Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,123)

Search Parameters:
Keywords = docking mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1776 KB  
Article
Integrated In Vitro and In Silico Profiling of Piperazinyl Thiosemicarbazone Derivatives against Trypanosoma cruzi: Stage-Specific Activity and Enzyme Inhibition
by Héctor A. Baldoni, María L. Sbaraglini, Darío E. Balcazar, Diego G. Arias, Sergio A. Guerrero, Catalina D. Alba Soto, Wioleta Cieslik, Marta Rogalska, Jaroslaw Polański, Ricardo D. Enriz, Josef Jampilek and Robert Musiol
Pharmaceuticals 2026, 19(1), 182; https://doi.org/10.3390/ph19010182 (registering DOI) - 20 Jan 2026
Abstract
Background: Trypanosoma cruzi, the causative agent of Chagas disease, remains a major public health concern, and there is a continued need for new antitrypanosomal agents. Thiosemicarbazone (TSC) derivatives have emerged as a promising class of compounds with potential antiparasitic activity. Objectives: This [...] Read more.
Background: Trypanosoma cruzi, the causative agent of Chagas disease, remains a major public health concern, and there is a continued need for new antitrypanosomal agents. Thiosemicarbazone (TSC) derivatives have emerged as a promising class of compounds with potential antiparasitic activity. Objectives: This study aimed to report the synthesis, characterization, and biological profiling of a novel series of thiosemicarbazone derivatives as antitrypanosomal agents against Trypanosoma cruzi. Methods: Fourteen new compounds and six previously described analogues were prepared and characterized by 1H/13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). As a preliminary in vitro screen, activity was assessed by direct parasite counting in epimastigote and bloodstream trypomastigote forms, as tractable models of replicative and infective stages sharing core metabolic targets with intracellular amastigotes. Epimastigote potency was quantified as half-maximal effective concentrations (EC50) derived from dose–response curves, whereas trypomastigote response was evaluated as percent viability after treatment at a fixed concentration of 20 µM. Mechanistic profiling included inhibition assays against the cysteine protease cruzipain (CZP) and selected redox defense enzymes, complemented by in silico similarity clustering and binding-pose affinity scoring. Results: A nitro-methoxy-substituted TSC showed potent CZP inhibition but limited trypomastigote efficacy, whereas brominated analogues displayed dual-stage activity independent of CZP inhibition. Tanimoto similarity analysis identified distinct structure–activity clusters, linking nitro-methoxy substitution to epimastigote selectivity and brominated scaffolds to broader antiparasitic profiles, with hydrophobicity and steric complementarity as key determinants. Enzymatic assays revealed no significant inhibition of cytosolic tryparedoxin peroxidase (cTXNPx) or glutathione peroxidase type I (TcGPx-I), suggesting redox disruption is not a primary mode of action. In vitro and in silico analyses showed low or no non-specific cytotoxicity under the tested conditions, supporting further optimization of these derivatives as antitrypanosomal preliminary hits. Key hits included derivative 3e (epimastigote EC50 = 0.36 ± 0.02 µM) and brominated analogues 2c and 2e (epimastigote EC50 = 3.92 ± 0.13 and 4.36 ± 0.10 µM, respectively), while docking supported favorable binding-pose affinity (e.g., ΔGS-pose = −20.78 ± 2.47 kcal/mol for 3e). Conclusions: These results support further optimization of the identified thiosemicarbazone derivatives as preliminary antitrypanosomal hits and provide insight into structure–activity relationships and potential mechanisms of action. Full article
35 pages, 8701 KB  
Article
Design, Synthesis, and Biological Evaluation of Novel Acetylcholinesterase and β-Secretase 1 Inhibitors
by Danuta Drozdowska, Damian Pawelski, Agnieszka Wróbel-Tałałaj, Marta Plonska-Brzezinska, Beata Kolesinska, Ryszard Lazny, Barbara Seroka, Cezary Parzych and Artur Ratkiewicz
Int. J. Mol. Sci. 2026, 27(2), 1008; https://doi.org/10.3390/ijms27021008 - 20 Jan 2026
Abstract
A series of novel granatane–triazole hybrid molecules was designed, synthesized, and evaluated as dual acetylcholinesterase (AChE) and β-secretase 1 (BACE1) inhibitors. The compounds were obtained through a convergent synthetic route involving azide formation, triazole construction via dipolar cycloaddition, and final coupling with a [...] Read more.
A series of novel granatane–triazole hybrid molecules was designed, synthesized, and evaluated as dual acetylcholinesterase (AChE) and β-secretase 1 (BACE1) inhibitors. The compounds were obtained through a convergent synthetic route involving azide formation, triazole construction via dipolar cycloaddition, and final coupling with a granatane scaffold to give a pseudopelletierine (3-granatanone) analogue. In vitro assays demonstrated that all target compounds inhibited both AChE and BACE1. Molecular docking and molecular dynamics simulations revealed stable interactions with key catalytic residues, suggesting distinct binding modes compared to reference ligands. QSAR-based pharmacokinetic predictions indicated favorable blood–brain barrier permeability and compliance with key drug-likeness filters. These findings identify granatane–triazole hybrids as promising multi-target directed ligand (MTDL) candidates with potential for further optimization in the search for new anti-Alzheimer therapeutics. Full article
(This article belongs to the Special Issue Proteases and Their Inhibitors)
Show Figures

