Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = donor-π-acceptor molecules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2838 KB  
Article
Reactivity of Ammonia in 1,2-Addition to Group 13 Imine Analogues with G13–P–Ga Linkages: The Electronic Role of Group 13 Elements
by Zheng-Feng Zhang and Ming-Der Su
Molecules 2025, 30(15), 3222; https://doi.org/10.3390/molecules30153222 - 31 Jul 2025
Viewed by 460
Abstract
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature [...] Read more.
Using density functional theory (M06-2X-D3/def2-TZVP), we investigated the 1,2-addition reactions of NH3 with a series of heavy imine analogues, G13=P-Rea (where G13 denotes a Group 13 element; Rea = reactant), featuring a mixed G13–P–Ga backbone. Theoretical analyses revealed that the bonding nature of the G13=P moiety in G13=P-Rea molecules varies with the identity of the Group 13 center. For G13=B, Al, Ga, and In, the bonding is best described as a donor–acceptor (singlet–singlet) interaction, whereas for G13=Tl, it is characterized by an electron-sharing (triplet–triplet) interaction. According to our theoretical studies, all G13=P-Rea species—except the Tl=P analogue—undergo 1,2-addition with NH3 under favorable energetic conditions. Energy decomposition analysis combined with natural orbitals for chemical valence (EDA–NOCV), along with frontier molecular orbital (FMO) theory, reveals that the primary bonding interaction in these reactions originates from electron donation by the lone pair on the nitrogen atom of NH3 into the vacant p-π* orbital on the G13 center. In contrast, a secondary, weaker interaction involves electron donation from the phosphorus lone pair of the G13=P-Rea species into the empty σ* orbital of the N–H bond in NH3. The calculated activation barriers are primarily governed by the deformation energy of ammonia. Specifically, as the atomic weight of the G13 element increases, the atomic radius and G13–P bond length also increase, requiring a greater distortion of the H2N–H bond to reach the transition state. This leads to a higher geometrical deformation energy of NH3, thereby increasing the activation barrier for the 1,2-addition reaction involving these Lewis base-stabilized, heavy imine-like G13=P-Rea molecules and ammonia. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 3rd Edition)
Show Figures

Figure 1

8 pages, 641 KB  
Communication
Synthesis of 2-(2-((5″-(4-Cyanophenyl)-3,4′,4″-trioctyl[2,2′:5′,2″-terthiophen]-5-yl)methylene)-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile
by Alexia M. Frîncu, Lidia Căta, David Bălăceanu, Ion Grosu, Andreea P. Crișan and Anamaria Terec
Molbank 2025, 2025(3), M2038; https://doi.org/10.3390/M2038 - 18 Jul 2025
Viewed by 579
Abstract
A new π-conjugated acceptor–donor–acceptor small molecule, designed for applications in organic solar cells, containing a terthiophene core and indandione- and benzonitrile-based electron-withdrawing units, was synthesized via a multi-step process involving Suzuki–Miyaura cross-coupling and Knoevenagel condensation reactions. The structure was confirmed by NMR spectroscopy, [...] Read more.
A new π-conjugated acceptor–donor–acceptor small molecule, designed for applications in organic solar cells, containing a terthiophene core and indandione- and benzonitrile-based electron-withdrawing units, was synthesized via a multi-step process involving Suzuki–Miyaura cross-coupling and Knoevenagel condensation reactions. The structure was confirmed by NMR spectroscopy, HRMS, and its optoelectronic properties were evaluated by UV–vis spectroscopy and cyclic voltammetry. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

