Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (952)

Search Parameters:
Keywords = drilled holes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1926 KiB  
Article
Research on Data-Driven Drilling Safety Grade Evaluation System
by Shuan Meng, Changhao Wang, Yingcao Zhou and Lidong Hou
Processes 2025, 13(8), 2469; https://doi.org/10.3390/pr13082469 - 4 Aug 2025
Abstract
With the in-depth application of digital transformation in the oil industry, data-driven methods provide a new technical path for drilling engineering safety evaluation. In this paper, a data-driven drilling safety level evaluation system is proposed. By integrating the three-dimensional visualization technology of wellbore [...] Read more.
With the in-depth application of digital transformation in the oil industry, data-driven methods provide a new technical path for drilling engineering safety evaluation. In this paper, a data-driven drilling safety level evaluation system is proposed. By integrating the three-dimensional visualization technology of wellbore trajectory and the prediction model of friction torque, a dynamic and intelligent drilling risk evaluation framework is constructed. The Python platform is used to integrate geomechanical parameters, real-time drilling data, and historical working condition records, and the machine learning algorithm is used to train the friction torque prediction model to improve prediction accuracy. Based on the K-means clustering evaluation method, a three-tier drilling safety classification standard is established: Grade I (low risk) for friction (0–100 kN) and torque (0–10 kN·m), Grade II (medium risk) for friction (100–200 kN) and torque (10–20 kN·m), and Grade III (high risk) for friction (>200 kN) and torque (>20 kN·m). This enables intelligent quantitative evaluation of drilling difficulty. The system not only dynamically optimizes bottom-hole assembly (BHA) and drilling parameters but also continuously refines the evaluation model’s accuracy through a data backtracking mechanism. This provides a reliable theoretical foundation and technical support for risk early warning, parameter optimization, and intelligent decision-making in drilling engineering. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

14 pages, 1863 KiB  
Article
Advancements in Hole Quality for AISI 1045 Steel Using Helical Milling
by Pedro Mendes Silva, António José da Fonseca Festas, Robson Bruno Dutra Pereira and João Paulo Davim
J. Manuf. Mater. Process. 2025, 9(8), 256; https://doi.org/10.3390/jmmp9080256 - 31 Jul 2025
Viewed by 160
Abstract
Helical milling presents a promising alternative to conventional drilling for hole production, offering superior surface quality and improved production efficiency. While this technique has been extensively applied in the aerospace industry, its potential for machining common engineering materials, such as AISI 1045 steel, [...] Read more.
Helical milling presents a promising alternative to conventional drilling for hole production, offering superior surface quality and improved production efficiency. While this technique has been extensively applied in the aerospace industry, its potential for machining common engineering materials, such as AISI 1045 steel, remains underexplored in the literature. This study addresses this gap by systematically evaluating the influence of key process parameters—cutting speed (Vc), axial depth of cut (ap), and tool diameter (Dt)—on hole quality attributes, including surface roughness, burr formation, and nominal diameter accuracy. A full factorial experimental design (23) was employed, coupled with analysis of variance (ANOVA), to quantify the effects and interactions of these parameters. The results reveal that, with a higher Vc, it is possible to reduce surface roughness (Ra) by 30% to 40%, while an increased ap leads to a 50% increase in Ra. Additionally, Dt emerged as the most critical factor for nominal diameter accuracy, reducing geometrical errors by 1% with a larger Dt. Burr formation was predominantly observed at the lower end of the hole, highlighting challenges specific to this technique. These findings provide valuable insights into optimizing helical milling for low-carbon steels, offering a foundation for broader industrial adoption and further research. Full article
Show Figures

