Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = doppler frequency cell migration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 42046 KiB  
Article
High-Resolution Wide-Beam Millimeter-Wave ArcSAR System for Urban Infrastructure Monitoring
by Wenjie Shen, Wenxing Lv, Yanping Wang, Yun Lin, Yang Li, Zechao Bai and Kuai Yu
Remote Sens. 2025, 17(12), 2043; https://doi.org/10.3390/rs17122043 - 13 Jun 2025
Viewed by 307
Abstract
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be [...] Read more.
Arc scanning synthetic aperture radar (ArcSAR) can achieve high-resolution panoramic imaging and retrieve submillimeter-level deformation information. To monitor buildings in a city scenario, ArcSAR must be lightweight; have a high resolution, a mid-range (around a hundred meters), and low power consumption; and be cost-effective. In this study, a novel high-resolution wide-beam single-chip millimeter-wave (mmwave) ArcSAR system, together with an imaging algorithm, is presented. First, to handle the non-uniform azimuth sampling caused by motor motion, a high-accuracy angular coder is used in the system design. The coder can send the radar a hardware trigger signal when rotated to a specific angle so that uniform angular sampling can be achieved under the unstable rotation of the motor. Second, the ArcSAR’s maximum azimuth sampling angle that can avoid aliasing is deducted based on the Nyquist theorem. The mathematical relation supports the proposed ArcSAR system in acquiring data by setting the sampling angle interval. Third, the range cell migration (RCM) phenomenon is severe because mmwave radar has a wide azimuth beamwidth and a high frequency, and ArcSAR has a curved synthetic aperture. Therefore, the fourth-order RCM model based on the range-Doppler (RD) algorithm is interpreted with a uniform azimuth angle to suit the system and implemented. The proposed system uses the TI 6843 module as the radar sensor, and its azimuth beamwidth is 64°. The performance of the system and the corresponding imaging algorithm are thoroughly analyzed and validated via simulations and real data experiments. The output image covers a 360° and 180 m area at an azimuth resolution of 0.2°. The results show that the proposed system has good application prospects, and the design principles can support the improvement of current ArcSARs. Full article
Show Figures

Figure 1

24 pages, 6459 KiB  
Article
An Efficient Ground Moving Target Imaging Method for Synthetic Aperture Radar Based on Scaled Fourier Transform and Scaled Inverse Fourier Transform
by Xin Zhang, Haoyu Zhu, Ruixin Liu, Jun Wan and Zhanye Chen
Remote Sens. 2024, 16(11), 2039; https://doi.org/10.3390/rs16112039 - 6 Jun 2024
Viewed by 1118
Abstract
The unknown relative motions between synthetic aperture radar (SAR) and a ground moving target will lead to serious range cell migration (RCM) and Doppler frequency spread (DFS). The energy of the moving target will defocus, given the effect of the RCM and DFS. [...] Read more.
The unknown relative motions between synthetic aperture radar (SAR) and a ground moving target will lead to serious range cell migration (RCM) and Doppler frequency spread (DFS). The energy of the moving target will defocus, given the effect of the RCM and DFS. The moving target will easily produce Doppler ambiguity, due to the low pulse repetition frequency of radar, and the Doppler ambiguity complicates the corrections of the RCM and DFS. In order to address these issues, an efficient ground moving target focusing method for SAR based on scaled Fourier transform and scaled inverse Fourier transform is presented. Firstly, the operations based on the scaled Fourier transform and scaled inverse Fourier transforms are presented to focus the moving targets in consideration of Doppler ambiguity. Subsequently, in accordance with the detailed analysis of multiple target focusing, the spurious peak related to the cross term is removed. The proposed method can accurately eliminate the DFS and RCM, and the well-focused result of the moving target can be achieved under the complex Doppler ambiguity. Then, the blind speed sidelobe can be further avoided. The presented method has high computational efficiency without the step of parameter search. The simulated and measured SAR data are provided to demonstrate the effectiveness of the developed method. Full article
(This article belongs to the Special Issue Technical Developments in Radar—Processing and Application)
Show Figures