17 pages, 3172 KB  
Article
The Effect of the N-Oxide Oxygen Atom on the Crystalline and Photophysical Properties of [1,2,5]Oxadiazolo[3,4-d]pyridazines
by Timofey N. Chmovzh, Alisia V. Tsorieva, Vladislav M. Korshunov, Egor D. Kotov, Darina I. Nasyrova, Mikhail E. Minyaev, Nikolay P. Datskevich, Ilya V. Taydakov, Michail N. Elinson and Oleg A. Rakitin
Molecules 2025, 30(11), 2374; https://doi.org/10.3390/molecules30112374 - 29 May 2025
Viewed by 815
Abstract
A series of novel fluorescent donor–acceptor–donor (D-A-D) dyes containing [1,2,5]oxadiazolo[3,4-d]pyridazine and its 1-oxide as electron-withdrawing groups has been synthesized and thoroughly investigated using X-ray diffraction and molecular spectroscopy methods. This study showed that the introduction of N-oxide into the 1,2,5-oxadiazole [...] Read more.
A series of novel fluorescent donor–acceptor–donor (D-A-D) dyes containing [1,2,5]oxadiazolo[3,4-d]pyridazine and its 1-oxide as electron-withdrawing groups has been synthesized and thoroughly investigated using X-ray diffraction and molecular spectroscopy methods. This study showed that the introduction of N-oxide into the 1,2,5-oxadiazole ring in the acceptor fragment leads to a significant decrease in the luminescence intensity and quantum yield of the dyes. A comprehensive comparison of the photophysical properties of the obtained compounds containing the 1,2,5-oxadiazole ring with the previously studied [1,2,5]thia- and 1,2,5-selenadiazolo[3,4-d]pyridazine analogs showed that the oxygen substitution in the acceptor fragment shifts the phosphorescence maximum from the NIR region of 980–1100 nm to the red region of 690–770 nm. In contrast, for oxygen- and sulfur-containing dyes, purely red fluorescence with a maximum in the spectral range of 620–900 nm is observed. The crystal structures of furoxan-containing 3d·½CHCl3 and furazan-containing 4d exhibit a non-planar [1,2,5]oxadiazolo[3,4-d]pyridazine fragment. We have found that short non-covalent interactions of the furoxan system with a lattice chloroform molecule in 3d lead to luminescence quenching. Meanwhile, in the 4d dye, the intermolecular π-π interactions of pyridazine nitrogen atoms with the N-carbazolyl group of the adjacent molecule should facilitate intermolecular charge transfer (ICT) emission. Thus, the luminescence maxima for these dyes can be tuned across a broad range of 700–1100 nm by varying the number of chalcogen atoms, highlighting the potential for tailoring optical properties in optoelectronic applications. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

19 pages, 7995 KB  
Article
Insights into the Factors Controlling the Origin of Activation Barriers in the [2 + 2] Cycloaddition Reactions of Heavy Imine-like Molecules Featuring a Ge=Group 15 Double Bond with Heterocumulenes
by Zheng-Feng Zhang and Ming-Der Su
Molecules 2025, 30(9), 1905; https://doi.org/10.3390/molecules30091905 - 25 Apr 2025
Cited by 1 | Viewed by 706
Abstract
The [2 + 2] cycloaddition reactions of the heterocumulene (N=C=N) with the heavy imine-like molecule Ge=G15-Rea (G15 = Group 15 element) were examined using density functional theory (M06-2X-D3/def2-TZVP). The theoretical findings indicate that the doubly bonded Ge=G15 moiety in Ge=G15-Rea (L [...] Read more.
The [2 + 2] cycloaddition reactions of the heterocumulene (N=C=N) with the heavy imine-like molecule Ge=G15-Rea (G15 = Group 15 element) were examined using density functional theory (M06-2X-D3/def2-TZVP). The theoretical findings indicate that the doubly bonded Ge=G15 moiety in Ge=G15-Rea (L1L2Ge=G15L3) is characterized by electron-sharing bonding between the triplet L1L2Ge and triplet G15–L3 fragments. All five Ge=G15-based heavy imine analogues readily undergo [2 + 2] cycloaddition reactions with N=C=N. Energy decomposition analysis (EDA–NOCV) suggests that the [2 + 2] cycloaddition reaction between Ge=G15-Rea and N=C=N involves a donor–acceptor (singlet–singlet) interaction instead of an electron-sharing (triplet–triplet) interaction. Frontier molecular orbital (FMO) theory and the energy decomposition analysis–natural orbitals for chemical valence (EDA–NOCV) findings emphasize that the key bonding interaction involves the occupied p-π orbital of Ge=G15-Rea and the vacant p-π* orbital of C=N=C. Based on the activation strain model results, the activation barrier of the [2 + 2] cycloaddition reaction is predominantly controlled by the deformation energies of Ge=G15-Rea and N=C=N. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

