A 31–300 Hz Frequency Variator Inverter Using Space Vector Pulse Width Modulation Implemented in an 8-Bit Microcontroller
Abstract
1. Introduction
- (A)
- A detailed insight into the theoretical analysis of SVPWM and its implementation on an 8-bit microcontroller.
- (B)
- A variable number of switching periods, decreasing with increasing frequency to have between 930 and 1838 per cycle. This is being conducted to reduce the switching frequency variation to have one LCL filter for the whole frequency range.
- (C)
- Three changes to the switching sequences usually implemented in the literature. Although it increases the switching losses (switching more than a bit at a time), it reduces THD by 17%.
2. Development of the Proposed Framework
2.1. Motivation
2.2. Theory
2.3. Implementation
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bose, B.K. The past, present, and future of power electronics [Guest Introduction]. IEEE Ind. Electron. Mag. 2009, 3, 7–11. [Google Scholar] [CrossRef]
- Wu, H.; Hu, X. Reserch of SVPWM Variable Frequency Speed Regulation System Based on TMS320LF2407A. In Proceedings of the 2008 International Symposium on Intelligent Information Technology Application Workshops, Shanghai, China, 21–22 December 2008; pp. 1041–1044. [Google Scholar] [CrossRef]
- Sandulescu, P.; Idkhajine, L.; Cense, S.; Colas, F.; Kestelyn, X.; Semail, E.; Bruyere, A. FPGA implementation of a general Space Vector approach on a 6-leg voltage source inverter. In Proceedings of the IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 7–10 November 2011; pp. 3482–3487. [Google Scholar] [CrossRef]
- Madasamy, P.; Pongiannan, R.K.; Ravichandran, S.; Padmanaban, S.; Chokkalingam, B.; Hossain, E.; Adedayo, Y. A Simple Multilevel Space Vector Modulation Technique and MATLAB System Generator Built FPGA Implementation for Three-Level Neutral-Point Clamped Inverter. Energies 2019, 12, 4332. [Google Scholar] [CrossRef]
- Sapkota, Y. Design of FPGA-Based PWM Techniques for Inverters. Master’s Thesis, Youngstown State University, Youngstown, OH, USA, December 2023. [Google Scholar]
- Waleed, U.; Waseem, M.; Shaukat, H.; Ijaz, A.; Almalaq, A.; Mohamed, M.A. An Efficient FPGA Based Scalar V/f Control Mechanism of Three Phase Induction Motor for Electric Vehicles. In Proceedings of the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 26–30 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Liyanage, A.; Nagrial, M.; Hellany, A.; Rizk, J. Speed Control of Induction Motors Using V/f Control Method. In Proceedings of the 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 23–25 November 2022; pp. 424–429. [Google Scholar] [CrossRef]
- Wibowo, P.S.; Riyadi, S. SPWM Volt/Hz Based Speed Control of Induction Motor. In Proceedings of the 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 21–22 September 2019; pp. 482–486. [Google Scholar] [CrossRef]
- Sieklucki, G.; Sobieraj, S.; Gromba, J.; Necula, R.-E. Analysis and Approximation of THD and Torque Ripple of Induction Motor for SVPWM Control of VSI. Energies 2023, 16, 4628. [Google Scholar] [CrossRef]
- Tuknyasrirut, S.; Srilad, S.; Suksri, T. Comparison Power Quality of the Voltage Source Inverter type SVPWM and SPWM Technique for Induction motor Drive. In Proceedings of the SICE Annual Conference 2008, Tokyo, Japan, 20–22 August 2008; pp. 241–246. [Google Scholar]
- Ali, A.K.; Ercelebi, E. Simulation and Study of SVPWM Inverter for (VFD) Applications. Int. J. Electron. Electr. Eng. 2017, 5, 158–170. [Google Scholar] [CrossRef]
- Patel, J.J.; Kubavat, A.M.; Jhala, M.B. Speed Control of a Three Phase Induction Motor Using PWM Inverter. Int. J. Eng. Dev. Res. 2014, 2, 503–507. [Google Scholar]
- Dems, M.; Komeza, K.; Szulakowski, J.; Kubiak, W. Increase the Efficiency of an Induction Motor Feed from Inverter for Low Frequencies by Combining Design and Control Improvements. Energies 2022, 15, 530. [Google Scholar] [CrossRef]
- Doan, N.S.; Tsvetkov, A.N.; Nguyen, T.H. Study and implementation of space vector pulse width modulation inverter on an Arduino. E3S Web Conf. 2021, 288, 01059. [Google Scholar] [CrossRef]
- Badran, M.A.A.; Tahir, A.M.; Faris, W.F. Digital Implementation of Space Vector Pulse Width Modulation Technique Using 8-bit Microcontroller. World Appl. Sci. J. 2013, 21, 21–28. [Google Scholar]
- Vivek, G.; Biswas, J.; Muthavarapu, A.K.; Nair, M.D.; Barai, M. Optimised Design and Implementation of SVPWM Switching sequences for Five level VSI. In Proceedings of the 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India, 18–21 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- AVR435: BLDC/BLAC Motor Control Using a Sinus Modulated PWM Algorithm. ATMEL Application Note. Available online: https://ww1.microchip.com/downloads/en/Appnotes/doc7671.pdf (accessed on 20 February 2025).
