Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,534)

Search Parameters:
Keywords = drag model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 12198 KB  
Article
Automated Local Measurement of Wall Shear Stress with AI-Assisted Oil Film Interferometry
by Mohammad Mehdizadeh Youshanlouei, Lorenzo Lazzarini, Alessandro Talamelli, Gabriele Bellani and Massimiliano Rossi
Sensors 2026, 26(2), 701; https://doi.org/10.3390/s26020701 - 21 Jan 2026
Abstract
Accurate measurement of wall shear stress (WSS) is essential for both fundamental and applied fluid dynamics, where it governs boundary-layer behavior, drag generation, and the performance of flow-control systems. Yet, existing WSS sensing methods remain limited by low spatial resolution, complex instrumentation, or [...] Read more.
Accurate measurement of wall shear stress (WSS) is essential for both fundamental and applied fluid dynamics, where it governs boundary-layer behavior, drag generation, and the performance of flow-control systems. Yet, existing WSS sensing methods remain limited by low spatial resolution, complex instrumentation, or the need for user-dependent calibration. This work introduces a method based on artificial intelligence (AI) and Oil-Film Interferometry, referred to as AI-OFI, that transforms a classical optical technique into an automated and sensor-like platform for local WSS detection. The method combines the non-intrusive precision of Oil-Film Interferometry with modern deep-learning tools to achieve fast and fully autonomous data interpretation. Interference patterns generated by a thinning oil film are first segmented in real time using a YOLO-based object detection network and subsequently analyzed through a modified VGG16 regression model to estimate the local film thickness and the corresponding WSS. A smart interrogation-window selection algorithm, based on 2D Fourier analysis, ensures robust fringe detection under varying illumination and oil distribution conditions. The AI-OFI system was validated in the high-Reynolds-number Long Pipe Facility at the Centre for International Cooperation in Long Pipe Experiments (CICLoPE), showing excellent agreement with reference pressure-drop measurements and conventional OFI, with an average deviation below 5%. The proposed framework enables reliable, real-time, and operator-independent wall shear stress sensing, representing a significant step toward next-generation optical sensors for aerodynamic and industrial flow applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

30 pages, 5810 KB  
Article
Scalable Dual-Servo Pectoral Fin Platform for Biomimetic Robotic Fish: Hydrodynamic Experiments and Quasi-Steady CFD
by Chaohui Zhang, Zhanlin Bai, Zhenghe Liu, Jinbo Kuang, Pei Li, Qifang Yan, Gaochao Zhao and Elena Atroshchenko
Machines 2026, 14(1), 121; https://doi.org/10.3390/machines14010121 - 21 Jan 2026
Abstract
Biomimetic pectoral fin propulsion offers a low-noise, highly maneuverable alternative to conventional propellers for next-generation underwater robotic systems. This study develops a manta ray-inspired dual-servo pectoral fin module with a CPG-based controller and employs it as a single-fin test article in a recirculating [...] Read more.
Biomimetic pectoral fin propulsion offers a low-noise, highly maneuverable alternative to conventional propellers for next-generation underwater robotic systems. This study develops a manta ray-inspired dual-servo pectoral fin module with a CPG-based controller and employs it as a single-fin test article in a recirculating water tunnel to quantify its hydrodynamic performance. Controlled experiments demonstrate that the fin generates stable thrust over a range of flapping amplitudes, with mean thrust increasing markedly as the amplitude rises, while also revealing an optimal frequency band in which thrust and thrust work are maximized and beyond which efficiency saturates. To interpret these trends, a quasi-steady CFD analysis using the k–ω SST turbulence model is conducted for a series of static angles of attack representative of the instantaneous effective angles experienced during flapping. The simulations show a transition from attached flow with favorable lift-to-drag ratios at moderate angles of attack to massive separation, deep stall, and high drag at extreme angles, corresponding to high-amplitude fin motion. By linking the experimentally observed thrust saturation to the onset of deep stall in the numerical flow fields, this work establishes a unified experimental–numerical framework that clarifies the hydrodynamic limits of pectoral fin propulsion and provides guidance for the design and operation of low-noise, highly maneuverable biomimetic underwater robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

