Linearized Power Flow Calculation of Flexible Interconnected Distribution Network Driven by Data–Physical Fusion
Abstract
:1. Introduction
2. Power Flow Model
2.1. Linearized Power Flow Model
2.2. Linearized Power Flow Model Based on IDL Data-Driven Method
2.3. Parameterized Linear Power Flow for High-Fidelity Voltage Solutions in Distribution Systems
3. Data–Physics-Fusion-Driven Linearization Model
3.1. Bad Data Identification Based on MINLP
3.2. Flexible Interconnection Model
3.2.1. VSC Model
3.2.2. DC Grid Model
3.3. Data–Physics-Fusion-Driven Linearization Model
3.3.1. Physical Linearization
3.3.2. Data-Driven Error Compensation
4. Case Study
4.1. Case Study Introduction
4.2. Evaluation Metrics
4.3. Comparison of Linearization Accuracy Under Different Scenarios
4.4. Analysis of Bad Data Identification Results
4.5. Comparative Analysis of the Converter
4.6. Analysis of Power Flow Calculation Efficiency of Different Models
4.7. Comparative Analysis of Initial Value Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Zhao, H.; Yu, Q.; Wen, Q.; Zhang, Y.; Wang, W. Linear Power Flow Calculation Methods for Urban Network. In Proceedings of the 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Shanghai, China, 8–11 July 2022. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, K.; Yu, J.; Zhong, H.; Zhang, N.; Xia, Q. A General Formulation of Linear Power Flow Models: Basic Theory and Error Analysis. IEEE Trans. Power Syst. 2019, 34, 1315–1324. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, N.; Kang, C.; Xia, Q. A State-Independent Linear Power Flow Model with Accurate Estimation of Voltage Magnitude. IEEE Trans. Power Syst. 2017, 32, 3607–3617. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Q.; Zhao, J.; Liu, J.; He, T.; Sun, G.; Zang, H. Review and Improvement of Power System Linearization Models. Power Syst. Technol. 2017, 41, 2919–2927. [Google Scholar] [CrossRef]
- Yin, S. Research on Modeling and Application of Converter Operating State Based on Port Current Timing Characteristics; South China University of Technology: Guangzhou, China, 2022. [Google Scholar] [CrossRef]
- Liang, G.; Zhang, J. Research on modulation strategy of modular multilevel converter. Electr. Technol. 2021, 5, 15–18+23. [Google Scholar] [CrossRef]
- Lian, P.; Liu, W.; Tang, Y.; Yang, Z.; Yu, S.; Li, X. Research on efficient electromagnetic transient simulation method of modular multilevel converter. Chin. J. Electr. Eng. 2020, 40, 7980–7989+8235. [Google Scholar] [CrossRef]
- Fan, Z.; Yang, Z.; Yu, J. Error Bound Restriction of Linear Power Flow Model. IEEE Trans. Power Syst. 2022, 5, 808–811. [Google Scholar] [CrossRef]
- Garces, A. A Linear Three-Phase Load Flow for Power Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 827–828. [Google Scholar] [CrossRef]
- Yuan, Z. Formulations and Approximations of Branch Flow Model for General Power Networks. J. Mod. Power Syst. Clean Energy 2022, 10, 1110–1126. [Google Scholar] [CrossRef]
- Chen, J.; Wu, W.; Roald, L.A. Data-Driven Piecewise Linearization for Distribution Three-Phase Stochastic Power Flow. IEEE Trans. Smart Grid 2022, 13, 1035–1048. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Wang, Y.; Yang, J.; Kang, C. Data-Driven Power Flow Linearization: A Regression Approach. IEEE Trans. Smart Grid 2019, 10, 2569–2580. [Google Scholar] [CrossRef]
- Li, P.; Wu, W.; Wang, X.; Xu, B. A Data-Driven Linear Optimal Power Flow Model for Distribution Networks. IEEE Trans. Power Syst. 2023, 38, 956–959. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Sun, S. A Data-Driven Method for Online Constructing Linear Power Flow Model. IEEE Trans. Ind. Appl. 2023, 59, 5411–5419. [Google Scholar] [CrossRef]
- Shao, Z.; Zhai, Q.; Wu, J.; Guan, X. Data-Based Linear Power Flow Model: Investigation of a Least-Squares Based Approximation. IEEE Trans. Power Syst. 2021, 36, 4246–4258. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, Y.; Li, Y.; Cao, Y. Linearizing Power Flow Model: A Hybrid Physical Model-Driven and Data-Driven Approach. IEEE Trans. Power Syst. 2020, 35, 2475–2478. [Google Scholar] [CrossRef]
- Ju, Y.; Yang, M.; Wu, W. Hybrid Data-Physical-Driven Linearization Method for Three-Phase Optimal Power Flow in Distribution Network. Autom. Electr. Power Syst. 2022, 46, 43–52. [Google Scholar] [CrossRef]
- Bazrafshan, M.; Gatsis, N. Comprehensive Modeling of Three-Phase Distribution Systems via the Bus Admittance Matrix. IEEE Trans. Power Syst. 2018, 33, 2015–2029. [Google Scholar] [CrossRef]
- Shao, Z.; Zhai, Q.; Guan, X. Physical-Model-Aided Data-Driven Linear Power Flow Model: An Approach to Address Missing Training Data. IEEE Trans. Power Syst. 2023, 38, 2970–2973. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Liu, Y.; Wang, Z.; Li, X.; Bai, L.; Wang, C. Nonlinearity-Adaptive Data-Driven Power Flow Constraint for Distribution Network Optimization. IEEE Trans. Power Syst. 2024, 39, 341–354. [Google Scholar] [CrossRef]
- Markovic, M.; Hodge, B.-M. Parameterized Linear Power Flow for High Fidelity Voltage Solutions in Distribution Systems. IEEE Trans. Power Syst. 2023, 38, 4391–4403. [Google Scholar] [CrossRef]
- Q/GDW 114-2017; Grid Voltage Quality Technical Specifications. State Grid Corporation of China: Beijing, China, 2017.