Graphical abstract

35 pages, 62938 KiB  
Article
A Modified Frequency Nonlinear Chirp Scaling Algorithm for High-Speed High-Squint Synthetic Aperture Radar with Curved Trajectory
by Kun Deng, Yan Huang, Zhanye Chen, Dongning Fu, Weidong Li, Xinran Tian and Wei Hong
Remote Sens. 2024, 16(9), 1588; https://doi.org/10.3390/rs16091588 - 29 Apr 2024
Cited by 2 | Viewed by 1871
Abstract
The imaging of high-speed high-squint synthetic aperture radar (HSHS-SAR), which is mounted on maneuvering platforms with curved trajectory, is a challenging task due to the existence of 3-D acceleration and the azimuth spatial variability of range migration and Doppler parameters. Although existing imaging [...] Read more.
The imaging of high-speed high-squint synthetic aperture radar (HSHS-SAR), which is mounted on maneuvering platforms with curved trajectory, is a challenging task due to the existence of 3-D acceleration and the azimuth spatial variability of range migration and Doppler parameters. Although existing imaging algorithms based on linear range walk correction (LRWC) and nonlinear chirp scaling (NCS) can reduce the range–azimuth coupling of the frequency spectrum (FS) and the spatial variability of the Doppler parameter to some extent, they become invalid as the squint angle, speed, and resolution increase. Additionally, most of them ignore the effect of acceleration phase calibration (APC) on NCS, which should not be neglected as resolution increases. For these issues, a modified frequency nonlinear chirp scaling (MFNCS) algorithm is proposed in this paper. The proposed MFNCS algorithm mainly includes the following aspects. First, a more accurate approximation of range model (MAARM) is established to improve the accuracy of the instantaneous slant range history. Second, a preprocessing of the proposed algorithm based on the first range compression, LRWC, and a spatial-invariant APC (SIVAPC) is implemented to eliminate most of the effects of high-squint angle and 3-D acceleration on the FS. Third, a spatial-variant APC (SVAPC) is performed to remove azimuth spatial variability introduced by 3-D acceleration, and the range focusing is accomplished by the bulk range cell migration correction (BRCMC) and extended secondary range compression (ESRC). Fourth, the azimuth-dependent characteristics evaluation based on LRWC, SIVAPC, and SVAPC is completed to derive the MFNCS algorithm with fifth-order chirp scaling function for azimuth compression. Consequently, the final image is focused on the range time and azimuth frequency domain. The experimental simulation results verify the effectiveness of the proposed algorithm. With a curved trajectory, HSHS-SAR imaging is carried out at a 50° geometric squint angle and 500 m × 500 m imaging width. The integrated sidelobe ratio and peak sidelobe ratio of the point targets at the scenario edges approach the theoretical values, and the range-azimuth resolution is 1.5 m × 3.0 m. Full article
Show Figures