22 pages, 56816 KB  
Article
Three-Dimensional CFD Simulations of the Flow Around an Infinitely Long Cylinder from Subcritical to Postcritical Reynolds Regimes Using DES
by Marielle de Oliveira, Fábio Saltara, Adrian Jackson, Mark Parsons and Bruno S. Carmo
Fluids 2026, 11(1), 26; https://doi.org/10.3390/fluids11010026 - 20 Jan 2026
Abstract
The flow around circular cylinders is a classic problem in fluid mechanics with significant implications for offshore engineering. While extensive numerical and experimental research has focused on the subcritical and critical Reynolds regimes, the supercritical and postcritical regimes remain challenging and relatively unexplored, [...] Read more.
The flow around circular cylinders is a classic problem in fluid mechanics with significant implications for offshore engineering. While extensive numerical and experimental research has focused on the subcritical and critical Reynolds regimes, the supercritical and postcritical regimes remain challenging and relatively unexplored, primarily due to the complex nature of turbulence and the high computational requirements. In this study, we perform three-dimensional detached eddy simulations using the finite volume method in OpenFOAM v1906, employing Menter’s k-ω SST turbulence model, to systematically investigate the flow past an infinitely long smooth cylinder from the subcritical through the postcritical regimes. The numerical setup ensures accurate near-wall resolution and reliable representation of unsteady flow features. We present a detailed analysis of vortex shedding patterns, wake evolution, and statistical properties of lift and drag coefficients for selected Reynolds numbers representative of each regime. The simulation results are benchmarked against experimental data from the literature, demonstrating good agreement for Strouhal number and mean drag. Special emphasis is placed on the evolution of wake topology and force coefficients as the flow transitions from laminar to fully turbulent conditions. The findings contribute to the limited numerical literature on flow around circular cylinders across subcritical, critical, supercritical, and postcritical Reynolds number regimes, providing insights that are fundamentally relevant to the broader scope of understanding vortex shedding phenomena. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

8 pages, 1024 KB  
Proceeding Paper
Simulation of a POCKETQUBE Nanosatellite Swarm Control System via a Linear Quadratic Regulator
by Jacques B. Ngoua Ndong Avele, Dalia A. Karaf and Vladimir K. Orlov
Eng. Proc. 2026, 124(1), 3; https://doi.org/10.3390/engproc2026124003 - 20 Jan 2026
Abstract
Developing an advanced simulation to control a swarm of 20 PocketQube nanosatellites using a linear quadratic regulator (LQR) involves several crucial steps that go beyond the initial scheme. A comprehensive approach requires a deep understanding of orbital mechanics and, in particular, the challenges [...] Read more.
Developing an advanced simulation to control a swarm of 20 PocketQube nanosatellites using a linear quadratic regulator (LQR) involves several crucial steps that go beyond the initial scheme. A comprehensive approach requires a deep understanding of orbital mechanics and, in particular, the challenges presented by the nanosatellite platform. The inherent limitations in terms of nanosatellite power, propulsion, and communications systems necessitate careful orbital selection and maneuver planning to achieve mission objectives efficiently and reliably. This includes optimizing launch windows, understanding atmospheric drag effects in low Earth orbits (LEOs), and designing robust attitude control systems to maintain the desired pointing for scientific instruments or communications links. Our work focused on simulating the attitude control of PocketQube nanosatellites in a swarm using the R2022a release of the Matlab/Simulink environment. First, we provided a mathematical model for the relative coordinates of a nanosatellite swarm. Second, we developed a mathematical model of the linear quadratic regulator implementation in the relative navigation. Third, we simulated the attitude control of 20 PocketQube nanosatellites using the Matlab/Simulink environment. Finally, we provided the swarm scenario and attitude control system data. The simulation of an attitude control system for 20 PocketQube nanosatellites using an LQR controller in a swarm successfully demonstrated the stabilization capabilities essential for swarm operations in the space environment. A link to a video of the simulation is provided in the Results section. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