40 pages, 9917 KB  
Review
Roadmap for Designing Donor-π-Acceptor Fluorophores in UV-Vis and NIR Regions: Synthesis, Optical Properties and Applications
by Guliz Ersoy and Maged Henary
Biomolecules 2025, 15(1), 119; https://doi.org/10.3390/biom15010119 - 14 Jan 2025
Cited by 5 | Viewed by 3129
Abstract
Donor acceptor (D-π-A) fluorophores containing a donor unit and an acceptor moiety at each end connected by a conjugated linker gained attention in the last decade due to their conjugated system and ease of tunability. These features make them good candidates [...] Read more.
Donor acceptor (D-π-A) fluorophores containing a donor unit and an acceptor moiety at each end connected by a conjugated linker gained attention in the last decade due to their conjugated system and ease of tunability. These features make them good candidates for various applications such as bioimaging, photovoltaic devices and nonlinear optical materials. Upon excitation of the D-π-A fluorophore, intramolecular charge transfer (ICT) occurs, and it polarizes the molecule resulting in the ‘push–pull’ system. The emission wavelengths of fluorophores can be altered from UV-vis to NIR region by modifying the donor unit, acceptor moiety and the π linker between them. The NIR emitting fluorophores with restricted molecular rotations are used in aggregation-induced emission (AIE). D-π-A fluorophores with carboxylic acid and cyano groups are preferred in photovoltaic applications, and fluorophores with large surface area are used for two photon absorbing applications. Herein, we report the synthesis, optical properties, and applications of various D-π-A fluorophores in UV-vis and NIR region. Full article
(This article belongs to the Special Issue Novel Materials for Biomedical Applications: 2nd Edition)
Show Figures

Figure 1

31 pages, 8102 KB  
Review
Porphyrin-Based Supramolecular Self-Assemblies: Construction, Charge Separation and Transfer, Stability, and Application in Photocatalysis
by Yingxu Hu, Jingfeng Peng, Rui Liu, Jing Gao, Guancheng Hua, Xiangjiang Fan and Shengjie Wang
Molecules 2024, 29(24), 6063; https://doi.org/10.3390/molecules29246063 - 23 Dec 2024
Cited by 5 | Viewed by 3432
Abstract
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential [...] Read more.
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility. Compared to unassembled porphyrin molecules, supramolecular porphyrin assemblies facilitate the solar light absorption and improve the charge transfer and thus exhibit enhanced photocatalytic performance. Herein, the research progress of porphyrin-based supramolecular assemblies, including the construction, the regulation of charge separation and transfer, stability, and application in photocatalysis, was systematically reviewed. The construction strategy of porphyrin supramolecules, the mechanism of charge separation, and the intrinsic relationship of assembling structure-charge transfer-photocatalytic performance received special attention. Surfactants, peptide molecules, polymers, and metal ions were introduced to improve the stability of the porphyrin assemblies. Donor-acceptor structure and co-catalysts were incorporated to inhibit the recombination of the photoinduced charges. These increase the understanding of the porphyrin supramolecules and provide ideas for the design of high-performance porphyrin-based photocatalysts. Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials)
Show Figures