Graphical abstract

21 pages, 7485 KiB  
Article
A Signal Model Based on the Space–Time Coding Array and a Novel Imaging Method Based on the Hybrid Correlation Algorithm for F-SCAN SAR
by Yuqing Liu, Pengbo Wang, Zhirong Men, Yanan Guo, Tao He, Rui Bao and Lei Cui
Remote Sens. 2023, 15(17), 4276; https://doi.org/10.3390/rs15174276 - 31 Aug 2023
Cited by 1 | Viewed by 1719
Abstract
The F-SCAN principle is a better alternative to the scan-on-receive technique (SCORE) based on digital beamforming (DBF), which can avoid low gain caused by a conventional broad beam in the case of a wide swath. In F-SCAN SAR, a pencil beam scans the [...] Read more.
The F-SCAN principle is a better alternative to the scan-on-receive technique (SCORE) based on digital beamforming (DBF), which can avoid low gain caused by a conventional broad beam in the case of a wide swath. In F-SCAN SAR, a pencil beam scans the entire target area from far to near, providing high energy independent of the position and ensuring a low range ambiguity-to-signal ratio (RASR). Moreover, echo compression can be achieved via appropriate system parameter configuration, significantly shortening the receive window and reducing the amount of data. A wider range swath can, therefore, be achieved. However, for this novel F-SCAN SAR working mode, signal modeling and imaging processing are key issues that needed to be addressed. In this paper, the far-field synthetic antenna pattern of the space–time coding array (STCA) is first derived and analyzed, based on which the signal modeling of the F-SCAN SAR is carried out. Then, according to the signal model and echo characteristics, a novel imaging processing method based on the hybrid correlation algorithm is presented for the F-SCAN SAR. First, the dechirp operation is performed to compensate for the quadratic phase of the range time. The range compressed result is obtained after a range Fourier transform, where different range targets are successfully separated and range aliasing is avoided. Then, the modified azimuth reference function is correlated with the echo at each range cell to complete range cell migration correction (RCMC) and azimuth compensation. The received signal parameters and the Doppler parameters of each range cell are derived to update the azimuth reference function. Finally, accurate focused results are obtained in the range-frequency, azimuth-time domain. The simulation results indicate that the signal model based on the STCA can satisfy the requirements of the F-SCAN principle, and the proposed imaging algorithm can complete the precise focusing processing of the F-SCAN SAR echo. Full article
Show Figures

Graphical abstract

19 pages, 20906 KiB  
Article
A Modified Range Doppler Algorithm for High-Squint SAR Data Imaging
by Yanan Guo, Pengbo Wang, Zhirong Men, Jie Chen, Xinkai Zhou, Tao He and Lei Cui
Remote Sens. 2023, 15(17), 4200; https://doi.org/10.3390/rs15174200 - 26 Aug 2023
Cited by 4 | Viewed by 3288
Abstract
The high-squint airborne Synthetic Aperture Radar (SAR) has the ability to detect the target area flexibly, and the detection swath is significantly increased compared with the side-looking SAR system. Therefore, it is of great significance to carry out research on high-precision imaging methods [...] Read more.
The high-squint airborne Synthetic Aperture Radar (SAR) has the ability to detect the target area flexibly, and the detection swath is significantly increased compared with the side-looking SAR system. Therefore, it is of great significance to carry out research on high-precision imaging methods for high-squint airborne SAR. However, the high-squint SAR echoes have large Range Cell Migration (RCM), resulting in severe range–azimuth coupling and strong spatial variation. In this paper, a Modified Range Doppler Algorithm (MRDA) is proposed to cope with these effects introduced by the significant RCM in high-squint airborne SAR imaging. The bulk compensation preprocessing is first adopted to remove the considerable RCM and severe cross-coupling in a two-dimensional frequency domain. Then, Non-Linear Chirp Scaling (NLCS) in the range direction is utilized to equalize the range-variant chirp rate caused by the residual RCM and coupling and, therefore, the consistent range phase compensation can be fulfilled in range frequency domain. The modified correlation processing is executed to compensate the residual Doppler phase modulation, the residual RCM and the range-variant cubic phase modulation, which guarantees the characteristics of high efficiency and high precision. The simulations have demonstrated that the MRDA can focus the SAR echoes with large squint angles more effectively than the algorithms based on the Linear Range Walk Correction (LRWC) method. Full article
(This article belongs to the Special Issue Advanced Radar Signal Processing and Applications)
Show Figures

