Advances in Computational Methods for Biomechanics and Biomimetics

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Development of Biomimetic Methodology".

Deadline for manuscript submissions: 30 June 2026 | Viewed by 2917

Special Issue Editors

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
Interests: computational fluid dynamics; fish swimming; insect/bird flight; collective behavior; experimental fluid dynamics; cdiovascular and respiratory fluid dynamics

E-Mail Website
Guest Editor
Max Planck Institute of Animal Behavior, Konstanz, Germany
Interests: computational fluid dynamics; fish swimming; collective behavior; bio-inspired robots

E-Mail Website
Guest Editor
Material Research Lab, University of Illinois Urbana-Champaign, Champaign, IL, USA
Interests: computational mechanics; solid-liquid interaction; interfacial mechanics; nanomechanics

Special Issue Information

Dear Colleagues,

Over the past few decades, with the advancement of numerical techniques, computational methods have been extensively applied to uncover the mechanisms behind biological form and movement and to drive innovation in biomimetic design. By providing detailed and accurate physical insights, numerical simulations have significantly advanced our understanding of biomechanics in a wide range of fields, including cell movement and deformation, tissue development, cardiovascular and respiratory diseases, bone fracture healing, insect and bird flight, fish swimming, reptile locomotion, jumping, and more. These insights have, in turn, led to the development of novel biomimetic designs, such as biocompatible synthetic polymers, self-healing composites, shark skin-inspired riblets, micro aerial vehicles, fish robots, and other cutting-edge technologies.

In recent years, numerical techniques have undergone significant advancements in both algorithms and hardware. At the same time, their applications have expanded into new areas of biology, further inspiring innovative engineering designs. Moreover, with the progress in experimental techniques and the rise in artificial intelligence (AI), there is a growing trend toward integrating experimental measurements and machine learning with computational simulations to further propel research in biomechanics and biomimetics.

This Special Issue aims to showcase the latest advancements in computational methods, the integration of experimental data and AI, and their applications in biomechanics and biomimetics. Our goal is to highlight emerging frontiers in computational techniques and deepen the understanding of biological systems and their engineering applications. We welcome high-quality original research contributions in the following areas, including but not limited to the following:

  1. Computational studies of biomechanics and biomimetics, including
  • Cellular and molecular biomechanics
  • Cardiovascular and respiratory mechanics
  • Bone and cartilage mechanics
  • Insect/bird flight
  • Fish swimming
  • Reptile walking and jumping
  1. Development of computational methodologies, including:
  • Advances in computing techniques
  • Integration of experimental data with computational modeling
  • Application of artificial intelligence in computational biomechanics

Dr. Yu Pan
Dr. Liming Chao
Dr. Qingchang Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • computational methods
  • biomechanics
  • biomimetics
  • fluid dynamics
  • solid mechanics
  • fluid–structure interactions
  • integration method
  • AI for science

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

23 pages, 4672 KB  
Article
Shape Parameterization and Efficient Optimization Design Method for the Ray-like Underwater Gliders
by Daiyu Zhang, Daxing Zeng, Heng Zhou, Chaoming Bao and Qian Liu
Biomimetics 2026, 11(1), 58; https://doi.org/10.3390/biomimetics11010058 - 8 Jan 2026
Viewed by 301
Abstract
To address the challenges of high computational cost and lengthy design cycles in the high-precision optimization of ray-like underwater gliders, this study proposes a high-accuracy, low-cost parametric modeling and optimization method. The proposed framework begins by extracting the characteristic contours of the manta [...] Read more.
To address the challenges of high computational cost and lengthy design cycles in the high-precision optimization of ray-like underwater gliders, this study proposes a high-accuracy, low-cost parametric modeling and optimization method. The proposed framework begins by extracting the characteristic contours of the manta ray and reconstructing the airfoil sections using the Class-Shape Transformation (CST) method, resulting in a flexible parametric geometry capable of smooth deformation. High-fidelity Computational Fluid Dynamics (CFD) simulations are employed to evaluate the hydrodynamic characteristics, and detailed flow field analyses are conducted to identify the most influential geometric features affecting lift and drag performance. On this basis, a Kriging-based sequential optimization framework is developed. The surrogate model is adaptively refined through dynamic infilling of sample points based on combined Mean Squared Prediction (MSP) and Expected Improvement (EI) criteria, thus improving optimization efficiency while maintaining predictive accuracy. Comparative case studies demonstrate that the proposed method achieves a 116% improvement in lift-to-drag ratio and a more uniform flow distribution, confirming its effectiveness in enhancing both design accuracy and computational efficiency. The results indicate that this approach provides a practical and efficient tool for the parametric design and hydrodynamic optimization of bio-inspired underwater vehicles. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Biomechanics and Biomimetics)
Show Figures