Figure 1

9 pages, 2327 KB  
Article
A Novel Near-Infrared Tricyanofuran-Based Fluorophore Probe for Polarity Detection and LD Imaging
by Zhaojia Hang, Shengmeng Jiang, Zhitong Wu, Jin Gong and Lizhi Zhang
Molecules 2024, 29(21), 5069; https://doi.org/10.3390/molecules29215069 - 26 Oct 2024
Cited by 8 | Viewed by 1424
Abstract
In this paper, LD-TCF, a targeting probe for lipid droplets (LDs) with a near-infrared emission wavelength and large Stokes shift, was fabricated for polarity detection by assembling a donor–π–acceptor (D–π–A) molecule with typical twisted intramolecular charge transfer (TICT) characteristics. Surprisingly, the fluorescence emission [...] Read more.
In this paper, LD-TCF, a targeting probe for lipid droplets (LDs) with a near-infrared emission wavelength and large Stokes shift, was fabricated for polarity detection by assembling a donor–π–acceptor (D–π–A) molecule with typical twisted intramolecular charge transfer (TICT) characteristics. Surprisingly, the fluorescence emission wavelength of the newly constructed probe LD-TCF was stretched to 703 nm, and the Stokes shift was amplified to 126 nm. Furthermore, LD-TCF could specifically answer the change in polarity efficiently and did not experience interference from other biologically active materials. Importantly, LD-TCF exhibited the ability to target lipid droplets, providing valuable insights for the early diagnosis and tracking of pathophysiological processes underlying LD polarity. Full article
(This article belongs to the Special Issue Fluorescent Probes in Biomedical Detection and Imaging)
Show Figures

Figure 1

16 pages, 2850 KB  
Article
Self-Association and Microhydration of Phenol: Identification of Large-Amplitude Hydrogen Bond Librational Modes
by Dmytro Mihrin, Karen Louise Feilberg and René Wugt Larsen
Molecules 2024, 29(13), 3012; https://doi.org/10.3390/molecules29133012 - 25 Jun 2024
Cited by 4 | Viewed by 2003
Abstract
The self-association mechanisms of phenol have represented long-standing challenges to quantum chemical methodologies owing to the competition between strongly directional intermolecular hydrogen bonding, weaker non-directional London dispersion forces and C–H⋯π interactions between the aromatic rings. The present work explores these subtle self-association [...] Read more.
The self-association mechanisms of phenol have represented long-standing challenges to quantum chemical methodologies owing to the competition between strongly directional intermolecular hydrogen bonding, weaker non-directional London dispersion forces and C–H⋯π interactions between the aromatic rings. The present work explores these subtle self-association mechanisms of relevance for biological molecular recognition processes via spectroscopic observations of large-amplitude hydrogen bond librational modes of phenol cluster molecules embedded in inert neon “quantum” matrices complemented by domain-based local pair natural orbital-coupled cluster DLPNO-CCSD(T) theory. The spectral signatures confirm a primarily intermolecular O-H⋯H hydrogen-bonded structure of the phenol dimer strengthened further by cooperative contributions from inter-ring London dispersion forces as supported by DLPNO-based local energy decomposition (LED) predictions. In the same way, the hydrogen bond librational bands observed for the trimeric cluster molecule confirm a pseudo-C3 symmetric cyclic cooperative hydrogen-bonded barrel-like potential energy minimum structure. This structure is vastly different from the sterically favored “chair” conformations observed for aliphatic alcohol cluster molecules of the same size owing to the additional stabilizing London dispersion forces and C–H⋯π interactions between the aromatic rings. The hydrogen bond librational transition observed for the phenol monohydrate finally confirms that phenol acts as a hydrogen bond donor to water in contrast to the hydrogen bond acceptor role observed for aliphatic alcohols. Full article
Show Figures