- AN2154: Space Vector Modulation Using 8-bit ST7MC Microcontroller and ST7MC-KIT/BLDC Starter Kit. STMicroelectronics Application Note. Available online: https://www.st.com/resource/en/application_note/cd00055518-space-vector-modulation-using-8bit-st7mc-microcontroller-and-st7mckitbldc-starter-kit-stmicroelectronics.pdf (accessed on 23 February 2025).
- AP0803620: Optimized Space Vector Modulation and Over-Modulation with the XC866. Available online: https://www.infineon.com/cms/en/product/gated-document/optimized-space-vectormodulation-and-over-modulationwith-the-xc866-description-db3a304412b407950112b4199b7b28b3/ (accessed on 23 February 2025).
- Midhun, G.; Sandhya, P. Hardware Implementation of a Dual Two-Level Inverter with SVPWM Using Pic Microcontroller. J. Res. Eng. Appl. Sci. 2016, 4, 185–190. [Google Scholar]
- Datta, S.; Chandra, A.; Chowdhuri, S. Design and development of an 8 bit microcontroller based space vector PWM inverter fed volt/Hz induction motor drive. In Proceedings of the 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), Kolkata, India, 28–30 January 2016; pp. 353–357. [Google Scholar] [CrossRef]
- Hamim, M.Z.; Salimin, S.; Bakar, A.A. Analysis of Variable Frequency Drive for Induction Motor using Matlab Software. J. Adv. Res. Appl. Mech. 2024, 116, 117–129. [Google Scholar] [CrossRef]
- Available online: https://www.bluebayautomation.com/blog/motion-control-gearing-mechanics-12/variable-frequency-drive-usage-in-industrial-applications-71 (accessed on 14 April 2025).
- Available online: https://www.plctechnician.com/news-blog/variable-frequency-drives-basics-and-common-applications-vfds (accessed on 15 April 2025).
- Sauer, B.J.; Brady, P.A. Application of AC Induction Motors with Variable Frequency Drives. In Proceedings of the 2009 IEEE Cement Industry Technical Conference Record, Palm Springs, CA, USA, 29 May–5 June 2009; pp. 1–10. [Google Scholar] [CrossRef]
- PowerFlex Low Voltage AC Drives. Available online: https://literature.rockwellautomation.com/idc/groups/literature/documents/br/pflex-br008_-en-p.pdf (accessed on 18 April 2025).
- FRENIC-Mini (C2) Series User’s Manual. Fuji Electric Co., Ltd.. Available online: https://americas.fujielectric.com/wp-content/uploads/2016/07/FEA-ACDR-BR-105a_web.pdf (accessed on 25 May 2025).
- Altivar Process ATV600. Available online: https://download.schneider-electric.com/files?p_Doc_Ref=EAV64318&p_enDocType=User+guide&p_File_Name=ATV600_Programming_Manual_EN_EAV64318_12.pdf (accessed on 16 April 2025).