20 pages, 6615 KB  
Article
Numerical Analysis of Shock Control Bumps for Delaying Transonic Buffet Boundary on a Swept Wing
by Shenghua Zhang, Feng Deng and Zao Ni
Aerospace 2026, 13(1), 98; https://doi.org/10.3390/aerospace13010098 - 19 Jan 2026
Viewed by 46
Abstract
Transonic shock buffet is a complex flow phenomenon characterized by self-sustained shock oscillations, which severely limits the flight envelope of modern civil aircraft. While Shock Control Bumps (SCBs) have been widely studied for drag reduction, their potential for delaying the buffet boundary on [...] Read more.
Transonic shock buffet is a complex flow phenomenon characterized by self-sustained shock oscillations, which severely limits the flight envelope of modern civil aircraft. While Shock Control Bumps (SCBs) have been widely studied for drag reduction, their potential for delaying the buffet boundary on swept wings has yet to be fully explored. This study employs numerical analysis to investigate the efficacy of three-dimensional (3D) contour SCBs in delaying the buffet boundary of the NASA Common Research Model (CRM) wing. The buffet boundary is identified using both the lift-curve slope change and trailing-edge pressure divergence criteria. The results reveal that 3D SCBs generate streamwise vortices that energize the boundary layer, thereby not only weakening local shock strength but, more critically, suppressing the spanwise expansion of shock-induced separation. Collectively, the reduction in shock strength and the containment of spanwise separation delay the buffet boundary, thereby improving the aerodynamic efficiency of the wing. Two configurations, designed at different lift conditions (SCB-L at CL=0.460 and SCB-H at CL=0.507), demonstrate a trade-off between buffet delay and off-design drag reduction. The SCB-H configuration achieves a buffet boundary lift coefficient improvement of 6.3% but exhibits limited drag reduction at lower angles of attack, whereas the SCB-L offers a balanced improvement of 4.0%, with a broader effective drag-reduction range. These results demonstrate that effective suppression of spanwise flow is key to delaying swept-wing buffet and establish a solid reference framework for the buffet-oriented design of SCBs. Full article
(This article belongs to the Special Issue Advancing Fluid Dynamics in Aerospace Applications)
Show Figures

Figure 1

18 pages, 2899 KB  
Article
Numerical Investigation on Drag Reduction Mechanisms of Biomimetic Microstructure Surfaces
by Jiangpeng Liu, Jie Xu, Chaogang Ding, Debin Shan and Bin Guo
Biomimetics 2026, 11(1), 77; https://doi.org/10.3390/biomimetics11010077 - 18 Jan 2026
Viewed by 153
Abstract
Biomimetic microstructured surfaces offer a promising passive strategy for drag reduction in marine and aerospace applications. This study employs computational fluid dynamics (CFD) simulations to systematically investigate the drag reduction performance and mechanisms of groove-type microstructures, addressing both geometry selection and dimensional optimization. [...] Read more.
Biomimetic microstructured surfaces offer a promising passive strategy for drag reduction in marine and aerospace applications. This study employs computational fluid dynamics (CFD) simulations to systematically investigate the drag reduction performance and mechanisms of groove-type microstructures, addressing both geometry selection and dimensional optimization. Three representative geometries (V-groove, blade-groove, and arc-groove) were compared under identical flow conditions (inflow velocity 5 m/s, Re = 7.5 × 105) using the shear-stress-transport (SST k-ω) turbulence model, and the third-generation Ω criterion was employed for threshold-independent vortex identification. The results establish a clear performance hierarchy: blade-groove achieves the highest drag reduction rate of 18.2%, followed by the V-groove (16.5%) and arc-groove (14.7%). The analysis reveals that stable near-wall microvortices form dynamic vortex isolation layers that separate the high-speed flow from the groove valleys, with blade grooves generating the strongest and most fully developed vortex structures. A parametric study of blade-groove aspect ratios (h+/s+ = 0.35–1.0) further demonstrates that maintaining h+/s+ ≥ 0.75 preserves effective vortex-isolation layers, whereas reducing h+/s+ below 0.6 causes vortex collapse and performance degradation. These findings establish a comprehensive design framework combining geometry selection (blade-groove > V-groove > arc-groove) with dimensional optimization criteria, providing quantitative guidance for practical biomimetic drag-reducing surfaces. Full article
(This article belongs to the Special Issue Adhesion and Friction in Biological and Bioinspired Systems)
Show Figures