Figure 1

21 pages, 8293 KB  
Article
In Silico Investigation Reveals IL-6 as a Key Target of Asiatic Acid in Osteoporosis: Insights from Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
by Wanatsanan Chulrik, Aman Tedasen, Nateelak Kooltheat, Rungruedee Kimseng and Thitinat Duangchan
Med. Sci. 2026, 14(1), 41; https://doi.org/10.3390/medsci14010041 - 15 Jan 2026
Viewed by 124
Abstract
Background/Objectives: Osteoporosis is a multifactorial skeletal disorder in which chronic inflammation, dysregulated cytokine signaling, and metabolic imbalance contribute to excessive bone resorption and impaired bone formation. Asiatic acid has demonstrated bone-protective effects, but its molecular mechanisms in osteoporosis remain incompletely understood. This study [...] Read more.
Background/Objectives: Osteoporosis is a multifactorial skeletal disorder in which chronic inflammation, dysregulated cytokine signaling, and metabolic imbalance contribute to excessive bone resorption and impaired bone formation. Asiatic acid has demonstrated bone-protective effects, but its molecular mechanisms in osteoporosis remain incompletely understood. This study aimed to investigate the anti-osteoporotic mechanisms of asiatic acid using an integrative in silico strategy. Methods: Network pharmacology analysis was performed to identify osteoporosis-related molecular targets of asiatic acid. Molecular docking was used to predict the binding modes and affinities between asiatic acid and its target proteins. Molecular dynamics simulation was used to assess the structural stability and interaction persistence of the asiatic acid–protein complex. Results: Network pharmacology identified 135 overlapping targets between asiatic acid and osteoporosis, with IL-6, STAT3, PPARG, and NFKB1 emerging as key hubs. KEGG analysis indicated the PPAR signaling pathway as a potential mechanism underlying the anti-osteoporotic effect. Molecular docking showed strong binding energies of asiatic acid with all predicted target proteins, with the highest affinity observed for IL-6, involving key residues ASN61, LEU62, GLU172, LYS66, and ARG168. Consistently, molecular dynamics simulation confirmed stable binding of asiatic acid to IL-6, with persistent interactions with ASN61, LYS66, LEU62, LEU64, and GLN154 mediated by hydrogen bonds, water bridges, and hydrophobic interactions. Conclusions: This integrative in silico study provides mechanistic insight into the potential anti-osteoporotic actions of asiatic acid, implicating IL-6 as a plausible upstream molecular target. These results establish a robust mechanistic framework for future translational studies exploring asiatic acid as a natural therapeutic candidate for osteoporosis. Full article
Show Figures

Figure 1

17 pages, 2010 KB  
Article
Molecular Mimicry Between Trypanosoma cruzi and Human TUBB as a Potential Autoimmune Mechanism in Chagas
by Ana Valentina Centeno-Iglesias, Celeste Abigail Quille-Juarez, Paul Galvez-Murillo, Anggie Stefany Revilla-Zeballos, Gustavo Alberto Obando-Pereda and Luis Alberto Ponce-Soto
Immuno 2026, 6(1), 8; https://doi.org/10.3390/immuno6010008 - 14 Jan 2026
Viewed by 201
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects a significant proportion of patients who develop digestive and cardiac complications, including megaviscera. This pathogenesis has been associated with autoimmune mechanisms mediated by molecular mimicry. In this study, an in silico evaluation of the potential [...] Read more.
Chagas disease, caused by Trypanosoma cruzi, affects a significant proportion of patients who develop digestive and cardiac complications, including megaviscera. This pathogenesis has been associated with autoimmune mechanisms mediated by molecular mimicry. In this study, an in silico evaluation of the potential structural basis of cross-reactivity of β-tubulin 1.9 of T. cruzi and the human β-4A tubulin isoform 3 was conducted. Using bioinformatics tools, homologous regions were identified and potentially immunogenic epitopes were predicted, considering their structural modeling and molecular docking. The proteins shared 87% sequence identity and 95% similarity, with an almost identical structural overlap, RMSD 0.291 Å. Three epitopes, VPFPRLHFF, NDLVSEYQQYQDATI, and GQSGAGNNWAKGHYTEGAELIDS, exhibited high predicted antigenicity, with the 9-mer and 16-mer peptides displaying structurally compatible docking poses within the binding grooves of MHC class I and class II molecules, respectively, while B-cell epitope potential was inferred from sequence-based property predictions. Normal mode analysis, used as an exploratory approach, suggested comparable flexibility profiles for the parasitic- and human-derived peptide–MHC complexes. These findings provide an exploratory structural framework supporting a potential role of β-tubulin epitopes in molecular mimicry processes implicated in the development of chagasic megaviscera. Full article
(This article belongs to the Section Autoimmunity and Immunoregulation)
Show Figures