Figure 1

15 pages, 3563 KiB  
Article
Process Optimization on Trepanning Drilling in Titanium Alloy Using a Picosecond Laser via an Orthogonal Experiment
by Liang Wang, Yefei Rong, Long Xu, Changjian Wu and Kaibo Xia
Micromachines 2025, 16(8), 846; https://doi.org/10.3390/mi16080846 - 24 Jul 2025
Viewed by 200
Abstract
To optimize the laser drilling process and reduce the processing time, this study investigates picosecond laser trepan drilling on the titanium alloy TC4, analyzing the effects of laser parameters on micro-hole diameter, taper, and roundness. Four independent variables were selected: laser power, defocusing [...] Read more.
To optimize the laser drilling process and reduce the processing time, this study investigates picosecond laser trepan drilling on the titanium alloy TC4, analyzing the effects of laser parameters on micro-hole diameter, taper, and roundness. Four independent variables were selected: laser power, defocusing distance, scanning speed, and the number of scans. An L25 (56) orthogonal array was employed for experimental design. The mean response and range analyses evaluated parameter impacts on micro-hole quality, revealing the influence mechanisms of these variables at different levels. The results indicate the following: (1) the scanning speed and laser power significantly affect entrance and exit micro-hole diameters; (2) the defocusing distance substantially influences micro-hole taper; (3) the laser power most critically impacts inlet roundness; (4) the defocusing distance, scanning speed, and laser power directly correlate with outlet roundness; (5) the number of scans exhibits weaker relationships with inlet/outlet diameters, taper, and roundness. A comprehensive balance method applied to orthogonal test results for process optimization yielded the following optimal parameters: 90% laser power (30 W total), −0.2 mm defocus, a 27 mm/s scanning speed, and 15 scans. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication, Second Edition)
Show Figures

Figure 1

16 pages, 13319 KiB  
Article
Research on Acoustic Field Correction Vector-Coherent Total Focusing Imaging Method Based on Coarse-Grained Elastic Anisotropic Material Properties
by Tianwei Zhao, Ziyu Liu, Donghui Zhang, Junlong Wang and Guowen Peng
Sensors 2025, 25(15), 4550; https://doi.org/10.3390/s25154550 - 23 Jul 2025
Viewed by 220
Abstract
This study aims to address the challenges posed by uneven energy amplitude and a low signal-to-noise ratio (SNR) in the total focus imaging of coarse-crystalline elastic anisotropic materials. A novel method for acoustic field correction vector-coherent total focus imaging, based on the materials’ [...] Read more.
This study aims to address the challenges posed by uneven energy amplitude and a low signal-to-noise ratio (SNR) in the total focus imaging of coarse-crystalline elastic anisotropic materials. A novel method for acoustic field correction vector-coherent total focus imaging, based on the materials’ properties, is proposed. To demonstrate the effectiveness of this method, a test specimen, an austenitic stainless steel nozzle weld, was employed. Seven side-drilled hole defects located at varying positions and depths, each with a diameter of 2 mm, were examined. An ultrasound simulation model was developed based on material backscatter diffraction results, and the scattering attenuation compensation factor was optimized. The acoustic field correction function was derived by combining acoustic field directivity with diffusion attenuation compensation. The phase coherence weighting coefficients were calculated, followed by image reconstruction. The results show that the proposed method significantly improves imaging amplitude uniformity and reduces the structural noise caused by the coarse crystal structure of austenitic stainless steel. Compared to conventional total focus imaging, the detection SNR of the seven defects increased by 2.34 dB to 10.95 dB. Additionally, the defect localization error was reduced from 0.1 mm to 0.05 mm, with a range of 0.70 mm to 0.88 mm. Full article
(This article belongs to the Special Issue Ultrasound Imaging and Sensing for Nondestructive Testing)
Show Figures