- Zellouma, D.; Bekakra, Y.; Benbouhenni, H. Field-oriented control based on parallel proportional–integral controllers of induction motor drive. Energy Rep. 2023, 9, 4846–4860. [Google Scholar] [CrossRef]
- Sengamalai, U.; Anbazhagan, G.; Thamizh Thentral, T.M.; Vishnuram, P.; Khurshaid, T.; Kamel, S. Three Phase Induction Motor Drive: A Systematic Review on Dynamic Modeling, Parameter Estimation, and Control Schemes. Energies 2022, 15, 8260. [Google Scholar] [CrossRef]
- Mencou, S.; Yakhlef, M.B.; Tazi, E.B. Advanced Torque and Speed Control Techniques for Induction Motor Drives: A Review. In Proceedings of the 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, 3–4 March 2022; pp. 1–9. [Google Scholar] [CrossRef]
- Kubeitari, M.; Alhusayn, A.; Alnahar, M. Space Vector PWM Simulation for Three Phase DC/AC Inverter. Int. J. Electr. Comput. Eng. 2012, 6, 1402–1407. [Google Scholar] [CrossRef]
- Neacsu, D.O. Space Vector Modulation-An Introduction. In Proceedings of the Tutorial at IECON2001, 27th Annual Conference of IEEE, Denver, CO, USA, 29 November–2 December 2001; pp. 1538–1592. [Google Scholar]
- Patin, N. DC/AC Converters. In Power Electronics Applied to Industrial Systems and Transports 2, 1st ed.; ISTE Press–Elsevier: London, UK, 2015; pp. 36–100. [Google Scholar]
- Jaen-Cuellar, A.Y.; Elvira-Ortiz, D.A.; Resendiz-Ochoa, E.; Saucedo-Dorantes, J.J. Analysis of the Effects Produced by Pure Sine and Modified Sine Inverters in an Induction Motor. In New Trends in Electric Machines-Technology and Applications; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Evon, S.T.; Oakes, B. Variable frequency drive principles and practices (above NEMA) AC motors for variable frequency application. In Proceedings of the Conference Record of 1999 Annual Pulp and Paper Industry Technical Conference (Cat. No.99CH36338), Seattle, WA, USA, 21–25 June 1999; pp. 94–108. [Google Scholar] [CrossRef]
- Song-Manguelle, J.; Ekemb, G.; Mon-Nzongo, D.L.; Jin, T.; Doumbia, M.L. A Theoretical Analysis of Pulsating Torque Components in AC Machines with Variable Frequency Drives and Dynamic Mechanical Loads. IEEE Trans. Ind. Electron. 2018, 65, 9311–9324. [Google Scholar] [CrossRef]
- Available online: https://sites.google.com/view/beedev (accessed on 25 May 2025).
- Balasubramanian, G.; Chandrasekar, P.; Alexandar, S.A. Variable Frequency Drive operated Air Blower in Air Handling Unit of Heating, Ventilation and Air Conditioning Systems. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Kumar, K.V.; Michael, P.A.; John, J.P.; Kumar, S.S. Simulation and Comparison of Spwm and Svpwm Control for Three Phase Inverter. Arpn J. Eng. Appl. Sci. 2010, 5, 61–74. [Google Scholar]
- Islam, M.T.; Ayon, S.I. Performance Analysis of Three-Phase Inverter for Minimizing Total Harmonic Distortion Using Space Vector Pulse Width Modulation Technique. In Proceedings of the 2020 23rd International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 19–21 December 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Sharma, R.; Goyal, D.K.; Singh, H. Analysis of Space Vector PWM for Three Phase Inverter and Comparison with SPWM. Int. J. Adv. Res. EEIE 2016, 5, 533–540. [Google Scholar]
- Hussein, T.A.; Mohamed, L.A. Detailed Simulink Implementation for Induction Motor Control Based on Space Vector Pulse Width Modulation SVPWM. Indones. J. Electr. Eng. Comput. Sci. 2021, 22, 1251–1262. [Google Scholar] [CrossRef]
- Ramarao, G.; Karunakar, S.; Kumari, D.V.; Adithya, M.V.; Gnaneswar, D. Simulation and Comparative Analysis Between Svpwm and Spwm Techniques for Speed Control of 3 Phase Induction Motor. In Proceedings of the 2024 IEEE International Conference on Smart Power Control and Renewable Energy (ICSPCRE), Rourkela, India, 19–21 July 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Hasan, S.; Suherman; Saragi, D.P.; Siregar, Y.; Al-Akaidi, M. The LCL Filter Design for Three Phase DC-AC Voltage Converter. J. Phys. Conf. Ser. 2021, 1783, 012067. [Google Scholar] [CrossRef]
- IEEE. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems (IEEE 519-2014). 2014. Available online: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6826457 (accessed on 23 March 2025).