Figure 1

20 pages, 3926 KB  
Article
Hydrodynamic Performance of Cubic Artificial Reefs During Deployment Process Based on Smoothed Particle Hydrodynamics
by Wenhua Chu, Shijing Lu, Zijing Zhao, Xinyang Zhang and Yulei Huang
Fishes 2026, 11(1), 59; https://doi.org/10.3390/fishes11010059 - 16 Jan 2026
Viewed by 86
Abstract
Currently, research on the hydrodynamic characteristics of artificial reef deployment still faces challenges such as insufficient environmental coupling, but accurate simulation of the deployment process holds significant engineering importance for optimizing deployment efficiency and ensuring reef stability. This study employs the Smoothed Particle [...] Read more.
Currently, research on the hydrodynamic characteristics of artificial reef deployment still faces challenges such as insufficient environmental coupling, but accurate simulation of the deployment process holds significant engineering importance for optimizing deployment efficiency and ensuring reef stability. This study employs the Smoothed Particle Hydrodynamics (SPH) method to establish a 3D numerical model, focusing on the influence of key parameters—inflow velocity and water entry angle—on the hydrodynamic characteristics of cubic artificial reef deployment. The results indicate that under flow velocities of 0.4–0.5 m/s, pressure fluctuations are relatively minor, with peak pressure gradients below 15 kPa/m, exhibiting a gradual trend, while particle concentration remains high, and drag gradually increases. At flow velocities of 0.6–0.8 m/s, the maximum pressure at the bottom reaches up to 35 kPa, with low-pressure areas at the tail dropping to −10 kPa; particle concentration decreases compared to conditions at 0.4–0.5 m/s; settling time extends from 8.4 s to 12 s, representing a 42% increase. Under different water entry angles, drag varies nonlinearly with the angle, reaching its maximum at 20° and its minimum at 25°, with a reduction of approximately 47% compared to the maximum. The anti-sliding safety factor and anti-overturning safety factor are used to assess the stability of the cubic reef placed on the seabed. Across different inflow velocities, the anti-sliding safety factor of the cubic artificial reef significantly exceeds 1.2, whereas the anti-overturning safety factor is below 1.2 at 0.4 m/s but exceeds 1.2 at velocities of 0.5 m/s and above, indicating that the reef maintains stability under the majority of these flow conditions. Our findings provide a scientific basis for the deployment process, site selection, and geometric design of cubic artificial reefs, offering valuable insights for the precise deployment and structural optimization of artificial reefs in marine ranching construction. Full article
Show Figures