Figure 1

10 pages, 1668 KiB  
Case Report
Novel Surgical Reconstruction Using a 3D Printed Cement Mold Following Resection of a Rare Case of Proximal Ulna Osteosarcoma: A Case Report and Description of the Surgical Technique
by Abdulrahman Alaseem, Hisham A. Alsanawi, Waleed Albishi, Ibrahim Alshaygy, Sara Alhomaidhi, Mohammad K. Almashouq, Abdulaziz M. AlSudairi, Yazeed A. Alsehibani and Abdulaziz O. Almuhanna
Curr. Oncol. 2025, 32(8), 411; https://doi.org/10.3390/curroncol32080411 - 22 Jul 2025
Viewed by 220
Abstract
Osteosarcoma is one of the most common primary bone malignancies, typically occurring around the knee. However, the forearm is a rare site, with tumors in the proximal ulna being extremely uncommon. Primary sarcoma in this location presents a surgical challenge due to the [...] Read more.
Osteosarcoma is one of the most common primary bone malignancies, typically occurring around the knee. However, the forearm is a rare site, with tumors in the proximal ulna being extremely uncommon. Primary sarcoma in this location presents a surgical challenge due to the complex anatomy and limited reconstructive options. We report a rare case of a 19-year-old female with non-metastatic, high-grade giant cell-rich osteosarcoma involving the right proximal ulna. To our knowledge, this is only the second reported adult case of this histological subtype in this location. The patient was treated at a specialized oncology center with neoadjuvant and adjuvant chemotherapy, along with wide intra-articular resection for local tumor control. Reconstruction was achieved using a novel, customized 3D-printed articulating cement spacer mold with plate osteosynthesis. Artificial elbow ligamentous reconstruction was performed using FiberTape and FiberWire sutures passed through drill holes, and the triceps tendon was reattached to the cement mold using an endobutton. This cost-effective and personalized surgical approach allowed successful joint reconstruction while maintaining elbow stability and function. Our case highlights a feasible reconstructive option for rare and anatomically challenging osteosarcoma presentations, contributing to the limited literature on proximal ulna giant cell-rich osteosarcoma. Full article
(This article belongs to the Section Bone and Soft Tissue Oncology)
Show Figures

Figure 1

23 pages, 12729 KiB  
Article
Genetic Mineralogical Characteristics of Pyrite and Quartz from the Qiubudong Silver Deposit, Central North China Craton: Implications for Ore Genesis and Exploration
by Wenyan Sun, Jianling Xue, Zhiqiang Tong, Xueyi Zhang, Jun Wang, Shengrong Li and Min Wang
Minerals 2025, 15(8), 769; https://doi.org/10.3390/min15080769 - 22 Jul 2025
Viewed by 273
Abstract
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and [...] Read more.
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and further exploration. Previous studies on this deposit have not addressed its genetic mineralogical characteristics. This study focuses on pyrite and quartz to investigate their typomorphic features, such as crystal morphology, trace element composition, thermoelectric properties, and luminescence characteristics, and their implications for ore-forming processes. Pyrite crystals are predominantly cubic in early stages, while pentagonal dodecahedral and cubic–dodecahedral combinations peak during the main mineralization stage. The pyrite is sulfur-deficient and iron-rich, enriched in Au, and relatively high in Ag, Cu, Pb, and Bi contents during the main ore-forming stage. Rare earth element (REE) concentrations are low, with weak LREE-HREE fractionation and a strong negative Eu anomaly. The thermoelectric coefficient of pyrite ranges from −328.9 to +335.6 μV/°C, with a mean of +197.63 μV/°C; P-type conduction dominates, with an occurrence rate of 58%–100% and an average of 88.78%. A weak–low temperature and a strong–high temperature peak characterize quartz thermoluminescence during the main mineralization stage. Fluid inclusions in quartz include liquid-rich, vapor-rich, and two-phase types, with salinities ranging from 10.11% to 12.62% NaCl equiv. (average 11.16%) and densities from 0.91 to 0.95 g/cm3 (average 0.90 g/cm3). The ore-forming fluids are interpreted as F-rich, low-salinity, low-density hydrothermal fluids of volcanic origin at medium–low temperatures. The abundance of pentagonal dodecahedral pyrite, low Co/Ni ratios, high Cu contents, and complex quartz thermoluminescence signatures are key mineralogical indicators for deep prospecting. Combined with thermoelectric data and morphological analysis, the depth interval around 800 m between drill holes ZK3204 and ZK3201 has high mineralization potential. This study fills a research gap on the genetic mineralogy of the Qiubudong deposit and provides a scientific basis for deep exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

