A Radar Detection Method of Plasma-Sheath-Covered Target Based on the Improved Keystone Algorithm
Abstract
:1. Introduction
2. Detection Method of PSh-Covered Target Based on Improved Keystone Algorithm
2.1. Echo Model of the PSh-Covered Target
2.2. Calculation of Doppler Frequency of the PSh-Covered Target
2.3. Multi-Period Echo Signal Processing Method Based on the Improved Keystone Transform
3. Simulation and Analysis
3.1. Echo Signal Processing of PSh-Covered Targets
3.2. The Improved Keystone Algorithm
3.3. Analysis of Simulation Experiment under Typical Parameter Conditions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Close, S.; Oppenheim, M.; Hunt, S.; Dyrud, L. Scattering characteristics of high-resolution meteor head echoes detected at multiple frequencies. J. Geophys. Res. Space Phys. 2002, 107, 9–12. [Google Scholar] [CrossRef]
- Kero, J.; Szasz, C.; Wannberg, G.; Pellinen-Wannberg, A.; Westman, A. On the meteoric head echo radar cross section angular dependence. Geophys. Res. Lett. 2008, 35, 154–162. [Google Scholar] [CrossRef]
- Luo, C.R.; Ding, C.L.; Duan, L.B. 12th Five-Year Plan Textbooks: Electrodynamics; Publishing House of Electronics Industry: Beijing, China, 2016; pp. 150–176. [Google Scholar]
- Cao, C. Basic Series of Modern Physics: Classical Electrodynamics; Science Press: Beijing, China, 2009; pp. 167–180. [Google Scholar]
- Liu, S.H.; Guo, L.X. Analyzing the Electromagnetic Scattering Characteristics for 3-D Inhomogeneous Plasma Sheath Based on PO Method. IEEE Trans. Plasma Sci. 2006, 44, 2838–2843. [Google Scholar] [CrossRef]
- Abatzoglou, T.J.; Gheen, G.O. Range, radial velocity, and acceleration MLE using radar LFM pulse train. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 1070–1084. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Bai, B.; Li, X.; Shen, F.; Chen, X.-Y.; Zhao, L. Establishment of a Wideband Radar Scattering Center Model of a Plasma Sheath. IEEE Access 2019, 7, 140402–140410. [Google Scholar] [CrossRef]
- Ding, Y.; Bai, B.; Gao, H.; Liu, Y.; Li, X.; Zhao, M. Method of Detecting a Target Enveloped by a Plasma Sheath Based on Doppler Frequency Compensation. IEEE Trans. Plasma Sci. 2020, 48, 4103–4111. [Google Scholar] [CrossRef]
- Carretero-Moya, J.; Gismero-Menoyo, J.; Asensio-Lopez, A.; Blanco-Del-Campo, A. A coherent Radon transform for small target detection. In Proceedings of the 2009 IEEE Radar Conference, Pasadena, CA, USA, 4–8 May 2009; pp. 1–4. [Google Scholar]
- Li, Y.; Zeng, T.; Long, T.; Wang, Z. Range migration compensation and Doppler ambiguity resolution by keystone transform. In Proceedings of the IEEE International Radar Conference, Shanghai, China, 9–12 October 2006. [Google Scholar]
- Wan, J.; Zhou, Y.; Zhang, L.; Chen, Z. A Doppler Ambiguity Tolerated Method for Radar Sensor Maneuvering Target Focusing and Detection. IEEE Sens. J. 2019, 19, 6691–6704. [Google Scholar] [CrossRef]
- Perry, R.P.; Dipietro, R.C.; Fante, R.L. SAR imaging of moving targets. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 188–200. [Google Scholar] [CrossRef]
- Zhang, S.-S.; Zeng, T.; Long, T.; Yuan, H.-P. Dim target detection based on keystone transform. In Proceedings of the IEEE International Radar Conference, Yantai, China, 9–12 May 2005. [Google Scholar]