Figure 1

20 pages, 7571 KB  
Article
Discontinued BACE1 Inhibitors in Phase II/III Clinical Trials and AM-6494 (Preclinical) Towards Alzheimer’s Disease Therapy: Repurposing Through Network Pharmacology and Molecular Docking Approach
by Samuel Chima Ugbaja, Hezekiel Matambo Kumalo and Nceba Gqaleni
Pharmaceuticals 2026, 19(1), 138; https://doi.org/10.3390/ph19010138 - 13 Jan 2026
Viewed by 217
Abstract
Background: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors demonstrated amyloid-lowering efficacy but failed in phase II/III clinical trials due to adverse effects and limited disease-modifying outcomes. This study employed an integrated network pharmacology and molecular docking approach to quantitatively elucidate [...] Read more.
Background: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors demonstrated amyloid-lowering efficacy but failed in phase II/III clinical trials due to adverse effects and limited disease-modifying outcomes. This study employed an integrated network pharmacology and molecular docking approach to quantitatively elucidate the multitarget mechanisms of 4 (phase II/III) discontinued BACE1 inhibitors (Verubecestat, Lanabecestat, Elenbecestat, and Umibecestat) and the preclinical compound AM-6494 in Alzheimer’s disease (AD). Methods: Drug-associated targets were intersected with AD-related genes to construct a protein–protein interaction (PPI) network, followed by topological analysis to identify hub proteins. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed using statistically significant thresholds (p < 0.05, FDR-adjusted). Molecular docking was conducted using AutoDock Vina to quantify binding affinities and interaction modes between the selected compounds and the identified hub proteins. Results: Network analysis identified 10 hub proteins (CASP3, STAT3, BCL2, AKT1, MTOR, BCL2L1, HSP90AA1, HSP90AB1, TNF, and MDM2). GO enrichment highlighted key biological processes, including the negative regulation of autophagy, regulation of apoptotic signalling, protein folding, and inflammatory responses. KEGG pathway analysis revealed significant enrichment in the PI3K–AKT–MTOR signalling, apoptosis, and TNF signalling pathways. Molecular docking demonstrated strong multitarget binding, with binding affinities ranging from approximately −6.6 to −11.4 kcal/mol across the hub proteins. Umibecestat exhibited the strongest binding toward AKT1 (−11.4 kcal/mol), HSP90AB1 (−9.5 kcal/mol), STAT3 (−8.9 kcal/mol), HSP90AA1 (−8.5 kcal/mol), and MTOR (−8.3 kcal/mol), while Lanabecestat showed high affinity for AKT1 (−10.6 kcal/mol), HSP90AA1 (−9.9 kcal/mol), BCL2L1 (−9.2 kcal/mol), and CASP3 (−8.5 kcal/mol), respectively. These interactions were stabilized by conserved hydrogen bonding, hydrophobic contacts, and π–alkyl interactions within key regulatory domains of the target proteins, supporting their multitarget engagement beyond BACE1 inhibition. Conclusions: This study demonstrates that clinically failed BACE1 inhibitors engage multiple non-structural regulatory proteins that are central to AD pathogenesis, particularly those governing autophagy, apoptosis, proteostasis, and neuroinflammation. The identified ligand–hub protein complexes provide a mechanistic rationale for repurposing and optimization strategies targeting network-level dysregulation in Alzheimer’s disease, warranting further in silico refinement and experimental validation. Full article
(This article belongs to the Special Issue NeuroImmunoEndocrinology)
Show Figures