25 pages, 10123 KiB  
Article
Fabrication of Micro-Holes with High Aspect Ratios in Cf/SiC Composites Using Coaxial Waterjet-Assisted Nanosecond Laser Drilling
by Chenhu Yuan, Zenggan Bian, Yue Cao, Yinan Xiao, Bin Wang, Jianting Guo and Liyuan Sheng
Micromachines 2025, 16(7), 811; https://doi.org/10.3390/mi16070811 - 14 Jul 2025
Viewed by 272
Abstract
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly [...] Read more.
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly examined. The results reveal that, for the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in the Cf/SiC composite, the increasing of waterjet velocity enhances the material removal rate and micro-hole depth, but reduces the micro-hole diameter and taper angle. The coaxial waterjet isolates the laser-ablated region and cools down the corresponding region rapidly, leading to the formation of a mixture of SiC, SiO2, and Si on the surface. As the coaxial waterjet velocity increases, the morphology of residual surface products changes from a net-like structure to individual spheres. Coaxial waterjet-assisted nanosecond laser drilling, with a waterjet velocity of 9.61 m/s, achieves micro-holes with a good balance between efficiency and quality. For the fabrication of micro-holes with a high aspect ratio in Cf/SiC composites, micro-holes fabricated by nanosecond laser drilling in air exhibit obvious taper features, which should be ascribed to the combined effects of spattering slag, plasma, and energy dissipation. The application of coaxial waterjet-assisted nanosecond laser drilling on micro-holes fabricated by laser drilling in air effectively expands the hole diameter. The fabricated micro-holes have very small taper angles, with clean wall surfaces and almost no reaction products. This approach, combining nanosecond laser drilling in air followed by coaxial waterjet-assisted nanosecond laser drilling, offers a promising technique for fabricating high-quality micro-holes with high aspect ratios in Cf/SiC composites. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

15 pages, 3898 KiB  
Article
Wireless Temperature Monitoring of a Shaft Based on Piezoelectric Energy Harvesting
by Piotr Micek and Dariusz Grzybek
Energies 2025, 18(14), 3620; https://doi.org/10.3390/en18143620 - 9 Jul 2025
Viewed by 243
Abstract
Wireless structural health monitoring is needed for machine elements of which the working motions prevent wired monitoring. Rotating machine shafts are such elements. Wired monitoring of the rotating shaft requires making significant changes to the shaft structure, primarily drilling a hole in the [...] Read more.
Wireless structural health monitoring is needed for machine elements of which the working motions prevent wired monitoring. Rotating machine shafts are such elements. Wired monitoring of the rotating shaft requires making significant changes to the shaft structure, primarily drilling a hole in the longitudinal axis of the shaft and installing a slip ring assembly at the end of the shaft. Such changes to the shaft structure are not always possible. This paper proposes the use of piezoelectric energy harvesting from a rotating shaft to power wireless temperature monitoring of the shaft surface. The main components of presented wireless temperature monitoring are three piezoelectric composite patches, three thermal fuses, a system for storing and distributing the harvested energy, and a radio transmitter. This article contains the results of experimental research of such wireless monitoring on a dedicated laboratory stand. This research included four connections of piezoelectric composite patches: delta, star, parallel, and series for different capacities of a storage capacitor. Based on experimental results, three parameters that influence the frequency of sending data packets by the presented wireless temperature monitoring are identified: amplitude of stress in the rotating shaft, rotation speed of the shaft, and the capacity of a storage capacitor. Full article
(This article belongs to the Special Issue Innovations and Applications in Piezoelectric Energy Harvesting)
Show Figures