Figure 1

14 pages, 1636 KB  
Article
Characterization of Excited-State Electronic Structure in Diblock π-Conjugated Oligomers with Adjustable Linker Electronic Coupling
by Habtom B. Gobeze, Muhammed Younus, Michael D. Turlington, Sohel Ahmed and Kirk S. Schanze
Molecules 2024, 29(11), 2678; https://doi.org/10.3390/molecules29112678 - 5 Jun 2024
Cited by 2 | Viewed by 2286
Abstract
Diblock conjugated oligomers are π-conjugated molecules that contain two segments having distinct frontier orbital energies and HOMO-LUMO gap offsets. These oligomers are of fundamental interest to understand how the distinct π-conjugated segments interact and modify their excited state properties. The current paper reports [...] Read more.
Diblock conjugated oligomers are π-conjugated molecules that contain two segments having distinct frontier orbital energies and HOMO-LUMO gap offsets. These oligomers are of fundamental interest to understand how the distinct π-conjugated segments interact and modify their excited state properties. The current paper reports a study of two series of diblock oligomers that contain oligothiophene (Tn) and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (TBT) segments that are coupled by either ethynyl (-C≡C-) or trans-(-C≡C-)2Pt(II)(PBu3)2 acetylide linkers. In these structures, the Tn segment is electron rich (donor), and the TBT is electron poor (acceptor). The diblock oligomers are characterized by steady-state and time-resolved spectroscopy, including UV-visible absorption, fluorescence, fluorescence lifetimes, and ultrafast transient absorption spectroscopy. Studies are compared in several solvents of different polarity and with different excitation wavelengths. The results reveal that the (-C≡C-) linked oligomers feature a delocalized excited state that takes on a charge transfer (CT) character in more polar media. In the (-C≡C-)2Pt(II)(PBu3)2-linked oligomers, there is weak coupling between the Tn and TBT segments. Consequently, short wavelength excitation selectively excites the Tn segment, which then undergoes ultrafast energy transfer (~1 ps) to afford a TBT-localized excited state. Full article
(This article belongs to the Special Issue Current Advances in Photochemistry)
Show Figures

Graphical abstract

14 pages, 1643 KB  
Article
DFT and TD-DFT Investigations for the Limitations of Lengthening the Polyene Bridge between N,N-dimethylanilino Donor and Dicyanovinyl Acceptor Molecules as a D-π-A Dye-Sensitized Solar Cell
by Sharif Abu Alrub, Ahmed I. Ali, Rageh K. Hussein, Suzan K. Alghamdi and Sally A. Eladly
Int. J. Mol. Sci. 2024, 25(11), 5586; https://doi.org/10.3390/ijms25115586 - 21 May 2024
Cited by 10 | Viewed by 1932
Abstract
One useful technique for increasing the efficiency of organic dye-sensitized solar cells (DSSCs) is to extend the π-conjugated bridges between the donor (D) and the acceptor (A) units. The present study used the DFT and TD–DFT techniques to investigate the effect of lengthening [...] Read more.
One useful technique for increasing the efficiency of organic dye-sensitized solar cells (DSSCs) is to extend the π-conjugated bridges between the donor (D) and the acceptor (A) units. The present study used the DFT and TD–DFT techniques to investigate the effect of lengthening the polyene bridge between the donor N, N-dimethyl-anilino and the acceptor dicyanovinyl. The results of the calculated key properties were not all in line with expectations. Planar structure was associated with increasing the π-conjugation linker, implying efficient electron transfer from the donor to the acceptor. A smaller energy gap, greater oscillator strength values, and red-shifted electronic absorption were also observed when the number of polyene units was increased. However, some results indicated that the potential of the stated dyes to operate as effective dye-sensitized solar cells is limited when the polyene bridge is extended. Increasing the polyene units causes the HOMO level to rise until it exceeds the redox potential of the electrolyte, which delays regeneration and impedes the electron transport cycle from being completed. As the number of conjugated units increases, the terminal lobes of HOMO and LUMO continue to shrink, which affects the ease of intramolecular charge transfer within the dyes. Smaller polyene chain lengths yielded the most favorable results when evaluating the efficiency of electron injection and regeneration. This means that the charge transfer mechanism between the conduction band of the semiconductor and the electrolyte is not improved by extending the polyene bridge. The open circuit voltage (VOC) was reduced from 1.23 to 0.70 V. Similarly, the excited-state duration (τ) decreased from 1.71 to 1.23 ns as the number of polyene units increased from n = 1 to n = 10. These findings are incompatible with the power conversion efficiency requirements of DSSCs. Therefore, the elongation of the polyene bridge in such D-π-A configurations rules out its application in solar cell devices. Full article
Show Figures