Figure 1

45 pages, 13793 KB  
Article
Conceptual Design and Integrated Parametric Framework for Aerodynamic Optimization of Morphing Subsonic Blended-Wing-Body UAVs
by Liguang Kang, Sandeep Suresh Babu, Muhammet Muaz Yalçın, Abdel-Hamid Ismail Mourad and Mostafa S. A. ElSayed
Appl. Mech. 2026, 7(1), 5; https://doi.org/10.3390/applmech7010005 - 12 Jan 2026
Viewed by 230
Abstract
This paper presents a unified aerodynamic design and optimization framework for morphing Blended-Wing-Body (BWB) Unmanned Aerial Vehicles (UAVs) operating in subsonic and near-transonic regimes. The proposed framework integrates parametric CAD modeling, Computational Fluid Dynamics (CFD), and surrogate-based optimization using Response Surface Methodology (RSM) [...] Read more.
This paper presents a unified aerodynamic design and optimization framework for morphing Blended-Wing-Body (BWB) Unmanned Aerial Vehicles (UAVs) operating in subsonic and near-transonic regimes. The proposed framework integrates parametric CAD modeling, Computational Fluid Dynamics (CFD), and surrogate-based optimization using Response Surface Methodology (RSM) to establish a generalized approach for geometry-driven aerodynamic design under multi-Mach conditions. The study integrates classical aerodynamic principles with modern surrogate-based optimization to show that adaptive morphing geometries can maintain efficiency across varied flight conditions, establishing a scalable and physically grounded framework that advances real-time, high-performance aerodynamic adaptation for next-generation BWB UAVs. The methodology formulates the optimization problem as drag minimization under constant lift and wetted-area constraints, enabling systematic sensitivity analysis of key geometric parameters, including sweep, taper, and twist across varying flow regimes. Theoretical trends are established, showing that geometric twist and taper dominate lift variations at low Mach numbers, whereas sweep angle becomes increasingly significant as compressibility effects intensify. To validate the framework, a representative BWB UAV was optimized at Mach 0.2, 0.4, and 0.8 using a parametric ANSYS Workbench environment. Results demonstrated up to a 56% improvement in lift-to-drag ratio relative to an equivalent conventional UAV and confirmed the theoretical predictions regarding the Mach-dependent aerodynamic sensitivities. The framework provides a reusable foundation for conceptual design and optimization of morphing aircraft, offering practical guidelines for multi-regime performance enhancement and early-stage design integration. Full article
Show Figures