Figure 1

22 pages, 13885 KiB  
Article
Radar Maneuvering Target Detection Based on Product Scale Zoom Discrete Chirp Fourier Transform
by Lang Xia, Huotao Gao, Lizheng Liang, Taoming Lu and Boning Feng
Remote Sens. 2023, 15(7), 1792; https://doi.org/10.3390/rs15071792 - 27 Mar 2023
Cited by 4 | Viewed by 1940
Abstract
Long-time coherent integration works to significantly increase the detection probability for maneuvering targets. However, during the observation time, the problems that often tend to occur are range cell migration (RCM) and Doppler frequency cell migration (DFCM), due to the high velocity and acceleration [...] Read more.
Long-time coherent integration works to significantly increase the detection probability for maneuvering targets. However, during the observation time, the problems that often tend to occur are range cell migration (RCM) and Doppler frequency cell migration (DFCM), due to the high velocity and acceleration of the maneuvering target, which can reduce the detection of the maneuvering targets. In this regard, we propose a new coherent integration approach, based on the product scale zoom discrete chirp Fourier transform (PSZDCFT). Specifically, by introducing the zoom operation into the modified discrete chirp Fourier transform (MDCFT), the zoom discrete chirp Fourier transform (ZDCFT) can correctly estimate the centroid frequency and chirp rate of the linear frequency-modulated signal (LFM), regardless of whether the parameters of the LFM signal are outside the estimation scopes. Then, the scale operation, combined with ZDCFT, is performed on the radar echo signal in the range frequency slow time domain, to remove the coupling. Thereafter, a product operation is executed along the range frequency to inhibit spurious peaks and reinforce the true peak. Finally, the velocity and acceleration of the target estimated from the true peak position, are used to construct a phase compensation function to eliminate the RCM and DFCM, thus achieving coherent integration. The method is a linear transform without energy loss, and is suitable for low signal-to-noise (SNR) environments. Moreover, the method can be effectively fulfilled based on the chirp-z transform (CZT), which prevents the brute-force search. Thus, the method reaches a favorable tradeoff between anti-noise performance and computational load. Intensive simulations demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Advanced Radar Signal Processing and Applications)
Show Figures

Graphical abstract

23 pages, 19153 KiB  
Article
A Modified NLCS Algorithm for High-Speed Bistatic Forward-Looking SAR Focusing with Spaceborne Illuminator
by Yuzhou Liu, Yachao Li, Xuan Song and Xuanqi Wang
Remote Sens. 2023, 15(6), 1699; https://doi.org/10.3390/rs15061699 - 21 Mar 2023
Cited by 2 | Viewed by 2025
Abstract
The coupling and spatial variation of range and azimuth parameters is the biggest challenge for bistatic forward-looking SAR (BFSAR) imaging. In contrast with the monostatic SAR and translational invariant bistatic SAR (TI-BSAR), the range cell migration (RCM), and Doppler parameters of high-speed bistatic [...] Read more.
The coupling and spatial variation of range and azimuth parameters is the biggest challenge for bistatic forward-looking SAR (BFSAR) imaging. In contrast with the monostatic SAR and translational invariant bistatic SAR (TI-BSAR), the range cell migration (RCM), and Doppler parameters of high-speed bistatic forward-looking SAR (HS-BFSAR) have two-dimensional spatial variation characteristics, which makes it difficult to obtain SAR images with satisfactory global focusing. Firstly, based on the configuration of the spaceborne illuminator and high-speed forward-looking receiving platform, the accurate range-Doppler domain expression of the echo signal is derived in this paper. Secondly, using this analytical expression, a range nonlinear chirp scaling (NLCS) is proposed to equalize the RCM and equivalent range frequency modulation (FM) rate so that they can be uniformly processed in the two-dimensional frequency domain. Next, in the azimuth processing, the proposed method decomposes the Doppler contribution of the transmitter and receiver, respectively. Then, an azimuth NLCS is used to eliminate the spatial variation of the azimuth FM rate. Finally, a range-dependent azimuth filter is constructed to achieve azimuth compression. Simulation results validate the efficiency and effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue Breakthroughs in Passive Radar Technologies)
Show Figures

