam methane reforming, presenting new engineering designs, material developments, and the latest knowledge to guide the development of and the driving force behind an oxygen concentration gradient through the external circuit to the cathode. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

29 pages, 8644 KiB  
Review
Recent Advances in Resistive Gas Sensors: Fundamentals, Material and Device Design, and Intelligent Applications
by Peiqingfeng Wang, Shusheng Xu, Xuerong Shi, Jiaqing Zhu, Haichao Xiong and Huimin Wen
Chemosensors 2025, 13(7), 224; https://doi.org/10.3390/chemosensors13070224 - 21 Jun 2025
Viewed by 679
Abstract
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing [...] Read more.
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing on their fundamental working mechanisms, sensing material design, device architecture optimization, and intelligent system integration. These sensors primarily operate based on changes in electrical resistance induced by interactions between gas molecules and sensing materials, including physical adsorption, charge transfer, and surface redox reactions. In terms of materials, metal oxide semiconductors, conductive polymers, carbon-based nanomaterials, and their composites have demonstrated enhanced sensitivity and selectivity through strategies such as doping, surface functionalization, and heterojunction engineering, while also enabling reduced operating temperatures. Device-level innovations—such as microheater integration, self-heated nanowires, and multi-sensor arrays—have further improved response speed and energy efficiency. Moreover, the incorporation of artificial intelligence (AI) and Internet of Things (IoT) technologies has significantly advanced signal processing, pattern recognition, and long-term operational stability. Machine learning (ML) algorithms have enabled intelligent design of novel sensing materials, optimized multi-gas identification, and enhanced data reliability in complex environments. These synergistic developments are driving resistive gas sensors toward low-power, highly integrated, and multifunctional platforms, particularly in emerging applications such as wearable electronics, breath diagnostics, and smart city infrastructure. This review concludes with a perspective on future research directions, emphasizing the importance of improving material stability, interference resistance, standardized fabrication, and intelligent system integration for large-scale practical deployment. Full article
Show Figures

Figure 1

17 pages, 3347 KiB  
Article
A 31–300 Hz Frequency Variator Inverter Using Space Vector Pulse Width Modulation Implemented in an 8-Bit Microcontroller
by Gustavo Cerda-Villafana, Adam Birchfield and Francisco Javier Moreno-Vazquez
Processes 2025, 13(6), 1912; https://doi.org/10.3390/pr13061912 - 17 Jun 2025
Viewed by 510
Abstract
With the advancement in power electronics technology, variable-frequency drives have been widely adopted for motor operation due to their inherent benefits: control performance, extending equipment life, and energy savings. The most used technique is Sine Pulse Width Modulation, as it solely requires the [...] Read more.
With the advancement in power electronics technology, variable-frequency drives have been widely adopted for motor operation due to their inherent benefits: control performance, extending equipment life, and energy savings. The most used technique is Sine Pulse Width Modulation, as it solely requires the modification of the reference signal (sine wave). However, Space Vector Pulse Width Modulation offers lower total harmonic distortion. Therefore, this study presents a technique for the control of induction motors operating in open-loop mode, utilizing a two-level voltage source inverter with a frequency range of 31 to 300 Hz. The proposed control system is modified to encompass between 930 and 1848 switching periods, varying the number of switching periods along with the frequency variation. This approach allows the use of a single LCL filter across the whole frequency spectrum. It is adapted for implementation in an 8-bit microcontroller, which has its inherent limitations, yet it achieves performance levels similar to those found in high-level processors like FPGAs and DSPs. The signals generated by the microcontroller are captured by a DAQ card and input into a MATLAB/Simulink model to observe and analyze the performance of the proposed control system. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems)
Show Figures