Figure 1

14 pages, 2314 KB  
Article
Influence of Mo and Ni Alloying on Recrystallization Kinetics and Phase Transformation in Quenched and Tempered Thick Steel Plates
by Xabier Azpeitia, Unai Mayo, Nerea Isasti, Eric Detemple, Hardy Mohrbacher and Pello Uranga
Materials 2026, 19(2), 290; https://doi.org/10.3390/ma19020290 - 10 Jan 2026
Viewed by 204
Abstract
The production of heavy gauge quenched and tempered steel plates requires alloying strategies that ensure adequate hardenability and microstructural uniformity under limited cooling rates. Molybdenum (Mo) and nickel (Ni) are key elements in this context, as they influence both hot-working behavior and phase [...] Read more.
The production of heavy gauge quenched and tempered steel plates requires alloying strategies that ensure adequate hardenability and microstructural uniformity under limited cooling rates. Molybdenum (Mo) and nickel (Ni) are key elements in this context, as they influence both hot-working behavior and phase transformation kinetics. This study investigates the effect of Mo (0.25–0.50 wt%) and Ni (0–1.00 wt%) additions on static recrystallization and transformation behavior using laboratory thermomechanical simulations representative of thick plate rolling conditions. Multipass and double-hit torsion tests were performed to determine the non-recrystallization temperature (Tnr) and quantify softening kinetics, while dilatometry was employed to construct Continuous Cooling Transformation (CCT) diagrams and assess hardenability. Results indicate that Mo significantly increases Tnr and delays recrystallization through a solute drag mechanism, whereas Ni exerts a minor but measurable effect, likely associated with stacking fault energy rather than classical solute drag. Both elements reduce ferrite and bainite transformation temperatures, enhancing hardenability; however, Mo alone cannot suppress ferrite formation at practical cooling rates, requiring combined Mo–Ni additions to achieve fully martensitic microstructures. These findings provide insight into alloy design for thick plate applications and highlight the limitations of existing predictive models for Ni-containing steels. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 3262 KB  
Article
A Study on an Extrapolation Method for the Propulsive Performance of the Pumpjet Propulsor of a Submarine
by Woo-Seok Jin, Moon-Chan Kim, Jin-Wook Kim, Il-Ryong Park and Han-Shin Seol
J. Mar. Sci. Eng. 2026, 14(2), 141; https://doi.org/10.3390/jmse14020141 - 9 Jan 2026
Viewed by 125
Abstract
Accurately predicting the full-scale performance of submarines is challenging due to their complex propulsor systems and limited sea-trial information. This study investigated a full-scale extrapolation method from model tests for a submarine pumpjet propulsor, as a reliable method has not been established. Three [...] Read more.
Accurately predicting the full-scale performance of submarines is challenging due to their complex propulsor systems and limited sea-trial information. This study investigated a full-scale extrapolation method from model tests for a submarine pumpjet propulsor, as a reliable method has not been established. Three extrapolation methods from ITTC reports were reviewed and applied to the pumpjet propulsor of the SUBOFF submarine, then compared with full-scale CFD results. Among the reviewed methods (Methods 1 to 3), Method 3, which separates the duct and stator as appendages of the hull and includes the entire pumpjet in the POW test but uses only the rotor’s force, was the most reasonable, but showed significant differences from the calculated results, especially in the PD. This study proposed a modified Method 3, improving it by adopting the continuity theory to predict the oncoming velocity of a rotor and by applying a correction factor for the drag of the duct and stator. The modified PJP extrapolation method 3 showed excellent agreement with the full-scale CFD analysis results across all propulsion coefficients, with a minimal error of 0.45% for PD. Despite the structural differences in PJPs, such as stators and longer ducts, velocity changes are dominated by the duct’s internal area. Therefore, the proposed extrapolation method is equally applicable to general ducted propellers. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 4672 KB  
Article
Shape Parameterization and Efficient Optimization Design Method for the Ray-like Underwater Gliders
by Daiyu Zhang, Daxing Zeng, Heng Zhou, Chaoming Bao and Qian Liu
Biomimetics 2026, 11(1), 58; https://doi.org/10.3390/biomimetics11010058 - 8 Jan 2026
Viewed by 222
Abstract
To address the challenges of high computational cost and lengthy design cycles in the high-precision optimization of ray-like underwater gliders, this study proposes a high-accuracy, low-cost parametric modeling and optimization method. The proposed framework begins by extracting the characteristic contours of the manta [...] Read more.
To address the challenges of high computational cost and lengthy design cycles in the high-precision optimization of ray-like underwater gliders, this study proposes a high-accuracy, low-cost parametric modeling and optimization method. The proposed framework begins by extracting the characteristic contours of the manta ray and reconstructing the airfoil sections using the Class-Shape Transformation (CST) method, resulting in a flexible parametric geometry capable of smooth deformation. High-fidelity Computational Fluid Dynamics (CFD) simulations are employed to evaluate the hydrodynamic characteristics, and detailed flow field analyses are conducted to identify the most influential geometric features affecting lift and drag performance. On this basis, a Kriging-based sequential optimization framework is developed. The surrogate model is adaptively refined through dynamic infilling of sample points based on combined Mean Squared Prediction (MSP) and Expected Improvement (EI) criteria, thus improving optimization efficiency while maintaining predictive accuracy. Comparative case studies demonstrate that the proposed method achieves a 116% improvement in lift-to-drag ratio and a more uniform flow distribution, confirming its effectiveness in enhancing both design accuracy and computational efficiency. The results indicate that this approach provides a practical and efficient tool for the parametric design and hydrodynamic optimization of bio-inspired underwater vehicles. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Biomechanics and Biomimetics)
Show Figures