Figure 1

21 pages, 6988 KiB  
Article
Azimuth Full-Aperture Processing of Spaceborne Squint SAR Data with Block Varying PRF
by Zhuo Zhang, Wei Xu, Pingping Huang, Weixian Tan, Zhiqi Gao and Yaolong Qi
Sensors 2022, 22(23), 9328; https://doi.org/10.3390/s22239328 - 30 Nov 2022
Cited by 4 | Viewed by 2769
Abstract
The block varying pulse repetition frequency (BV-PRF) scheme applied to spaceborne squint sliding-spotlight synthetic aperture radar (SAR) can resolve large-range cell migration (RCM) and reduce azimuth signal non-uniformity. However, in the BV-PRF scheme, different raw data blocks have different PRFs, and the raw [...] Read more.
The block varying pulse repetition frequency (BV-PRF) scheme applied to spaceborne squint sliding-spotlight synthetic aperture radar (SAR) can resolve large-range cell migration (RCM) and reduce azimuth signal non-uniformity. However, in the BV-PRF scheme, different raw data blocks have different PRFs, and the raw data in each block are insufficiently sampled. To resolve the two problems, a novel azimuth full-aperture pre-processing method is proposed to handle the SAR raw data formed by the BV-PRF scheme. The key point of the approach is the resampling of block data with different PRFs and the continuous splicing of azimuth data. The method mainly consists of four parts: de-skewing, resampling, azimuth continuous combination, and Doppler history recovery. After de-skewing, the raw data with different PRFs can be resampled individually to obtain a uniform azimuth sampling interval, and an appropriate azimuth time shift is introduced to ensure the continuous combination of the azimuth signal. Consequently, the resulting raw data are sufficiently and uniformly sampled in azimuth, which could be well handled by classical SAR-focusing algorithms. Simulation results on point targets validate the proposed azimuth pre-processing approach. Furthermore, compared with methods to process SAR data with continuous PRF, the proposed method is more effective. Full article
(This article belongs to the Special Issue Radar Technology and Data Processing)
Show Figures

Figure 1

15 pages, 5942 KiB  
Article
A Radar Detection Method of Plasma-Sheath-Covered Target Based on the Improved Keystone Algorithm
by Bowen Bai, Yi Ding, Xiaoping Li and Yanming Liu
Remote Sens. 2022, 14(19), 4869; https://doi.org/10.3390/rs14194869 - 29 Sep 2022
Cited by 3 | Viewed by 2174
Abstract
The aerodynamic thermal ionization affects the re-entry target, and the surface will form a ‘plasma sheath (PSh).’ The PSh with fluid characteristics will produce relative motion with the re-entry target. In the radar detection of the re-entry target, the relative motion characteristics cause [...] Read more.
The aerodynamic thermal ionization affects the re-entry target, and the surface will form a ‘plasma sheath (PSh).’ The PSh with fluid characteristics will produce relative motion with the re-entry target. In the radar detection of the re-entry target, the relative motion characteristics cause the echo signal to couple different intra-pulse Doppler frequency components, forming a ‘false target’ on the one-dimensional range profile. In addition, the flight velocity of the re-entry target is exceptionally high (usually greater than 10 Mach), and there will be a severe phenomenon of migration through range cells (MTRC) during the detection period, which will make the coherent integration of the multi-period radar echo signal invalid and further affect the reliable detection of the re-entry target. Aiming at the ‘false target phenomenon’ and MTRC phenomenon in the process of re-entry target detection, this paper proposes an improved keystone algorithm. Based on the traditional keystone algorithm, a reliable, coherent integration method for radar echo of the plasma-sheath-covered target is proposed by modifying the scale transformation factor and constructing the Doppler frequency compensation function. It can effectively compensate the intra-pulse Doppler frequency and inter-pulse Doppler frequency to improve the energy gain of the real target and lay a theoretical foundation for the reliable detection of the plasma-sheath-covered target. Full article
(This article belongs to the Special Issue Radar High-Speed Target Detection, Tracking, Imaging and Recognition)
Show Figures