Figure 1

15 pages, 3286 KiB  
Article
Enhanced Sensitivity Microfluidic Microwave Sensor for Liquid Characterization
by Kim Ho Yeap, Kai Bor Tan, Foo Wei Lee, Han Kee Lee, Nuraidayani Effendy, Wei Chun Chin and Pek Lan Toh
Processes 2025, 13(7), 2183; https://doi.org/10.3390/pr13072183 - 8 Jul 2025
Viewed by 354
Abstract
This paper presents the development and analysis of a planar microfluidic microwave sensor featuring three circular complementary split-ring resonators (CSRRs) fabricated on an RO3035 substrate. The sensor demonstrates enhanced sensitivity in characterizing liquids contained in a fine glass capillary tube by leveraging a [...] Read more.
This paper presents the development and analysis of a planar microfluidic microwave sensor featuring three circular complementary split-ring resonators (CSRRs) fabricated on an RO3035 substrate. The sensor demonstrates enhanced sensitivity in characterizing liquids contained in a fine glass capillary tube by leveraging a novel configuration: a central 5-split-ring CSRR with a drilled hole to suspend the capillary, flanked by two 2-split-ring CSRRs to improve the band-stop filtering effect. The sensor’s performance is benchmarked against another CSRR-based microwave sensor with a similar configuration. High linearity is observed (R2 > 0.99), confirming its capability for precise ethanol concentration prediction. Compared to the replicated square CSRR design from the literature, the proposed sensor achieves a 35.22% improvement in sensitivity, with a frequency shift sensitivity of 567.41 kHz/% ethanol concentration versus 419.62 kHz/% for the reference sensor. The enhanced sensitivity is attributed to several key design strategies: increasing the intrinsic capacitance by enlarging the effective area and radial slot width to amplify edge capacitive effects, adding more split rings to intensify the resonance dip, placing additional CSRRs to improve energy extraction at resonance, and adopting circular CSRRs for superior electric field confinement. Additionally, the proposed design operates at a lower resonant frequency (2.234 GHz), which not only reduces dielectric and radiation losses but also enables the use of more cost-effective and power-efficient RF components. This advantage makes the sensor highly suitable for integration into portable and standalone sensing platforms. Full article
(This article belongs to the Special Issue Development of Smart Materials for Chemical Sensing)
Show Figures

Figure 1

16 pages, 3262 KiB  
Article
Comparison of Acoustic Tomography and Drilling Resistance for the Internal Assessment of Urban Trees in Madrid
by Miguel Esteban, Guadalupe Olvera-Licona, Gabriel Humberto Virgen-Cobos and Ignacio Bobadilla
Forests 2025, 16(7), 1125; https://doi.org/10.3390/f16071125 - 8 Jul 2025
Viewed by 225
Abstract
Acoustic tomography is a non-destructive technique used in the internal assessment of standing trees. Various researchers have focused on developing analytical tools using this technique, demonstrating that they can detect internal biodeterioration in cross-sections with good accuracy. This study evaluates the use of [...] Read more.
Acoustic tomography is a non-destructive technique used in the internal assessment of standing trees. Various researchers have focused on developing analytical tools using this technique, demonstrating that they can detect internal biodeterioration in cross-sections with good accuracy. This study evaluates the use of two ultrasonic wave devices with different frequencies (USLab and Sylvatest Duo) and a stress wave device (Microsecond Timer) to generate acoustic tomography using ImageWood VC1 software. The tests were carried out on 12 cross-sections of urban trees in the city of Madrid of the species Robinia pseudoacacia L., Platanus × hybrida Brot., Ulmus pumila L., and Populus alba L. Velocity measurements were made, forming a diffraction mesh in both standing trees and logs after cutting them down. An inspection was carried out with a perforation resistance drill (IML RESI F-400S) in the radial direction in each section, which allowed for more precise identification of defects and differentiating between holes and cracks. The various defects were determined with greater accuracy in the tomographic images taken with the higher-frequency equipment (45 kHz), and the combination of ultrasonic tomography and the use of the inspection drill can provide a more accurate representation of the defects. Full article
(This article belongs to the Special Issue Wood Properties: Measurement, Modeling, and Future Needs)
Show Figures