Figure 1

26 pages, 15207 KB  
Article
Solid–Liquid Flow Analysis Using Simultaneous Two-Phase PIV in a Stirred Tank Bioreactor
by Mohamad Madani, Angélique Delafosse, Sébastien Calvo and Dominique Toye
Fluids 2026, 11(1), 17; https://doi.org/10.3390/fluids11010017 - 8 Jan 2026
Viewed by 273
Abstract
Solid–liquid stirred tanks are widely used in multiphase processes, including bioreactors for mesenchymal stem cell (MSC) culture, yet simultaneous experimental data for both dispersed and carrier phases remain limited. Here, a refractive index-matched (RIM) suspension of PMMA microparticles ( [...] Read more.
Solid–liquid stirred tanks are widely used in multiphase processes, including bioreactors for mesenchymal stem cell (MSC) culture, yet simultaneous experimental data for both dispersed and carrier phases remain limited. Here, a refractive index-matched (RIM) suspension of PMMA microparticles (dp=168μm, ρp/ρl0.96) in an NH4SCN solution is studied at an intermediate Reynolds number (Re5000), low Stokes number (St=0.078), and particle volume fractions 0.1αp0.5 v%. This system was previously established and studied for the effect of addition of particles on the carrier phase. In this work, a dual-camera PIV set-up provides simultaneous velocity fields of the liquid and particle phases in a stirred tank equipped with a three-blade down-pumping HTPGD impeller. The liquid mean flow and circulation loop remained essentially unchanged with particle loading, whereas particle mean velocities were lower than single-phase and liquid-phase values in the impeller discharge. Turbulence levels diverged between phases: liquid-phase turbulent kinetic energy (TKE) in the impeller region increased modestly with αp, while solid-phase TKE was attenuated. Slip velocity maps showed that particles lagged the fluid in the impeller jet and deviated faster from the wall in the upward flow, with slip magnitudes increasing with αp. An approximate axial force balance indicated that drag dominates over lift in the impeller and wall regions, while the balance is approximately satisfied in the tank bulk, providing an experimental benchmark for refining drag and lift models in this class of stirred tanks. Full article
Show Figures

Figure 1

17 pages, 3927 KB  
Article
Jumping Kinematics and Performance in Fighting Crickets Velarifictorus micado
by Yun Xing, Yan Zhang, Yu Yan and Jialing Yang
Biomimetics 2026, 11(1), 49; https://doi.org/10.3390/biomimetics11010049 - 7 Jan 2026
Viewed by 276
Abstract
Jumping is a fundamental locomotion in insects, offering high performance and efficient movement. However, the relationships between the jumping force and performance remain inadequately understood. Here, we combine experimental measurements with a theoretical model to investigate the jumping kinematics and performance of crickets [...] Read more.
Jumping is a fundamental locomotion in insects, offering high performance and efficient movement. However, the relationships between the jumping force and performance remain inadequately understood. Here, we combine experimental measurements with a theoretical model to investigate the jumping kinematics and performance of crickets Velarifictorus micado. We examine how jumping force, gravity, aerodynamic drag, and take-off angle influence the jumping velocity, displacement, and power output of the crickets. We discuss the mechanistic advantages of various jumping force designs and demonstrate that the front slow-loaded force adopted by crickets enables greater power output while minimizing take-off displacement and acceleration time. The results show that aerodynamic drag exerts negligible influence, whereas gravity mainly affects the vertical propulsive component during the take-off phase. The gravitational effect leads to a decrease in resultant velocity and displacement with increasing take-off angle. This study advances our understanding of the mechanical principles governing jumps of insects and provides valuable insights for the design of high-performance jumping robots and catapult systems. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