Figure 1

14 pages, 2422 KiB  
Article
Fabrication of Thylakoid Membrane-Based Photo-Bioelectrochemical Bioanode for Self-Powered Light-Driven Electronics
by Amit Sarode and Gymama Slaughter
Energies 2025, 18(12), 3167; https://doi.org/10.3390/en18123167 - 16 Jun 2025
Cited by 1 | Viewed by 521
Abstract
The transition toward sustainable and decentralized energy solutions necessitates the development of innovative bioelectronic systems capable of harvesting and converting renewable energy. Here, we present a novel photo-bioelectrochemical fuel cell architecture based on a biohybrid anode integrating laser-induced graphene (LIG), poly(3,4-ethylenedioxythiophene) (PEDOT), and [...] Read more.
The transition toward sustainable and decentralized energy solutions necessitates the development of innovative bioelectronic systems capable of harvesting and converting renewable energy. Here, we present a novel photo-bioelectrochemical fuel cell architecture based on a biohybrid anode integrating laser-induced graphene (LIG), poly(3,4-ethylenedioxythiophene) (PEDOT), and isolated thylakoid membranes. LIG provided a porous, conductive scaffold, while PEDOT enhanced electrode compatibility, electrical conductivity, and operational stability. Compared to MXene-based systems that involve complex, multi-step synthesis, PEDOT offers a cost-effective and scalable alternative for bioelectrode fabrication. Thylakoid membranes were immobilized onto the PEDOT-modified LIG surface to enable light-driven electron generation. Electrochemical characterization revealed enhanced redox activity following PEDOT modification and stable photocurrent generation under light illumination, achieving a photocurrent density of approximately 18 µA cm−2. The assembled photo-bioelectrochemical fuel cell employing a gas diffusion platinum cathode demonstrated an open-circuit voltage of 0.57 V and a peak power density of 36 µW cm−2 in 0.1 M citrate buffer (pH 5.5) under light conditions. Furthermore, the integration of a charge pump circuit successfully boosted the harvested voltage to drive a low-power light-emitting diode, showcasing the practical viability of the system. This work highlights the potential of combining biological photosystems with conductive nanomaterials for the development of self-powered, light-driven bioelectronic devices. Full article
Show Figures

Figure 1

16 pages, 4869 KiB  
Article
Cellulose Nanofibril-Based Triboelectric Nanogenerators Enhanced by Isoreticular Metal-Organic Frameworks for Long-Term Motion Monitoring
by Mingli Shang, Yan Zong and Xiujun Zhang
Sensors 2025, 25(10), 3232; https://doi.org/10.3390/s25103232 - 21 May 2025
Cited by 1 | Viewed by 571
Abstract
Cellulose nanofibril (CNF) is a sort of novel nanomaterial directly extracted from plant resources, inheriting the advantages of cellulose as a cheap, green and renewable material for the development of new-generation eco-friendly electronics. In recent years, CNF-based triboelectric nanogenerator (TENG) has attracted increasing [...] Read more.
Cellulose nanofibril (CNF) is a sort of novel nanomaterial directly extracted from plant resources, inheriting the advantages of cellulose as a cheap, green and renewable material for the development of new-generation eco-friendly electronics. In recent years, CNF-based triboelectric nanogenerator (TENG) has attracted increasing research interests, as the unique chemical, morphological, and electrical properties of CNF render the device with considerable flexibility, mechanical strength, and triboelectric output. In this study, we explore the use of isoreticular metal-organic frameworks (IRMOF) as functional filler to improve the performance of CNF based TENGs. Two types of IRMOFs that own the same network topology, namely IRMOF-1 and its aminated version IRMOF-3, are embedded with CNF to fabricated TENGs; their contribution to triboelectric output enhancement, including the roughness effect induced by large particles as well as the charge induction effect arisen from -NH2 groups, are discussed. The performance-enhanced CNF-based TENG with 0.6 wt.% of IRMOF-3 is utilized to harvest mechanical energy from human activities and charge commercial capacitors, from which the electrical energy is sufficient to light up light-emitting diodes (LEDs) and drive low-power electronic devices. In addition, a locomotor analysis system is established by assembling the above TENGs and capacitors into a 3 × 3 sensing array, which allowed signal extraction from each sensing unit to display a motion distribution map. These results demonstrate the great potential of CNF/IRMOF-based TENGs for development of self-powered sensing devices for long-term motion monitoring. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Graphical abstract