Figure 1

13 pages, 3449 KB  
Article
(1E)-1,2-Diaryldiazene Derivatives Containing a Donor–π-Acceptor-Type Tolane Skeleton as Smectic Liquid–Crystalline Dyes
by Shigeyuki Yamada, Keigo Yoshida, Yuto Eguchi, Mitsuo Hara, Motohiro Yasui and Tsutomu Konno
Compounds 2024, 4(2), 288-300; https://doi.org/10.3390/compounds4020015 - 17 Apr 2024
Cited by 2 | Viewed by 1811
Abstract
Considerable attention has been paid to (1E)-1,2-diaryldiazenes (azo dyes) possessing liquid–crystalline (LC) and optical properties because they can switch color through thermal phase transitions and photoisomerizations. Although multifunctional molecules with both LC and fluorescent properties based on a donor–π-acceptor (D-π-A)-type tolane [...] Read more.
Considerable attention has been paid to (1E)-1,2-diaryldiazenes (azo dyes) possessing liquid–crystalline (LC) and optical properties because they can switch color through thermal phase transitions and photoisomerizations. Although multifunctional molecules with both LC and fluorescent properties based on a donor–π-acceptor (D-π-A)-type tolane skeleton have been developed, functional molecules possessing LC and dye properties have not yet been developed. Therefore, this study proposes to develop LC dyes consisting of (1E)-1,2-diaryldiazenes with a D–π-A-type tolane skeleton as the aryl moiety. The (1E)-1,2-diaryldiazene derivatives exhibited a smectic phase, regardless of the flexible-chain structure, whereas the melting temperature was significantly increased by introducing fluoroalkyl moieties into the flexible chain. Evaluation of the optical properties revealed that compounds with decyloxy chains exhibited an orange color, whereas compounds with semifluoroalkoxy chains absorbed at a slightly blue-shifted wavelength, which resulted in a pale orange color. The thermal phase transition caused a slight color change accompanied by a change in the absorption properties, photoisomerization-induced shrinkage, and partial disappearance of the LC domain. These results indicate that (1E)-1,2-diaryldiazenes with a D–π-A-type tolane skeleton can function as thermo- or photoresponsive dyes and are applicable to smart windows and in photolithography. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2024))
Show Figures