Graphical abstract

19 pages, 3534 KB  
Article
Direct Effects of Capsaicin on Voltage-Dependent Calcium Channels of Mammalian Skeletal Muscle
by Dmytro Isaev, Tatiana Prytkova, Badarunnisa Mohamed, Mohamed Omar Mahgoub, Keun-Hang Susan Yang and Murat Oz
Biomolecules 2026, 16(1), 135; https://doi.org/10.3390/biom16010135 - 13 Jan 2026
Viewed by 250
Abstract
Capsaicin, a naturally occurring polyphenol, is known to affect energy expenditure and muscle fatigue and modulate contractions in skeletal muscle. The L-type Ca2+ channels are known to be an important ion channel involved in the various muscle functions and the effect of [...] Read more.
Capsaicin, a naturally occurring polyphenol, is known to affect energy expenditure and muscle fatigue and modulate contractions in skeletal muscle. The L-type Ca2+ channels are known to be an important ion channel involved in the various muscle functions and the effect of capsaicin on the skeletal L-type Ca2+ channels is currently unknown. In this study, the effects of capsaicin and capsaicin analogs on depolarization-induced Ca2+ effluxes through L-type Ca2+ channels in transverse tubule membranes from rabbit skeletal muscle and L-type Ca2+ currents recorded using the whole-cell patch clamp technique in rat myotubes were examined. Capsaicin, in the concentration range of 3–100 µM, inhibited depolarization-induced Ca2+ effluxes. The effect of capsaicin was not reversed by TRPV1 antagonist SB-366791 (10 µM). While vanilloids (30 µM) including vanillin, vanillyl alcohol, and vanillylamine were ineffective, other capsaicinoids (30 µM) including dihydrocapsaicin, nonivamide, and nordihydrocapsaicin significantly inhibited Ca2+ effluxes, suggesting that hydrocarbon chains are required for inhibition. In rat myotubes, capsaicin inhibited L-type Ca2+ currents with an IC50 value of 27.2 μM in the presence of SB-366791. Furthermore, in docking studies and molecular dynamic simulations, capsaicinoids with an aliphatic tail showed stronger binding and stable bent conformations in CaV1.1, forming hydrogen bonds with Ser1011 and Thr935 and hydrophobic/π–alkyl contacts with Phe1008, Ile1052, Met1366, and Ala1369, resembling the binding mode of amlodipine. In conclusion, the results indicate that the function of L-type Ca2+ channels in mammalian skeletal muscle was inhibited by capsaicin and capsaicin analogs in a TRPV1-independent manner. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

16 pages, 3692 KB  
Article
Study on the Molecular Mechanism of Interaction Between Perfluoroalkyl Acids and PPAR by Molecular Docking
by Renli Wei, Huiping Xiao, Jie Fu, Yin Luo and Pengfei Wang
Toxics 2026, 14(1), 67; https://doi.org/10.3390/toxics14010067 - 11 Jan 2026
Viewed by 299
Abstract
Per- and polyfluoroalkyl substances (PFASs), as a class of “permanent chemicals” with high environmental persistence and bioaccumulation, have attracted much attention. In this study, we focused on the molecular mechanism of the interaction between perfluoroalkyl acids (PFAAs) and peroxisome proliferator-activated receptor δ (PPARδ). [...] Read more.
Per- and polyfluoroalkyl substances (PFASs), as a class of “permanent chemicals” with high environmental persistence and bioaccumulation, have attracted much attention. In this study, we focused on the molecular mechanism of the interaction between perfluoroalkyl acids (PFAAs) and peroxisome proliferator-activated receptor δ (PPARδ). Using molecular docking, binding free energy calculation, and structural analysis, we systematically investigated the binding modes, key amino acid residues, and binding energies of 20 structurally diverse PFAAs with PPARδ. The results showed that the binding energies of PFAAs with PPARδ were significantly affected by the molecular weight, the number of hydrogen bond donors, and the melting point of PFAAs. PFAAs with smaller molecular weights and fewer hydrogen bond donors showed stronger binding affinity. The binding sites were concentrated in high-frequency amino acid residues such as TRP-256, ASN-269, and GLY-270, and the interaction forces were dominated by hydrogen and halogen bonds. PFAAs with branched structure of larger molecular weight (e.g., 3m-PFOA, binding energy of −2.92 kcal·mol−1; 3,3m2-PFOA, binding energy of −2.45 kcal·mol−1) had weaker binding energies than their straight-chain counterparts due to spatial site-blocking effect. In addition, validation group experiments further confirmed the regulation law of binding strength by physicochemical properties. In order to verify the binding stability of the key complexes predicted by molecular docking, and to investigate the dynamic behavior under the conditions of solvation and protein flexibility, molecular dynamics simulations were conducted on PFBA, PFOA, 3,3m2-PFOA, and PFHxA. The results confirmed the dynamic stability of the binding of the high-affinity ligands selected through docking to PPARδ. Moreover, the influence of molecular weight and branched structure on the binding strength was quantitatively verified from the perspectives of energy and RMSD trajectories. The present study revealed the molecular mechanism of PFAAs interfering with metabolic homeostasis through the PPARδ pathway, providing a theoretical basis for assessing its ecological and health risks. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