Figure 1

16 pages, 3791 KB  
Article
Swimming Behavior of Percocypris pingi in the Wake of D-Shaped Obstacles: A Comparative Study of Single- and Dual-Fish Swimming in Complex Hydrodynamic Environments
by Lijian Ouyang, Qihao Meng, Qin Zhao, Liang Yu, Yike Li, Zebin Zhang, Li Tian, Zhiyuan Yang, Jiabin Lu and Weiwei Yao
Biomimetics 2025, 10(11), 749; https://doi.org/10.3390/biomimetics10110749 - 6 Nov 2025
Viewed by 627
Abstract
The changes in water flow caused by hydropower projects and river diversions have had a profound impact on aquatic ecosystems, especially due to artificial structures such as dams and bridge piers. This study investigates the swimming behavior differences between single and dual fish [...] Read more.
The changes in water flow caused by hydropower projects and river diversions have had a profound impact on aquatic ecosystems, especially due to artificial structures such as dams and bridge piers. This study investigates the swimming behavior differences between single and dual fish in the wake region behind a D-shaped obstacle, using Percocypris pingi as the experimental species. The results show that single fish efficiently utilize vortex energy through the Kármán gait, improving swimming efficiency, while the dual-fish group failed to maintain a stable Kármán gait, resulting in irregular swimming trajectories. However, the dual-fish group optimized wake utilization by maintaining a fore–aft linear alignment, improving swimming efficiency and resisting vortices. The conclusion indicates that mutual interference in group swimming affects swimming efficiency, with fish adjusting their swimming patterns to adapt to complex hydrodynamic conditions. By altering swimming formations, fish schools can adapt to the flow environment, offering new insights into the swimming behavior of fish and providing theoretical support for ecological conservation and hydropower project design. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Biomechanics and Biomimetics)
Show Figures

Graphical abstract

22 pages, 6940 KB  
Article
Experimental Framework for the Setup and Validation of Individualized Bone Conduction Hearing Computational Models
by Johannes Niermann, Ivo Dobrev, Linus Taenzer, Christof Röösli, Bart Van Damme and Flurin Pfiffner
Biomimetics 2025, 10(11), 738; https://doi.org/10.3390/biomimetics10110738 - 4 Nov 2025
Viewed by 700
Abstract
In bone conduction (BC) hearing, sound is transmitted directly to the cochlea via skull vibrations, bypassing the outer and middle ear. This provides a therapeutic option for patients with conductive or mixed hearing loss and single-sided deafness. Although finite-element models have advanced understanding [...] Read more.
In bone conduction (BC) hearing, sound is transmitted directly to the cochlea via skull vibrations, bypassing the outer and middle ear. This provides a therapeutic option for patients with conductive or mixed hearing loss and single-sided deafness. Although finite-element models have advanced understanding of the mechanisms underlying BC, progress toward personalized treatment strategies remains limited by a lack of standardized, experimentally validated, subject-specific models. This study proposes a hierarchical validation framework to support the development and validation of individualized computational models of the human head under BC stimulation. The framework spans four anatomical levels: system, subsystems, structures, and tissues. This approach enables systematic acquisition of data from intact cadaver heads down to isolated material domains. To demonstrate the applications of the framework, an experimental study was conducted on a single cadaver head, targeting three levels: the intact head (system), extracted bone pieces (structures), and isolated cortical layers (tissues). Subsystems were not addressed. High-resolution photon-counting computed tomography (CT) and energy-integrating cone-beam CT were used to acquire anatomical data. One-dimensional laser Doppler vibrometry was used to capture vibrational responses of bone pieces and cortical layers under wet and dry conditions. Representative results were analyzed to assess the impact of preparation state on resonance behavior. Comparative analysis showed that photon-counting CT provided superior structural resolution compared with energy-integrating cone-beam CT, particularly at the full-head (system) level. Vibrational measurements at the structure and tissue levels from the same anatomical region revealed broadly consistent resonance vibration patterns, enabling comparison of resonance frequencies. The influence of hydration state and thickness reduction on vibrational behavior was highlighted. The proposed framework provides a scalable methodology for validation of subject-specific BC models with the potential for more accurate BC simulations based on the hypothesis of functional variability rooted in anatomical variability. Obvious use cases would include the development of improved hearing aid designs and personalized treatments. In parallel, a successful correlation of anatomical and functional variability can serve as inspiration for design principles of metamaterials. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Biomechanics and Biomimetics)
Show Figures