Figure 1

23 pages, 9134 KiB  
Article
Fast Approach for SAR Imaging of Ground-Based Moving Targets Based on Range Azimuth Joint Processing
by Yuxiang Shu, Jun Wan, Dong Li, Zhanye Chen and Hongqing Liu
Remote Sens. 2022, 14(13), 2965; https://doi.org/10.3390/rs14132965 - 21 Jun 2022
Cited by 3 | Viewed by 2247
Abstract
The synthetic aperture radar (SAR) images of a moving target may be out of focus, given the motions of a non-cooperative target. Doppler ambiguities, including the Doppler center blur and spectrum ambiguity, will easily appear due to the limitations of pulse repetition frequency, [...] Read more.
The synthetic aperture radar (SAR) images of a moving target may be out of focus, given the motions of a non-cooperative target. Doppler ambiguities, including the Doppler center blur and spectrum ambiguity, will easily appear due to the limitations of pulse repetition frequency, which causes difficulty in moving-target imaging. Therefore, a robust fast Doppler ambiguity approach for SAR imaging of a ground-based moving target using range azimuth joint processing (RAJP) is presented. Firstly, the use of RAJP, based on a two-dimensional cross-correlation function and linear range cell migration (LRCM) compensation function, is proposed to simultaneously obtain the first- and second-order phase parameters in the fast-time and azimuth-frequency domains. Then, a corresponding azimuth reference function is constructed to image the moving target. Additionally, a principal component analysis-based operation is introduced to solve the mismatch with the LRCM compensation function. The couplings between the range and azimuth and between the first- and second-order parameters can be simultaneously decoupled by the proposed RAJP operation, which simplifies the processing steps. The developed approach can simultaneously obtain the first- and second-order parameters in the fast-time and azimuth-frequency domains, which avoids the propagation error of parameter estimation caused by the stepwise processing operation. The proposed method is relatively fast, given the need for fewer processing steps. The presented approach is robust in terms of Doppler ambiguity and handles the blind speed sidelobe well. In this study, simulated and real data are processed to verify the proposed approach. Full article
Show Figures

Graphical abstract

12 pages, 20988 KiB  
Article
FPGA Implementation of the Range-Doppler Algorithm for Real-Time Synthetic Aperture Radar Imaging
by Yeongung Choi, Dongmin Jeong, Myeongjin Lee, Wookyung Lee and Yunho Jung
Electronics 2021, 10(17), 2133; https://doi.org/10.3390/electronics10172133 - 2 Sep 2021
Cited by 9 | Viewed by 5400
Abstract
In this paper, we propose a range-Doppler algorithm (RDA)-based synthetic aperture radar (SAR) processor for real-time SAR imaging and present FPGA-based implementation results. The processing steps for the RDA include range compression, range cell migration correction (RCMC), and azimuth compression. A matched filtering [...] Read more.
In this paper, we propose a range-Doppler algorithm (RDA)-based synthetic aperture radar (SAR) processor for real-time SAR imaging and present FPGA-based implementation results. The processing steps for the RDA include range compression, range cell migration correction (RCMC), and azimuth compression. A matched filtering unit (MFU) and an RCMC processing unit (RPU) are required for real-time processing. Therefore, the proposed RDA-based SAR processor contains an MFU that uses the mixed-radix multi-path delay commutator (MRMDC) FFT and an RPU. The MFU reduces the memory requirements by applying a decimation-in-frequency (DIF) FFT and decimation-in-time (DIT) IFFT. The RPU provides a variable tap size and variable interpolation kernel. In addition, the MFU and RPU are designed to enable parallel processing of four 32-bit which are transferred via a 128-bit AXI bus. The proposed RDA-based SAR processor was designed using Verilog-HDL and implemented in a Xilinx UltraScale+ MPSoC FPGA device. After comparing the execution time taken by the proposed SAR processor with that taken by an ARM cortex-A53 microprocessor, we observed a 85-fold speedup for a 2048 × 2048 pixel image. A performance evaluation based on related studies indicated that the proposed processor achieved an execution time that was approximately 6.5 times less than those of previous FPGA implementations of RDA processors. Full article
(This article belongs to the Special Issue System-on-Chip (SoC) Design and Its Applications)
Show Figures