17 pages, 3710 KB  
Article
Study of Structural, Vibrational, and Molecular Docking Properties of (1S,9aR)-1-({4-[4-(Benzyloxy)-3-methoxyphenyl]-1H-1,2,3-triazol-1-yl}methyl)octahydro-2H-quinolizine
by Dastan Turdybekov, Zhangeldy Nurmaganbetov, Almagul Makhmutova, Dmitry Baev, Yury Gatilov, Dmitrii Pankin, Mikhail Smirnov, Pernesh Bekisheva and Kymbat Kopbalina
Molecules 2026, 31(2), 218; https://doi.org/10.3390/molecules31020218 - 8 Jan 2026
Viewed by 168
Abstract
A promising direction for the creation of new biologically active derivatives of the alkaloid lupinine is the synthesis of “hybrid molecules” that combine a fragment of the alkaloid and the pharmacophore of 1,2,3-triazole in their structure. From a biological perspective, this work presents [...] Read more.
A promising direction for the creation of new biologically active derivatives of the alkaloid lupinine is the synthesis of “hybrid molecules” that combine a fragment of the alkaloid and the pharmacophore of 1,2,3-triazole in their structure. From a biological perspective, this work presents the first X-ray diffraction study of a single crystal of (1S,9aR)-1-({4-[4-(Benzyloxy)-3-methoxyphenyl]-1H-1,2,3-triazol-1-yl}methyl)octahydro-2H-quinolizine, a new, recently synthesized 1,2,3-triazole derivative of lupinine. A comparison of theoretically predicted and experimentally observed structural parameters was carried out. The FTIR spectroscopy study and vibrational properties calculations allowed us to interpret the FTIR absorption spectrum and localize specific vibrational modes in quinolizidine, 1,2,3-triazole, and benzene rings. Such information can be fruitful for further characterization of the synthesis process and products. The molecular docking of the compound was performed. It was shown that the studied molecules are capable of interacting with the Mpro binding site via non-covalent and hydrophobic interactions with subsites S3 (Met165, Glu166, Leu167, Pro168) and S5 (Gln189, Thr190, Gln192), which ensure the stabilization of the Mpro substrate. Blocking of the active site of the enzyme in the region of the oxyanion hole does not occur, but stable stacking interactions with the π-system of one of the catalytic amino acids, His41, are observed. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

16 pages, 9986 KB  
Article
Echinacoside as a Novel Ferroptosis Inducer in Hepatocellular Carcinoma: Mechanistic Insights from TP53/SLC7A11/GPX4 Pathway Modulation
by Pei Wang, Jianhao Lin and Deqi Su
Int. J. Mol. Sci. 2026, 27(1), 411; https://doi.org/10.3390/ijms27010411 - 30 Dec 2025
Viewed by 280
Abstract
Despite the known antitumor properties of echinacoside (ECH), its specific role and mechanism in hepatocellular carcinoma (HCC) require in-depth exploration. Our study aimed to decipher the mechanism of ECH against HCC through a multi-disciplinary strategy. We first identified tumor protein p53 (TP53) as [...] Read more.
Despite the known antitumor properties of echinacoside (ECH), its specific role and mechanism in hepatocellular carcinoma (HCC) require in-depth exploration. Our study aimed to decipher the mechanism of ECH against HCC through a multi-disciplinary strategy. We first identified tumor protein p53 (TP53) as a key mediator and ferroptosis as a critical process, through network pharmacology and enrichment analyses. The direct interaction between ECH and TP53 was validated by molecular docking and dynamics simulations. In vitro assessments demonstrated that ECH suppresses HCC proliferation by activating ferroptosis, marked by increased intracellular Fe2+, lipid peroxidation (LPO), and malondialdehyde (MDA), alongside reduced glutathione (GSH). The ferroptosis inhibitor ferrostatin-1 notably attenuated ECH’s effects, confirming ferroptosis as the primary mode of cell death. Further mechanistic investigation revealed that ECH acts through the TP53/solute carrier family 7 member 11(SLC7A11)/glutathione peroxidase 4(GPX4) pathway. These results collectively identify ECH as a promising ferroptosis-inducing agent for HCC therapy via TP53 activation. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