32 pages, 31698 KB  
Article
Sub-Scale Flight Testing of Drag Reduction Features for Amphibious Light Sport Aircraft
by Jackson Tenhave, Keith Joiner and Dominic Hill
Aerospace 2026, 13(1), 59; https://doi.org/10.3390/aerospace13010059 - 7 Jan 2026
Viewed by 166
Abstract
Amphibious light sport aircraft (LSA) combine the versatility of land and water operations but suffer aerodynamic penalties from their inherent design requirements, limiting cruise performance. This study investigates two drag reduction features for a proposed high-performance amphibious LSA developed by Altavia Aerospace. The [...] Read more.
Amphibious light sport aircraft (LSA) combine the versatility of land and water operations but suffer aerodynamic penalties from their inherent design requirements, limiting cruise performance. This study investigates two drag reduction features for a proposed high-performance amphibious LSA developed by Altavia Aerospace. The concept targets a cruise speed of 140 KTAS, using retractable wingtip pontoons and a novel retractable hull step fairing. A 1/5-scale flying model was built and flight tested to assess the aerodynamic benefits of these features and evaluate sub-scale flight testing as a tool for drag measurement. Estimated propulsive power and GPS-based speed data corrected for wind were used to compute an estimated 17% reduction in drag coefficient by retracting the pontoons. The hull step fairing showed no measurable gains, likely due to inconsistent battery voltage, despite literature indicating potential 5% drag savings. Drag measurement precision of 7–9% was achieved using the power-based method, with potential precision better than 3% achievable if the designed thrust data system were fully validated and an autopilot integrated. A performance estimation for Altavia Aerospace’s concept predicts a cruise speed of 134 KTAS at 10,000 ft. Achieving the target of 140 KTAS may require further aerodynamic refinement, with investigation of a tandem seating configuration to reduce frontal area recommended. The study provides an initial drag assessment of retractable wingtip pontoons and demonstrates the potential of sub-scale flight testing for comparative drag analysis—two novel contributions to the field. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics (2nd Edition))
Show Figures

Figure 1

21 pages, 6409 KB  
Article
Numerical Study on Oil Particle Enrichment in a Rectangular Microfluidic Channel Based on Acoustic Standing Waves
by Zhenzhen Liu, Jingrui Wang, Yong Cai, Yan Liu, Xiaolei Hu and Haoran Yan
Micromachines 2026, 17(1), 79; https://doi.org/10.3390/mi17010079 - 7 Jan 2026
Viewed by 151
Abstract
This study presents a method for enriching oil-suspended particles within a rectangular microfluidic channel using acoustic standing waves. A modified Helmholtz equation is solved to establish the acoustic field model, and the equilibrium between acoustic radiation forces and viscous drag is described by [...] Read more.
This study presents a method for enriching oil-suspended particles within a rectangular microfluidic channel using acoustic standing waves. A modified Helmholtz equation is solved to establish the acoustic field model, and the equilibrium between acoustic radiation forces and viscous drag is described by combining Gor’kov potential theory with the Stokes drag model. Based on this force balance, the particle motion equation is derived, enabling the determination of the critical particle size necessary for efficient enrichment in oil-filled microchannels. A two-dimensional standing-wave microchannel model is subsequently developed, and the influences of acoustic, fluidic, and particle parameters on particle migration and aggregation are systematically investigated through theoretical analysis and numerical simulations. The results indicate that when the channel dimension and acoustic wavelength satisfy the half-wavelength resonance condition, a stable standing-wave field forms, effectively focusing suspended particles at the acoustic pressure nodes. Enrichment efficiency is found to be strongly dependent on inlet flow velocity, particle diameter, acoustic frequency, temperature, and particle density. Lower flow velocities and larger particle sizes result in higher enrichment efficiencies, with the most uniform and stable pressure distribution achieved when the acoustic frequency matches the resonant channel width. Increases in temperature and particle density enhance the acoustic radiation force, thereby accelerating the aggregation of particles. These findings offer theoretical foundations and practical insights for acoustically assisted online monitoring of wear particles in lubricating oils, contributing to advanced condition assessment and fault diagnosis in mechanical systems. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

Back to TopTop