Figure 1

27 pages, 60882 KiB  
Article
Generalized Dechirp-Keystone Transform for Radar High-Speed Maneuvering Target Detection and Localization
by Jibin Zheng, Kangle Zhu, Zhiyong Niu, Hongwei Liu and Qing Huo Liu
Remote Sens. 2021, 13(17), 3367; https://doi.org/10.3390/rs13173367 - 25 Aug 2021
Cited by 12 | Viewed by 3360
Abstract
The multivariate range function of the high-speed maneuvering target induces modulations on both the envelop and phase, i.e., the range cell migration (RCM) and Doppler frequency migration (DFM) which degrade the long-time coherent integration used for detection and localization. To solve this problem, [...] Read more.
The multivariate range function of the high-speed maneuvering target induces modulations on both the envelop and phase, i.e., the range cell migration (RCM) and Doppler frequency migration (DFM) which degrade the long-time coherent integration used for detection and localization. To solve this problem, many long-time coherent integration methods have been proposed. Based on mechanisms of typical methods, this paper names two signal processing modes, i.e., processing unification (PU) mode and processing separation (PS) mode, and presents their general forms. Thereafter, based on the principle of the PS mode, a novel long-time coherent integration method, known as the generalized dechirp-keystone transform (GDKT), is proposed for radar high-speed maneuvering target detection and localization. The computational cost, energy integration, peak-to-sidelobe level (PSL), resolution, and anti-noise performance of the GDKT are analyzed and compared with those of the maximum likelihood estimation (MLE) method and keystone transform-dechirp (KTD) method. With mathematical analyses and numerical simulations, we validate two main superiorities of the GDKT, including (1) the statistically optimal anti-noise performance, and (2) the low computational cost. The real radar data is also used to validate the GDKT. It is worthwhile noting that, based on closed analytical formulae of the MLE method, KTD method, and GDKT, several doubts in radar high-speed maneuvering target detection and localization are mathematically interpreted, such as the blind speed sidelobe (BSSL) and the relationship between the PU and PS modes. Full article
(This article belongs to the Special Issue Radar Signal Processing for Target Tracking)
Show Figures

Figure 1

20 pages, 5302 KiB  
Article
High Speed Maneuvering Platform Squint TOPS SAR Imaging Based on Local Polar Coordinate and Angular Division
by Bowen Bie, Yinghui Quan, Kaijie Xu, Guangcai Sun and Mengdao Xing
Remote Sens. 2021, 13(16), 3329; https://doi.org/10.3390/rs13163329 - 23 Aug 2021
Cited by 1 | Viewed by 2262
Abstract
This paper proposes an imaging algorithm for synthetic aperture radar (SAR) mounted on a high-speed maneuvering platform with squint terrain observation by progressive scan mode. To overcome the mismatch between range model and the signal after range walk correction, the range history is [...] Read more.
This paper proposes an imaging algorithm for synthetic aperture radar (SAR) mounted on a high-speed maneuvering platform with squint terrain observation by progressive scan mode. To overcome the mismatch between range model and the signal after range walk correction, the range history is calculated in local polar format. The Doppler ambiguity is resolved by nonlinear derotation and zero-padding. The recovered signal is divided into several blocks in Doppler according to the angular division. Keystone transform is used to remove the space-variant range cell migration (RCM) components. Thus, the residual RCM terms can be compensated by a unified phase function. Frequency domain perturbation terms are introduced to correct the space-variant Doppler chirp rate term. The focusing parameters are calculated according to the scene center of each angular block and the signal of each block can be processed in parallel. The image of each block is focused in range-Doppler domain. After the geometric correction, the final focused image can be obtained by directly combined the images of all angular blocks. Simulated SAR data has verified the effectiveness of the proposed algorithm. Full article
Show Figures