21 pages, 3414 KB  
Article
Spectroscopic and Physicochemical Analysis of Bioactive Cobalt(II) β-Diketo Ester Complexes: Insights into DNA and BSA Binding Mechanisms
by Ignjat Filipović, Snežana Stojanović, Jelena Petronijević, Milena Milutinović, Danijela Nikodijević, Nevena Petrović, Marijana Kosanić and Nenad Joksimović
Analytica 2026, 7(1), 3; https://doi.org/10.3390/analytica7010003 - 29 Dec 2025
Viewed by 245
Abstract
The urgent need for effective therapies against cancer and antimicrobial-resistant pathogens motivates the development of novel metal-based complexes. Herein, we report the synthesis and characterization of four novel cobalt(II) complexes with biologically relevant β-diketo ester ligands. The complexes were characterized via UV-Vis, FTIR, [...] Read more.
The urgent need for effective therapies against cancer and antimicrobial-resistant pathogens motivates the development of novel metal-based complexes. Herein, we report the synthesis and characterization of four novel cobalt(II) complexes with biologically relevant β-diketo ester ligands. The complexes were characterized via UV-Vis, FTIR, mass spectrometry, and elemental analysis. Their biological activities were evaluated through antimicrobial and cytotoxic assays. Complex B1 exhibited the strongest antimicrobial activity, with minimum inhibitory concentrations (MICs) of 0.23 mg/mL against Staphylococcus aureus and Proteus mirabilis, and 0.01 mg/mL against Mucor mucedo, exceeding the performance of ketoconazole. Cytotoxicity studies on SW480 colorectal cancer cells and HaCaT normal keratinocytes identified B3 as the most potent anticancer agent (IC50 = 11.49 µM), selectively targeting tumor cells. Morphological analysis indicated apoptosis as the primary mode of cell death. Mechanistic studies were performed to elucidate interactions with biomolecules. UV-Vis and fluorescence spectroscopy, viscosity measurements, and molecular docking revealed that B3 binds strongly to calf thymus DNA via hydrophobic interactions and groove binding, and exhibits selective binding to bovine serum albumin (site II, subdomain IIIA). These results highlight the potential of cobalt(II) complexes as multifunctional agents with significant antimicrobial and antitumor activities and provide detailed insight into their molecular interactions with DNA and serum proteins. Full article
Show Figures

Graphical abstract

22 pages, 1814 KB  
Review
Microalgae and Macroalgae as Advanced Sources of Tyrosinase Inhibitors
by Joanna Harasym and Katarzyna Hałdys
Molecules 2026, 31(1), 20; https://doi.org/10.3390/molecules31010020 - 20 Dec 2025
Viewed by 550
Abstract
Tyrosinase (EC 1.14.18.1) is the primary enzyme responsible for melanogenesis in mammals and enzymatic browning in food, creating a high demand for potent, safe inhibitors of this enzyme in the cosmetic, medical, and agricultural sectors. Conventional synthetic inhibitors often face limitations concerning their [...] Read more.
Tyrosinase (EC 1.14.18.1) is the primary enzyme responsible for melanogenesis in mammals and enzymatic browning in food, creating a high demand for potent, safe inhibitors of this enzyme in the cosmetic, medical, and agricultural sectors. Conventional synthetic inhibitors often face limitations concerning their cytotoxicity and stability, necessitating the exploration of marine natural products (MNPs). Marine algae, comprising macroalgae (seaweeds) and microalgae (including cyanobacteria), represent an underexploited source of structurally diverse bioactives. Macroalgae, particularly brown species, yield complex phlorotannins, such as the non-competitive oligomer dieckol, which exhibits an IC50 of 2.16 µg/mL. Conversely, microalgae deliver high-potency, low-molecular-weight compounds, notably the synthesizable scytonemin monomer (ScyM) with an IC50 of 4.90 µM—significantly stronger than kojic acid. Mechanistic analysis, supported by molecular docking, reveals diverse modes of action, from the two-step slow binding of complex phlorotannins to the highly specific competitive binding of red algal bromophenols. Translational success requires the consistent application of green extraction techniques, such as Natural Deep Eutectic Solvents (NADESs), and advanced delivery systems, like Nanostructured Lipid Carriers (NLCs), to ensure the stability and bioavailability of these compounds for future cosmeceutical and medical applications. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Food Chemistry)
Show Figures