Graphical abstract

22 pages, 5025 KB  
Article
Insights into the Roles of Surface Functional Groups and Micropores in the Sorption of Ofloxacin on Banana Pseudo-Stem Biochars
by Haifeng Wang, Yang Yang, Mengping Wang, Runjiao Yuan, Wenyi Song, Lin Wang, Ni Liang, Jiayi Shi and Jing Li
Sustainability 2024, 16(7), 2629; https://doi.org/10.3390/su16072629 - 22 Mar 2024
Cited by 1 | Viewed by 2385
Abstract
In the present study, banana pseudo-stem (BS) was pyrolyzed under anaerobic conditions without any physical or chemical modification. Their properties, as well as their sorption affinity to ofloxacin (OFL), were studied. As a result, oxalates and KCl formed at a relatively low temperature [...] Read more.
In the present study, banana pseudo-stem (BS) was pyrolyzed under anaerobic conditions without any physical or chemical modification. Their properties, as well as their sorption affinity to ofloxacin (OFL), were studied. As a result, oxalates and KCl formed at a relatively low temperature of 300 °C, while bicarbonates generally formed at a pyrolysis temperature above 400 °C. Surface functional groups of BS biochars facilitated OFL sorption mainly via specific interactions including electronic attraction (EA), π–π electron donor–acceptor (π–π EDA) interaction, the ordinary hydrogen bond (OHB), and the negative charge-assisted hydrogen bond ((−)CAHB). Except for (−)CAHB, these interactions all decreased with an elevated pH, resulting in overall decreased OFL sorption. Significant OFL sorption by BS biochars produced at 300 °C, observed even at an alkaline condition was attributed to (−)CAHB. Micropores formed in BS biochar prepared at 500 °C, with a specific surface area as high as 390 m2 g−1 after water washing treatment. However, most micropores could not be accessed by OFL molecules due to the size exclusion effect. Additionally, the inherent K-containing salts may hinder OFL sorption by covering the sorption sites or blocking the inner pores of biochars, as well as releasing OH into the solution. Thus, BS biochar produced at 300 °C is an excellent sorbent for OFL removal due to its high sorption ability and low energy. Our findings indicate that biochar techniques have potential win–win effects in recycling banana waste with low energy and costs, and simultaneously converting them into promising sorbents for the removal of environmental contaminants. Full article
(This article belongs to the Special Issue Sustainable Development and Application of Biochar)
Show Figures

Figure 1

16 pages, 8666 KB  
Article
Understanding the Selective Extraction of the Uranyl Ion from Seawater with Amidoxime-Functionalized Materials: Uranyl Complexes of Pyrimidine-2-amidoxime
by Sokratis T. Tsantis, Zoi G. Lada, Sotiris G. Skiadas, Demetrios I. Tzimopoulos, Catherine P. Raptopoulou, Vassilis Psycharis and Spyros P. Perlepes
Inorganics 2024, 12(3), 82; https://doi.org/10.3390/inorganics12030082 - 7 Mar 2024
Cited by 5 | Viewed by 3051
Abstract
The study of small synthetic models for the highly selective removal of uranyl ions from seawater with amidoxime-containing materials is a valuable means to enhance their recovery capacity, leading to better extractants. An important issue in such efforts is to design bifunctional ligands [...] Read more.
The study of small synthetic models for the highly selective removal of uranyl ions from seawater with amidoxime-containing materials is a valuable means to enhance their recovery capacity, leading to better extractants. An important issue in such efforts is to design bifunctional ligands and study their reactions with trans-{UO2}2+ in order to model the reactivity of polymeric sorbents possessing both amidoximate and another adjacent donor site on the side chains of the polymers. In this work, we present our results concerning the reactions of uranyl and pyrimidine-2-amidoxime, a ligand possessing two pyridyl nitrogens near the amidoxime group. The 1:2:2 {UO2}2+/pmadH2/external base (NaOMe, Et3N) reaction system in MeOH/MeCN provided access to complex [UO2(pmadH)2(MeOH)2] (1) in moderate yields. The structure of the complex was determined by single-crystal X-ray crystallography. The UVI atom is in a distorted hexagonal bipyramidal environment, with the two oxo groups occupying the trans positions, as expected. The equatorial plane consists of two terminal MeOH molecules at opposite positions and two N,O pairs of two deprotonated η2 oximate groups from two 1.11000 (Harris notation) pmadH ligands; the two pyridyl nitrogen atoms and the –NH2 group remain uncoordinated. One pyridyl nitrogen of each ligand is the acceptor of one strong intramolecular H bond, with the donor being the coordinated MeOH oxygen atom. Non-classical Caromatic-H⋯X (X=O, N) intermolecular H bonds and π–π stacking interactions stabilize the crystal structure. The complex was characterized by IR and Raman spectroscopies, and the data were interpreted in terms of the known structure of 1. The solid-state structure of the complex is not retained in DMSO, as proven via 1H NMR and UV/Vis spectroscopic techniques as well as molar conductivity data, with the complex releasing neutral pmadH2 molecules. The to-date known coordination chemistry of pmadH2 is critically discussed. An attempt is also made to discuss the technological implications of this work. Full article
Show Figures