18 pages, 963 KiB  
Article
Linearized Power Flow Calculation of Flexible Interconnected Distribution Network Driven by Data–Physical Fusion
by Wanyuan Li, Yang You, Tianze Liu, Yuntao Ju and Yuxuan Ma
Processes 2025, 13(5), 1582; https://doi.org/10.3390/pr13051582 - 19 May 2025
Viewed by 481
Abstract
In a modern flexible interconnected distribution network, the dynamic coupling effect between the traditional AC network model and the power electronic converter significantly enhances the nonlinearity and non-convexity of power flow calculations. In particular, when a one-end converter station quits operating due to [...] Read more.
In a modern flexible interconnected distribution network, the dynamic coupling effect between the traditional AC network model and the power electronic converter significantly enhances the nonlinearity and non-convexity of power flow calculations. In particular, when a one-end converter station quits operating due to a fault, it is necessary to ensure that the remaining converter stations can continue to maintain the normal operation of the interconnected system, which leads to the convergence problem of the traditional physical-driven iterative method. Aiming to address this problem, this study discusses the data-driven linearization method of the current distribution network power flow in depth and proposes a linearized power flow calculation (LPFC) of a flexible interconnected distribution network based on a data–physical fusion drive. Based on the traditional linearization method based on physical characteristics and first-order Taylor expansion, the model uses the partial least squares method to compensate for the linearization error and can normally cope with the failure of the flexible interconnected system. The proposed model greatly improves the convergence and computational efficiency of the power flow model under the premise of ensuring the linearization accuracy and can adapt to different load levels to achieve accurate error compensation. In addition, based on an actual engineering example, this paper introduces the converter station model, constructs a flexible interconnected system, and verifies the applicability of the proposed model. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

16 pages, 1585 KiB  
Review
Smart Chip Technology for the Control and Management of Invasive Plant Species: A Review
by Qaiser Javed, Mohammed Bouhadi, Smiljana Goreta Ban, Dean Ban, David Heath, Babar Iqbal, Jianfan Sun and Marko Černe
Plants 2025, 14(10), 1510; https://doi.org/10.3390/plants14101510 - 18 May 2025
Viewed by 982
Abstract
Invasive plant species threaten biodiversity, disrupt ecosystems, and are costly to manage. Standard control methods, such as mechanical and chemical (herbicides), are usually ineffective and time-consuming and negatively affect the environment, especially in the latter case. This review explores the potential of smart [...] Read more.
Invasive plant species threaten biodiversity, disrupt ecosystems, and are costly to manage. Standard control methods, such as mechanical and chemical (herbicides), are usually ineffective and time-consuming and negatively affect the environment, especially in the latter case. This review explores the potential of smart chip technology (SCT) as a sustainable, precision approach tool for invasive species management. Integrating microchip sensors with artificial intelligence (AI) into the Internet of Things (IoT) and remote sensing technology allows for real-time monitoring, predictive modelling, and focused action, significantly improving management effectiveness. As one of many examples discussed herein, AI-driven decision-making systems can process real-time data from IoT-enabled environmental sensors to optimize invasive species detection. Smart chip technology also offers real-time monitoring of invasive species’ life processes, spread, and environmental effects, enabling artificial intelligence-powered eco-friendly control strategies that minimize herbicide usage and lessen collateral ecosystem damage. Despite the potential of SCT, challenges remain, including cost, biodegradability, and regulatory constraints. However, recent advances in biodegradable electronics and AI-driven automation offer promising solutions to many identified obstacles. Future research should focus on scalable deployment, improved predictive analytics, and interdisciplinary collaboration to drive innovation. Using SCT can help make invasive species control more sustainable while supporting biodiversity and strengthening agricultural systems. Full article
(This article belongs to the Special Issue Ecology and Management of Invasive Plants—2nd Edition)
Show Figures