Figure 1

19 pages, 4583 KB  
Article
Molecular Docking Analysis of Heparin–Diclofenac Complexes: Insights into Enhanced Cox Enzyme Inhibition for Pain Management
by Manuel Ovidiu Amzoiu, Oana Taisescu, Emilia Amzoiu, Andrei Gresita, Georgeta Sofia Popescu, Gabriela Rău, Maria Viorica Ciocîlteu and Costel Valentin Manda
Life 2025, 15(12), 1903; https://doi.org/10.3390/life15121903 - 12 Dec 2025
Cited by 2 | Viewed by 353
Abstract
The aim of this study was to investigate the molecular interactions of heparin, diclofenac, and their supramolecular complexes with cyclooxygenase enzymes (COX-1 and COX-2) using computational docking techniques. Diclofenac is a widely used nonsteroidal anti-inflammatory drug (NSAID) that inhibits COX isoforms, whereas heparin [...] Read more.
The aim of this study was to investigate the molecular interactions of heparin, diclofenac, and their supramolecular complexes with cyclooxygenase enzymes (COX-1 and COX-2) using computational docking techniques. Diclofenac is a widely used nonsteroidal anti-inflammatory drug (NSAID) that inhibits COX isoforms, whereas heparin is a polyanionic glycosaminoglycan with established anticoagulant and emerging anti-inflammatory properties. Supramolecular association between these agents may modulate their physicochemical behavior and target engagement. Molecular modeling, dual-drug docking, and molecular dynamics (MD) simulations were employed to characterize the interactions of heparin, diclofenac, and pre-formed heparin–diclofenac complexes with COX-1 and COX-2. Geometry optimization and lipophilicity (logP) estimates were obtained using HyperChem, while protein–ligand docking was performed in HEX using crystallographic COX structures from the Protein Data Bank. Docking poses were analyzed in Chimera, and selected complexes were refined through short MD simulations. Pre-formed heparin–diclofenac assemblies exhibited markedly enhanced docking scores toward both COX isoforms compared with single ligands. Binding orientation strongly influenced affinity: for COX-1, the heparin–diclofenac configuration yielded the most favorable interaction, whereas for COX-2 the diclofenac–heparin configuration was preferred. Both assemblies adopted binding modes distinct from free diclofenac, suggesting cooperative electrostatic and hydrophobic contacts at the enzyme surface. Supramolecular complexation also altered calculated logP values relative to the individual compounds. MD simulations supported the relative stability of the top-ranked complex–COX assemblies. These findings indicate that heparin–diclofenac assemblies may enhance and reorganize predicted COX interactions in a configuration-dependent manner and illustrate the utility of dual-drug docking for modeling potential synergistic effects. Such insights may inform the design of localized or topical formulations, potentially incorporating non-anticoagulant heparin derivatives, to achieve effective COX inhibition with reduced systemic exposure. However, the results rely on simplified heparin fragments, legacy docking tools, and short MD simulations, and should therefore be interpreted qualitatively. Experimental studies will be essential to confirm whether such supramolecular assemblies form under physiological conditions and whether they influence COX inhibition in vivo. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

18 pages, 3100 KB  
Article
PET-Driven Fluorescence Modulation in Halochromic Styryl Hemicyanine Dyes Targeting DNA Minor Groove
by Teodora Aleksandrova, Aleksandar Pashev, Sonia Ilieva, Raimundo Gargallo, Diana Cheshmedzhieva and Aleksey Vasilev
Molecules 2025, 30(23), 4607; https://doi.org/10.3390/molecules30234607 - 30 Nov 2025
Viewed by 339
Abstract
A new series of styryl hemicyanine dyes featuring substituted N-phenylpiperazine end groups was synthesized using an environmentally friendly procedure. The photophysical properties of the dyes were systematically investigated in organic solvents of varying polarity and when bound to DNA, using a combination [...] Read more.
A new series of styryl hemicyanine dyes featuring substituted N-phenylpiperazine end groups was synthesized using an environmentally friendly procedure. The photophysical properties of the dyes were systematically investigated in organic solvents of varying polarity and when bound to DNA, using a combination of spectroscopic techniques. The dyes show strong negative solvatochromism and exhibit fluorescence quenching upon DNA binding. The dyes are definitely halochromic, exhibiting pronounced fluorescent acidochromism, accompanied by a photoinduced electron transfer (PET) effect. Titration with acid of the dye–DNA complexes restores fluorescence, indicating suppression of the PET and, at the same time, rigidizing of the chemical structure. UV/VIS and fluorescence titration, circular dichroism spectroscopy, and molecular docking methods were used to investigate the interaction mode between the dyes and DNA. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) quantum chemical calculations were employed in deciphering the observed spectroscopic behavior and PET-related effects. The obtained results suggest the dyes’ potential as pH-responsive fluorescent probes for nucleic acid environments. Full article
(This article belongs to the Special Issue Heterocyclic Compounds: Synthesis, Application and Theoretical Study)
Show Figures