Aspect | Current Research | This Paper |
---|---|---|
Model Type | Linearization using traditional methods and physical models (references [4,6]) | Data–physical-fusion-driven linearization (reference [5]) |
Verification and Case Study | Simulation and case studies with limited scope (references [16,17]) | Extensive testing on a 44-node and an IEEE 33-bus system |
Typical Scenario | The 44-Node System | The IEEE 33-Bus System | ||||||
---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M1 | M2 | M3 | M4 | |
Typical Scenario 1 | 4.91 × 10−6 | 4.66 × 10−3 | 4.34 × 10−4 | 4.71 × 10−2 | 6.58 × 10−6 | 9.23 × 10−3 | 3.41 × 10−3 | 5.25 × 10−2 |
Typical Scenario 2 | 9.18 × 10−6 | 2.74 × 10−2 | 7.86 × 10−4 | 1.08 × 10−1 | 5.67 × 10−6 | 2.77 × 10−2 | 1.52 × 10−2 | 6.42 × 10−3 |
Typical Scenario 3 | 7.79 × 10−6 | 5.79 × 10−3 | 4.99 × 10−4 | 6.25 × 10−2 | 1.49 × 10−5 | 6.04 × 10−2 | 2.94 × 10−2 | 1.93 × 10−2 |
Typical Scenario 4 | 7.87 × 10−6 | 7.96 × 10−3 | 6.82 × 10−4 | 7.55 × 10−2 | 8.58 × 10−6 | 1.41 × 10−2 | 5.49 × 10−3 | 3.31 × 10−3 |
Typical Scenario | The 44-Node System | The IEEE 33-Bus System | ||||||
---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M1 | M2 | M3 | M4 | |
Typical Scenario 1 | 8.26 × 10−5 | 3.56 × 10−2 | 2.23 × 10−3 | 9.81 × 10−2 | 1.51 × 10−4 | 4.37 × 10−2 | 1.69 × 10−2 | 7.22 × 10−2 |
Typical Scenario 2 | 3.51 × 10−4 | 3.04 × 10−1 | 5.04 × 10−3 | 2.16 × 10−1 | 1.30 × 10−4 | 2.36 × 10−1 | 1.81 × 10−1 | 1.86 × 10−2 |
Typical Scenario 3 | 2.34 × 10−4 | 5.40 × 10−2 | 2.43× 10−3 | 1.42 × 10−1 | 1.56 × 10−4 | 3.39 × 10−1 | 7.83 × 10−4 | 5.39 × 10−2 |
Typical Scenario 4 | 2.14 × 10−4 | 8.79 × 10−2 | 3.43× 10−3 | 1.73 × 10−1 | 2.56 × 10−4 | 5.81 × 10−2 | 4.92 × 10−4 | 4.87 × 10−1 |
AAE and MAE for Different Training Data Sample Sizes | AAE | MAE |
---|---|---|
150 | 7.79 × 10−6 | 2.34 × 10−4 |
120 | 7.92 × 10−5 | 7.59 × 10−4 |
90 | 2.83 × 10−5 | 3.59 × 10−4 |
Model | Maximum Voltage Error (%) | Calculation Time (s) | SOP Power Regulation Delay (ms) |
---|---|---|---|
Model A | 2.71 | 0.12 | 320 |
Model B | 0.89 | 8.45 | 105 |
Model C | 0.89 | 1.78 | 210 |
Proposed Model | 0.35 | 0.95 | 85 |
Initial Value Scheme | Traditional Newton Method | This Paper |
---|---|---|
Scheme I | 0.18 | 0.12 |
Scheme II | Diverges | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; You, Y.; Liu, T.; Ju, Y.; Ma, Y. Linearized Power Flow Calculation of Flexible Interconnected Distribution Network Driven by Data–Physical Fusion. Processes 2025, 13, 1582. https://doi.org/10.3390/pr13051582
Li W, You Y, Liu T, Ju Y, Ma Y. Linearized Power Flow Calculation of Flexible Interconnected Distribution Network Driven by Data–Physical Fusion. Processes. 2025; 13(5):1582. https://doi.org/10.3390/pr13051582
Chicago/Turabian StyleLi, Wanyuan, Yang You, Tianze Liu, Yuntao Ju, and Yuxuan Ma. 2025. "Linearized Power Flow Calculation of Flexible Interconnected Distribution Network Driven by Data–Physical Fusion" Processes 13, no. 5: 1582. https://doi.org/10.3390/pr13051582
APA StyleLi, W., You, Y., Liu, T., Ju, Y., & Ma, Y. (2025). Linearized Power Flow Calculation of Flexible Interconnected Distribution Network Driven by Data–Physical Fusion. Processes, 13(5), 1582. https://doi.org/10.3390/pr13051582