- Zhu, D.; Li, Y.; Zhu, Z. A keystone transform without interpolation for SAR ground moving-targetimaging. IEEE Geosci. Remote Sens. Lett. 2007, 4, 18–22. [Google Scholar] [CrossRef]
- Ding, Y.; Bai, B.; Gao, H.; Niu, G.; Shen, F.; Liu, Y.; Li, X. An Analysis of Radar Detection on a Plasma Sheath Covered Reentry Target. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 4255–4268. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, T.; Cui, K.; Yu, T.; Jiang, Q.; Zhang, R.; Li, J.; Hu, C. High-Resolution and Low Blind Range Waveform for Migratory Insects’ Taking-Off and Landing Behavior Observation. Remote Sens. 2022, 14, 3034. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Xie, J.; Yang, Y.; Tian, B.; Xu, S. Ultra-Low Sidelobe Waveforms Design for LPI Radar Based on Joint Complementary Phase-Coding and Optimized Discrete Frequency-Coding. Remote Sens. 2022, 14, 2592–2612. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Zhao, H.; Chen, Y. A New Chirp Scaling Algorithm for Highly Squinted Missile-Borne SAR Based on FRFT. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3977–3987. [Google Scholar] [CrossRef]
- Pang, N.; Xu, P. A new acceleration estimation method based on special FRFT in MIMO radar. In Proceedings of the IET International Radar Conference, Hangzhou, China, 14–16 October 2015; pp. 1–5. [Google Scholar]
- Chen, W.F.; Zhao, W.W. Rarefied Gas Dynamic Moment Method and Numerical Simulation; Science Press: Beijing, China, 2017; pp. 252–258. [Google Scholar]
Require: fp(n,zm), C, fc, Z0,Zm+1, A(n), B(n), C(n), D(n) | |
(1) Compare the value of fp(n,zm) and fc: if fc > fp(n,zi−1) fc < fp(n,zi−1) i = 1, 2, …, m → i = m; if fc > fp(n,zi−1) i = M − 1 → i = M; where M represents the total number of layers in the plasma sheath; | (2) Calculation equation of reflection coefficient at each reference point If i = M → reflection medium is the metal; If i = m → reflection medium is the plasma at the (m + 1)layer; |
(3) Doppler frequency calculation at n-th point: |
Parameter | Value |
---|---|
Initial range of the target | R0 = 10 km |
Carrier frequency of the EM wave | fc = 9.5 GHz |
Pulse width | Tp = 10 μs |
Signal bandwidth | B = 15 MHz |
Sampling frequency | Fs = 300 MHz |
Flight velocity | V = 25 Ma |
Signal-to-noise ratio | SNR = −10 dB |
Pulse repetition period | Tr = 100 μs |
fc = 9.5 GHZ | Velocity/Altitude | Energy Ratio |
---|---|---|
1 | 25 Ma/30 Km | 2.583 |
2 | 15 Ma/30 Km | 3.342 |
3 | 15 Ma/40 Km | 2.274 |
4 | 15 Ma/60 Km | 1.941 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, B.; Ding, Y.; Li, X.; Liu, Y. A Radar Detection Method of Plasma-Sheath-Covered Target Based on the Improved Keystone Algorithm. Remote Sens. 2022, 14, 4869. https://doi.org/10.3390/rs14194869
Bai B, Ding Y, Li X, Liu Y. A Radar Detection Method of Plasma-Sheath-Covered Target Based on the Improved Keystone Algorithm. Remote Sensing. 2022; 14(19):4869. https://doi.org/10.3390/rs14194869
Chicago/Turabian StyleBai, Bowen, Yi Ding, Xiaoping Li, and Yanming Liu. 2022. "A Radar Detection Method of Plasma-Sheath-Covered Target Based on the Improved Keystone Algorithm" Remote Sensing 14, no. 19: 4869. https://doi.org/10.3390/rs14194869
APA StyleBai, B., Ding, Y., Li, X., & Liu, Y. (2022). A Radar Detection Method of Plasma-Sheath-Covered Target Based on the Improved Keystone Algorithm. Remote Sensing, 14(19), 4869. https://doi.org/10.3390/rs14194869