Figure 1

18 pages, 2702 KiB  
Article
Real-Time Depth Monitoring of Air-Film Cooling Holes in Turbine Blades via Coherent Imaging During Femtosecond Laser Machining
by Yi Yu, Ruijia Liu, Chenyu Xiao and Ping Xu
Photonics 2025, 12(7), 668; https://doi.org/10.3390/photonics12070668 - 2 Jul 2025
Viewed by 362
Abstract
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, [...] Read more.
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, thereby effectively preventing backside damage. To tackle this issue, a spectrum-domain coherent imaging technique has been developed. This innovative approach adapts the fundamental principle of fiber-based Michelson interferometry by integrating the air-film hole into a sample arm configuration. A broadband super-luminescent diode with a 830 nm central wavelength and a 26 nm spectral bandwidth serves as the coherence-optimized illumination source. An optimal normalized reflectivity of 0.2 is established to maintain stable interference fringe visibility throughout the drilling process. The system achieves a depth resolution of 11.7 μm through Fourier transform analysis of dynamic interference patterns. With customized optical path design specifically engineered for through-hole-drilling applications, the technique demonstrates exceptional sensitivity, maintaining detection capability even under ultralow reflectivity conditions (0.001%) at the hole bottom. Plasma generation during laser processing is investigated, with plasma density measurements providing optical thickness data for real-time compensation of depth measurement deviations. The demonstrated system represents an advancement in non-destructive in-process monitoring for high-precision laser machining applications. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

15 pages, 4173 KiB  
Article
Optimization of Chip Morphology in Deep Hole Trepanning of Titanium Alloy
by Fan Xie, Xiaolan Han, Lipeng Qiu and Haikuan Ma
Processes 2025, 13(7), 2082; https://doi.org/10.3390/pr13072082 - 1 Jul 2025
Viewed by 262
Abstract
Deep hole trepanning of large-diameter titanium alloy rods presents several challenges, including chip breaking, chip clogging, tool wear, and chipping. To address these issues, an optimized multi-tooth trepanning design was developed. An L9 orthogonal experimental array was employed to assess the influence of [...] Read more.
Deep hole trepanning of large-diameter titanium alloy rods presents several challenges, including chip breaking, chip clogging, tool wear, and chipping. To address these issues, an optimized multi-tooth trepanning design was developed. An L9 orthogonal experimental array was employed to assess the influence of cutting speed, feed rate, and cutting fluid pressure on the chip volume ratio and to determine optimal process parameters. Results indicate that the impact of process parameters on the chip volume ratio of the first and third cutting teeth follows the order of cutting speed, feed rate, and cutting fluid pressure. Optimal chip morphology for internal chip removal is achieved with a cutting speed of 63.3 m·min−1, a feed rate of 0.18 mm·r−1, and a cutting fluid pressure of 4 MPa. Conversely, improper parameter matching can result in numerous long spiral chips, causing adhesive wear, diffusion wear of the multi-tooth drill, and severe chipping of the cutting edge. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 5900 KiB  
Article
Vibration Damage Analysis of Bottom Hole Assembly Under Axial Impact Based on Dynamic Analysis
by Qilong Xue, Yafeng Li, Jianbo Jia and Lun Zhao
Appl. Sci. 2025, 15(13), 7388; https://doi.org/10.3390/app15137388 - 30 Jun 2025
Cited by 1 | Viewed by 242
Abstract
Impact Drilling Technology is one of the most effective methods for enhancing the penetration rate and efficiency in hard rock formations. Downhole axial vibration impact tools can provide a stable impact load, but they also increase the complexity of the Bottom Hole Assembly [...] Read more.
Impact Drilling Technology is one of the most effective methods for enhancing the penetration rate and efficiency in hard rock formations. Downhole axial vibration impact tools can provide a stable impact load, but they also increase the complexity of the Bottom Hole Assembly (BHA) motion. Addressing the problem of vibration fatigue in the lower BHA when subjected to high-frequency impact stresses during impact drilling, this study utilizes finite-element impact modules and Design-Life fatigue analysis software to establish a nonlinear dynamic model of the drill string assembly under axial excitation. It investigates the influence patterns of control parameters, such as the impact energy and impact frequency, on BHA vibration damage and rock-breaking efficiency. The results show that the vibration characteristics of the BHA are significantly affected by the impact tool’s control parameters. Increasing the input impact energy intensifies the amplitude of alternating stress in the drill string system. Meanwhile, the equivalent stress fluctuation of the drill string tends to stabilize at high frequencies above 100 Hz, indicating that high-frequency impacts are beneficial for mitigating vibration damage and prolonging the service life of the BHA. This study provides a theoretical basis for reducing the drill string fatigue damage and optimizing the drilling parameters for an improved performance. Full article
Show Figures