Figure 1

26 pages, 4583 KiB  
Article
Mathematical Modeling and Finite Element Simulation of the M8514-P2 Composite Piezoelectric Transducer for Energy Harvesting
by Demeke Girma Wakshume and Marek Łukasz Płaczek
Sensors 2025, 25(10), 3071; https://doi.org/10.3390/s25103071 - 13 May 2025
Viewed by 3364
Abstract
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small [...] Read more.
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small electronic devices, such as wireless sensors, where conventional power sources are inconvenient. The P2-type macro fiber composites (MFC-P2) are specifically designed for transverse energy harvesting applications. They offer high electric source capacitance and improved electric charge generation due to the strain developed perpendicularly to the voltage produced. The system is modeled analytically using Euler–Bernoulli beam theory and piezoelectric constitutive equations, capturing the electromechanical coupling in the d31 mode. Numerical simulations are conducted using COMSOL Multiphysics 6.29 to reduce the complexity of the mathematical model and analyze the effects of material properties, geometric configurations, and excitation conditions. The theoretical model is based on the transverse vibrations of a cantilevered beam using Euler–Bernoulli theory. The natural frequencies and mode shapes for the first four are determined. Depending on these, the resonance frequency, voltage, and power outputs are evaluated across a 12 kΩ resistive load. The results demonstrate that the energy harvester effectively operates near its fundamental resonant frequency of 10.78 Hz, achieving the highest output voltage of approximately 0.1952 V and a maximum power output of 0.0031 mW. The generated power is sufficient to drive ultra-low-power devices, validating the viability of MFC-based cantilever structures for autonomous energy harvesting systems. The application of piezoelectric phenomena and obtaining electrical energy from mechanical vibrations can be powerful solutions in such systems. The application of piezoelectric phenomena to convert mechanical vibrations into electrical energy presents a promising solution for self-powered mechatronic systems, enabling energy autonomy in embedded sensors, as well as being used for structural health monitoring applications. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

25 pages, 3893 KiB  
Article
Electro-Thermal Model-Based Design of a Smart Latch in Automotive Systems for Performance and Reliability Evaluations
by Damiano Nardi, Pierpaolo Dini and Sergio Saponara
Electronics 2025, 14(10), 1962; https://doi.org/10.3390/electronics14101962 - 12 May 2025
Viewed by 369
Abstract
Industry 5.0 places growing emphasis on intelligent and efficient design methodologies aiming to reduce development times, accelerate the time-to-market, and enhance human–machine collaboration in creating new products. This article proposes the use of a model-based design (MBD) approach to developing a detailed electro-thermal [...] Read more.
Industry 5.0 places growing emphasis on intelligent and efficient design methodologies aiming to reduce development times, accelerate the time-to-market, and enhance human–machine collaboration in creating new products. This article proposes the use of a model-based design (MBD) approach to developing a detailed electro-thermal model (ETDM) of a Smart Latch Mechanism (SLM) used in automotive door automation systems. The proposed ETDM enhances the accuracy of the design and verification processes and enables the simulation of specific scenarios, such as fault conditions, within a virtual environment. The simulation-based framework presented in this article leverages partial knowledge of the system to enable rapid estimations of the performance and functional validation. It encompasses the injection of disturbances, the analysis of failure scenarios, and the use of processor-in-the-loop (PIL) procedures for validation purposes. This work aims to employ detailed modeling and simulation techniques and use publicly available technical data and work from the literature to eliminate the need for physical testing and instrumentation, enabling the development of models that accurately reflect the real-world behavior under defined operating conditions. The proposed framework has the potential to facilitate rapid prototyping and system reconfiguration, contributing to shorter development cycles and improved industrial efficiency by reducing both production times and the associated costs for established automotive subsystems where high precision is nonessential. Full article
(This article belongs to the Special Issue Collaborative Intelligence in the Era of Industry 5.0)
Show Figures

Figure 1

Back to TopTop