Figure 1

17 pages, 1920 KB  
Article
Addressing Parameter Variability in Corneal Biomechanical Models: A Stepwise Approach for Parameters’ Optimization
by José González-Cabrero, Carmelo Gómez, Manuel Paredes and Francisco Cavas
Biomimetics 2025, 10(10), 683; https://doi.org/10.3390/biomimetics10100683 - 10 Oct 2025
Viewed by 744
Abstract
Biomechanical modeling of the cornea is crucial for understanding the progression of some ocular diseases and optimizing surgical treatments. However, hyperelastic non-linear material models, such as those used for corneal tissue, often yield highly variable parameter sets in the scientific literature, influenced by [...] Read more.
Biomechanical modeling of the cornea is crucial for understanding the progression of some ocular diseases and optimizing surgical treatments. However, hyperelastic non-linear material models, such as those used for corneal tissue, often yield highly variable parameter sets in the scientific literature, influenced by factors like the chosen optimization intervals and differences between tensile and inflation test curve optimization, both of which are addressed in this study. This variability complicates the understanding of corneal mechanical properties. In this research, the aim is to optimize and calibrate the key parameters of the corneal material model, particularly focusing on c1, c2, k1 and k2, using the Holzapfel–Gasser–Ogden (HGO) hyperelastic model, and a novel methodology is proposed that separately estimates the isotropic and anisotropic components in a stepwise manner, addressing the issue of multiple parameter sets fitting experimental curves similarly. This approach helps to standardize corneal material models and improve the reliability of parameter estimations. Moreover, accurate biomechanical characterization within this framework contributes not only to clinical applications but also to biomimetics, inspiring the design of artificial corneal substitutes and bioengineered materials. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Biomechanics and Biomimetics)
Show Figures

Graphical abstract

Other

Jump to: Research

31 pages, 4343 KB  
Systematic Review
Vehicle Aerodynamic Noise: A Systematic Review of Mechanisms, Simulation Methods, and Bio-Inspired Mitigation Strategies
by Tao Zou, Yifeng Fu and Pan Cao
Biomimetics 2026, 11(2), 99; https://doi.org/10.3390/biomimetics11020099 (registering DOI) - 2 Feb 2026
Abstract
With the electrification of automotive powertrains, aerodynamic noise has emerged as the primary factor affecting vehicle comfort. This systematic review, adhering to PRISMA 2020 guidelines, bridges the gap between biological fluid mechanics and automotive engineering by synthesizing recent advances in aerodynamic mechanisms and [...] Read more.
With the electrification of automotive powertrains, aerodynamic noise has emerged as the primary factor affecting vehicle comfort. This systematic review, adhering to PRISMA 2020 guidelines, bridges the gap between biological fluid mechanics and automotive engineering by synthesizing recent advances in aerodynamic mechanisms and bionic control strategies. Based on a comprehensive search of Web of Science, ScienceDirect, SAE Mobilus, and Google Scholar for the literature published between 2016 and 2025, 90 eligible studies were analyzed to provide a rigorous evidence-based synthesis. The review details complex flow phenomena, such as turbulent separation and vortex shedding across key regions like A-pillars and mirrors, drawing parallels to bio-inspired fluid–structure interactions. Numerical prediction methods, including large eddy simulation (LES), detached eddy simulation (DES), and lattice boltzmann method (LBM), are critically examined for their efficacy in resolving both conventional and bionic flow structures. A significant focus is placed on bio-inspired mitigation technologies, where quantitative findings demonstrate substantial noise suppression: specifically, the reviewed data shows that bionic riblet surfaces on tires can reduce noise levels by up to 5.18 dB, while beetle-head-inspired protuberances on exterior mirrors can achieve reductions of up to 10 dB. Finally, this work suggests future research directions in integrated fluid–acoustic–structural simulation frameworks and self-adaptive bionic systems, providing a robust reference for developing high-performance, low-noise vehicles inspired by natural organisms. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Biomechanics and Biomimetics)
Show Figures

Figure 1

Back to TopTop