Figure 1

21 pages, 4522 KiB  
Article
A Novel Adaptive Transient Model of Gas Invasion Risk Management While Drilling
by Yuqiang Zhang, Xuezhe Yao, Wenping Zhang and Zhaopeng Zhu
Appl. Sci. 2025, 15(13), 7256; https://doi.org/10.3390/app15137256 - 27 Jun 2025
Viewed by 223
Abstract
The deep and ultra-deep oil and gas resources often have the characteristics of high temperature and high pressure, with complex pressure systems and narrow safety density windows, so risks such as gas invasion and overflow are easy to occur during the drilling. In [...] Read more.
The deep and ultra-deep oil and gas resources often have the characteristics of high temperature and high pressure, with complex pressure systems and narrow safety density windows, so risks such as gas invasion and overflow are easy to occur during the drilling. In response to the problems of low management efficiency and large gas kick by traditional gas invasion treatment methods, this paper respectively established and compared three intelligent control models for bottom hole pressure (BHP) based on a PID controller, a fuzzy PID controller, and a fuzzy neural network PID controller based on the non-isothermal gas–liquid–solid three-phase transient flow heat transfer model in the annulus. The results show that compared with the PID controller and the fuzzy PID controller, the fuzzy neural network PID controller can adjust the control parameters adaptively and optimize the control rules in real-time; the efficiency of the fuzzy neural network PID controller to deal with a gas kick is improved by 45%, and the gas kick volume in the process of gas kick is reduced by 63.12%. The principal scientific novelty of this study lies in the integration of a fuzzy neural network PID controller with a non-isothermal three-phase flow model, enabling adaptive and robust bottom hole pressure regulation under complex gas invasion conditions, which is of great significance for reducing drilling risks and ensuring safe and efficient drilling. Full article
(This article belongs to the Special Issue Development and Application of Intelligent Drilling Technology)
Show Figures

Figure 1

24 pages, 23575 KiB  
Article
Influence of the Drilling Parameters in the Single-Lip Deep-Hole Drilling Process on the Surface Integrity of Nickel-Based Alloy
by Tao Wu, Fangchao Zhang, Haoguang Zhou and Dong Zhang
Machines 2025, 13(7), 554; https://doi.org/10.3390/machines13070554 - 26 Jun 2025
Viewed by 340
Abstract
Single-lip deep-hole drilling is a key technology for the precision machining of high-temperature nickel-based alloy pore structures in aero engines. However, the intense thermo-mechanical coupling effects during machining can easily lead to surface integrity deterioration, and the correlation mechanism between microstructure and properties [...] Read more.
Single-lip deep-hole drilling is a key technology for the precision machining of high-temperature nickel-based alloy pore structures in aero engines. However, the intense thermo-mechanical coupling effects during machining can easily lead to surface integrity deterioration, and the correlation mechanism between microstructure and properties remains unclear. By adjusting the spindle speed and feed rate, a series of orthogonal experiments were carried out to study the integrity characteristics of the machined surface, including surface morphology, roughness, work hardening, and subsurface microstructure. The results reveal gradient structural features along radial depth: a dynamic recrystallized layer (RL) at the surface and a plastically deformed layer (PDL) containing high-density subgrains/distorted grains in the subsurface. With the increase in the spindle speed, the recrystallization phenomenon is intensified, the RL ratio of the machined-affected zone (MAZ) is increased, and the surface roughness is reduced to ~0.5 μm. However, excessive heat input will reduce the nanohardness. Low feed rates (<0.012 mm/rev) effectively suppress pit defects, whereas high feed rates (≥0.014 mm/rev) trigger pit density resurgence through shear instability. Progressive material removal rate (MRR) elevation drives concurrent PDL thickness reduction and RL proportion growth. Optimal medium MRR range (280–380 mm3/min) achieves synergistic RL/PDL optimization, reducing machining-affected zone thickness (MAZ < 35 μm) while maintaining fatigue resistance. These findings establish theoretical foundations for balancing efficiency and precision in aerospace high-temperature component manufacturing. Full article
(This article belongs to the Special Issue Design and Manufacturing for Lightweight Components and Structures)
Show Figures

Figure 1

Back to TopTop