- Kim, Y.-J.; Kim, H. Optimal Design of LCL Filter in Grid-Connected Inverters. IET Power Electron. 2019, 12, 1774–1782. [Google Scholar] [CrossRef]
State S2S1S0 | Van | Vbn | Vcn |
---|---|---|---|
011 | Vdc/3 | Vdc/3 | −2Vdc/3 |
001 | 2Vdc/3 | −Vdc/3 | −Vdc/3 |
101 | Vdc/3 | −2Vdc/3 | Vdc/3 |
100 | −Vdc/3 | −Vdc/3 | 2Vdc/3 |
110 | −2Vdc/3 | Vdc/3 | Vdc/3 |
010 | −Vdc/3 | 2Vdc/3 | −Vdc/3 |
000, 111 | 0 | 0 | 0 |
Frequency (Hz) | Number of Switching Periods | Time Range for Every Switching Period (μs) |
---|---|---|
31–34 | 9 | 597–544 |
35–38 | 8 | 595–548 |
39–44 | 7 | 610–541 |
45–51 | 6 | 617–544 |
52–61 | 5 | 641–546 |
62–77 | 4 | 672–541 |
78–102 | 3 | 712–544 |
103–154 | 2 | 809–541 |
155–300 | 1 | 1075–555 |
PWM Technique | This Work | [39] | [40] | [41] | [42] |
---|---|---|---|---|---|
Operating frequency | 50 Hz | 50 H | 60 Hz | 50 Hz | |
SPWM | 77.28 | 80.33 | 77.74 | ||
SVPWM | 61.47 | 57.28 | 63.85 | 64.61 | 52.05 |
PWM Technique | This Work | [39] | [43] | [44] |
---|---|---|---|---|
Operating frequency | 50 Hz | - | 50 H | |
SPWM | 68.64 | 89.34 | ||
SVPWM | 61.47 | 57.28 | 57.80 | 60.53 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Output phase voltage | 260 V | Source voltage | 370 V |
Active power | 1.3 kW | Switching frequency | 900 Hz |
31 Hz | 60 Hz | 100 Hz | 200 Hz | 300 Hz | |
---|---|---|---|---|---|
THD | 4.02% | 2.43% | 1.20% | 1.47% | 0.43% |
Model | 5KAF145SAA202A | Unit |
---|---|---|
Rated power | 2 | HP (1491.4 watts) |
Rated voltage | 230 | V |
Rated current | 5.2 | A |
Maximum speed | 1730 | RPM at 60 Hz |
Maximum speed | 2595 | RPM at 90 Hz |
Speed range const torque | 0–1725 | RPM |
Speed range const hp | 1730–2595 | RPM |
SF 1.0 | POLES 4 | |
LOAD% | 100 | 75 |
% EFF | 86.52 | 86.94 |
% PF | 78.54 | 68.82 |
AMPS | 2.74 | 2.35 |
Torque | 8.2321 | N-m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerda-Villafana, G.; Birchfield, A.; Moreno-Vazquez, F.J. A 31–300 Hz Frequency Variator Inverter Using Space Vector Pulse Width Modulation Implemented in an 8-Bit Microcontroller. Processes 2025, 13, 1912. https://doi.org/10.3390/pr13061912
Cerda-Villafana G, Birchfield A, Moreno-Vazquez FJ. A 31–300 Hz Frequency Variator Inverter Using Space Vector Pulse Width Modulation Implemented in an 8-Bit Microcontroller. Processes. 2025; 13(6):1912. https://doi.org/10.3390/pr13061912
Chicago/Turabian StyleCerda-Villafana, Gustavo, Adam Birchfield, and Francisco Javier Moreno-Vazquez. 2025. "A 31–300 Hz Frequency Variator Inverter Using Space Vector Pulse Width Modulation Implemented in an 8-Bit Microcontroller" Processes 13, no. 6: 1912. https://doi.org/10.3390/pr13061912
APA StyleCerda-Villafana, G., Birchfield, A., & Moreno-Vazquez, F. J. (2025). A 31–300 Hz Frequency Variator Inverter Using Space Vector Pulse Width Modulation Implemented in an 8-Bit Microcontroller. Processes, 13(6), 1912. https://doi.org/10.3390/pr13061912