Graphical abstract

12 pages, 4626 KB  
Article
Organic Transistors Based on Highly Crystalline Donor–Acceptor π-Conjugated Polymer of Pentathiophene and Diketopyrrolopyrrole
by Shiwei Ren, Zhuoer Wang, Jinyang Chen, Sichun Wang and Zhengran Yi
Molecules 2024, 29(2), 457; https://doi.org/10.3390/molecules29020457 - 17 Jan 2024
Cited by 5 | Viewed by 2283
Abstract
Oligomers and polymers consisting of multiple thiophenes are widely used in organic electronics such as organic transistors and sensors because of their strong electron-donating ability. In this study, a solution to the problem of the poor solubility of polythiophene systems was developed. A [...] Read more.
Oligomers and polymers consisting of multiple thiophenes are widely used in organic electronics such as organic transistors and sensors because of their strong electron-donating ability. In this study, a solution to the problem of the poor solubility of polythiophene systems was developed. A novel π-conjugated polymer material, PDPP-5Th, was synthesized by adding the electron acceptor unit, DPP, to the polythiophene system with a long alkyl side chain, which facilitated the solution processing of the material for the preparation of devices. Meanwhile, the presence of the multicarbonyl groups within the DPP molecule facilitated donor–acceptor interactions in the internal chain, which further improved the hole-transport properties of the polythiophene-based material. The weak forces present within the molecules that promoted structural coplanarity were analyzed using theoretical simulations. Furthermore, the grazing incidence wide-angle X-ray scanning (GIWAXS) results indicated that PDPP-5Th features high crystallinity, which is favorable for efficient carrier migration within and between polymer chains. The material showed hole transport properties as high as 0.44 cm2 V−1 s−1 in conductivity testing. Our investigations demonstrate the great potential of this polymer material in the field of optoelectronics. Full article
(This article belongs to the Special Issue π-Conjugated Functional Molecules & Polymers)
Show Figures

Figure 1

10 pages, 3622 KB  
Communication
Incorporation of Diketopyrrolopyrrole into Polythiophene for the Preparation of Organic Polymer Transistors
by Shiwei Ren, Zhuoer Wang, Wenqing Zhang, Abderrahim Yassar, Jinyang Chen and Sichun Wang
Molecules 2024, 29(1), 260; https://doi.org/10.3390/molecules29010260 - 3 Jan 2024
Cited by 7 | Viewed by 2350
Abstract
Polythiophene, as a class of potential electron donor units, is widely used in organic electronics such as transistors. In this work, a novel polymeric material, PDPPTT-FT, was prepared by incorporating the electron acceptor unit into the polythiophene system. The incorporation of the DPP [...] Read more.
Polythiophene, as a class of potential electron donor units, is widely used in organic electronics such as transistors. In this work, a novel polymeric material, PDPPTT-FT, was prepared by incorporating the electron acceptor unit into the polythiophene system. The incorporation of the DPP molecule assists in improving the solubility of the material and provides a convenient method for the preparation of field effect transistors via subsequent solution processing. The introduction of fluorine atoms forms a good intramolecular conformational lock, and theoretical calculations show that the structure displays excellent co-planarity and regularity. Grazing incidence wide-angle X-ray (GIWAXS) results indicate that the PDPPTT-FT is highly crystalline, which facilitates carrier migration within and between polymer chains. The hole mobility of this π-conjugated material is as high as 0.30 cm2 V−1 s−1 in organic transistor measurements, demonstrating the great potential of this polymer material in the field of optoelectronics. Full article
(This article belongs to the Special Issue π-Conjugated Functional Molecules & Polymers)
Show Figures

Figure 1

Back to TopTop