Figure 1

19 pages, 933 KiB  
Article
Maneuvering Target Detection Based on Subspace Subaperture Joint Coherent Integration
by Langxu Zhao, Haihong Tao, Weijia Chen and Dawei Song
Remote Sens. 2021, 13(10), 1948; https://doi.org/10.3390/rs13101948 - 17 May 2021
Cited by 10 | Viewed by 2323
Abstract
Range cell migration and Doppler frequency migration induced by the target maneuverability are two difficulties of target signal enhancement and radar detection performance. In order to resolve them, a novel subaperture joint coherent integration (SJCI) algorithm is proposed in this article, which consists [...] Read more.
Range cell migration and Doppler frequency migration induced by the target maneuverability are two difficulties of target signal enhancement and radar detection performance. In order to resolve them, a novel subaperture joint coherent integration (SJCI) algorithm is proposed in this article, which consists of three stages. Firstly, it divides the target signal into several subapertures, in which the Doppler frequency dispersions can be neglected. Afterward, coherent integration within each subaperture is implemented via scaled Fourier transform. Finally, correcting the Doppler frequency shifts and phase differences via axis rotation and phase compensation technology, the joint coherent integration among the subapertures can be achieved effectively. Based on the SJCI algorithm, an upgrade algorithm named subspace SJCI (SSJCI) is presented. Through acceleration space division and subspace translation, the SSJCI algorithm extends the subaperture time and optimizes the computation complexity significantly. Theoretical analyses and performance comparisons demonstrate that the SSJCI algorithm can accomplish a good trade-off among signal-to-noise ratio gain, detection capability, resolution, and computation complexity. In addition, the results of the numerical experiments further verify the effectiveness of the proposed algorithm. Full article
Show Figures

Graphical abstract

22 pages, 19537 KiB  
Article
Focus Improvement of Airborne High-Squint Bistatic SAR Data Using Modified Azimuth NLCS Algorithm Based on Lagrange Inversion Theorem
by Chuang Li, Heng Zhang and Yunkai Deng
Remote Sens. 2021, 13(10), 1916; https://doi.org/10.3390/rs13101916 - 13 May 2021
Cited by 12 | Viewed by 2422
Abstract
In this paper, a modified azimuth nonlinear chirp scaling (NLCS) algorithm is derived for high-squint bistatic synthetic aperture radar (BiSAR) imaging to solve its inherent difficult issues, including the large range cell migration (RCM), azimuth-dependent Doppler parameters, and the sensibility of the higher [...] Read more.
In this paper, a modified azimuth nonlinear chirp scaling (NLCS) algorithm is derived for high-squint bistatic synthetic aperture radar (BiSAR) imaging to solve its inherent difficult issues, including the large range cell migration (RCM), azimuth-dependent Doppler parameters, and the sensibility of the higher order terms. First, using the Lagrange inversion theorem, an accurate spectrum suitable for processing airborne high-squint BiSAR data is introduced. Different from the spectrum that is based on the method of series reversion (MSR), it is allowed to derive the bistatic stationary phase point while retaining the double square root (DSR) of the slant range history. Based the spectrum, a linear RCM correction is used to remove the most of the linear RCM components and mitigate the range-azimuth coupling, and, then, bulk secondary range compression is implemented to compensate the residual RCM and cross-coupling terms. Following this, a modified azimuth NLCS operation is applied to eliminate the azimuth-dependence of Doppler parameters and equalize the azimuth frequency modulation for azimuth compression. The experimental results, with better focusing performance, prove the high accuracy and effectiveness of the proposed algorithm. Full article
(This article belongs to the Special Issue 2nd Edition Radar and Sonar Imaging and Processing)
Show Figures

Figure 1

Back to TopTop