Figure 1

41 pages, 15832 KB  
Review
Applications of Gaussian Boson Sampling to Solve Some Chemistry Problems
by Samaneh Bagheri Novir
Quantum Rep. 2025, 7(4), 56; https://doi.org/10.3390/quantum7040056 - 28 Nov 2025
Viewed by 1179
Abstract
Quantum computers, due to their superposition and entanglement properties, provide significant advantages in solving certain problems compared with classical computers. Therefore, it is crucial to identify issues that can be efficiently solved by noisy intermediate-scale quantum (NISQ) systems. Xanadu has introduced the X8 [...] Read more.
Quantum computers, due to their superposition and entanglement properties, provide significant advantages in solving certain problems compared with classical computers. Therefore, it is crucial to identify issues that can be efficiently solved by noisy intermediate-scale quantum (NISQ) systems. Xanadu has introduced the X8 quantum chip, based on integrated photonic technology, along with important photonic platforms such as Strawberry Fields and Gaussian Boson Sampling (GBS), to solve specific computational problems. In this review article, after reviewing Boson Sampling (BS) and Gaussian Boson Sampling (GBS), we discuss the relationship between GBS and graph theory, including how graphs can be encoded in GBS. Some applications of GBS, particularly molecular docking and molecular vibrations, are also considered. The future goal of this study is to identify problems that can be represented as small graphs and solved using GBS with a limited number of optical modes. Full article
(This article belongs to the Topic Quantum Systems and Their Applications)
Show Figures

Figure 1

25 pages, 9141 KB  
Article
A2BAR-Mediated Antiproliferative and Anticancer Effects of Okhotoside A1-1 in Monolayer and 3D Culture of Human Breast Cancer MDA-MB-231 Cells
by Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Ekaterina A. Yurchenko, Elena A. Zelepuga, Evgeny A. Pislyagin, Liliana E. Nesterenko, Sergey A. Avilov, Vladimir I. Kalinin, Dmitry L. Aminin and Alexandra S. Silchenko
Mar. Drugs 2025, 23(12), 456; https://doi.org/10.3390/md23120456 - 27 Nov 2025
Viewed by 2256
Abstract
The aim of this study is to investigate the A2BAR-dependence of okhotoside A1-1 cytotoxic and antiproliferative action on triple-negative MDA-MB-231 breast cancer cells using monolayer and 3D culture approaches. Earlier triterpene glycoside okhotoside A1-1 (Okh) was isolated [...] Read more.
The aim of this study is to investigate the A2BAR-dependence of okhotoside A1-1 cytotoxic and antiproliferative action on triple-negative MDA-MB-231 breast cancer cells using monolayer and 3D culture approaches. Earlier triterpene glycoside okhotoside A1-1 (Okh) was isolated from the sea cucumbers Cucumaria djakonovi and C. conicospermium and its selective cytotoxicity against MDA-MB-231 vs. non-tumorigenic MCF-10A cells was reported. Now it has been found that the A2B adenosine receptor (A2BAR) is one of the molecular targets for Okh and its antiproliferative effect is A2BAR-dependent. Molecular docking studies suggested a unique behavior for Okh demonstrating two highly probable binding modes with comparable affinity, when the aglycone is immersed in the binding pocket, or alternatively, the carbohydrate moiety occupies the site. The glycoside modulated cAMP and intracellular Ca2+ levels in an A2BAR-dependent manner, which accompanied by the suppression of p38 MAPK and ERK1/2 phosphorylation, and blocked cell cycle progression. Okh induced mitochondrial dysfunction, characterized by increased ROS production and loss of the mitochondrial membrane potential (ΔΨm), which led to the upregulation of APAF-1 and cytochrome C, activation of caspases-9 and -3, and initiation of apoptosis. The antitumor potential of Okh was confirmed in a 3D culture of MDA-MB-231 cells and was more significant than those of another A2BAR-targeted triterpene glycoside cucumarioside A0-1 and cisplatin. Full article
(This article belongs to the Special Issue Novel Biomaterials and Active Compounds from Sea Cucumbers)
Show Figures

Graphical abstract

Back to TopTop