Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (197)

Search Parameters:
Keywords = diurnal warming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2542 KiB  
Article
Wheat Under Warmer Nights: Shifting of Sowing Dates for Managing Impacts of Thermal Stress
by Roshan Subedi, Mani Naiker, Yash Chauhan, S. V. Krishna Jagadish and Surya P. Bhattarai
Agriculture 2025, 15(15), 1687; https://doi.org/10.3390/agriculture15151687 - 5 Aug 2025
Abstract
High nighttime temperature (HNT) due to asymmetric diurnal warming threatens wheat productivity. This study evaluated the effect of HNT on wheat phenology, physiology, and yield through field and controlled environment experiments in Central Queensland, Australia. Two wheat genotypes, Faraday and AVT#6, were assessed [...] Read more.
High nighttime temperature (HNT) due to asymmetric diurnal warming threatens wheat productivity. This study evaluated the effect of HNT on wheat phenology, physiology, and yield through field and controlled environment experiments in Central Queensland, Australia. Two wheat genotypes, Faraday and AVT#6, were assessed under three sowing dates—1 May (Early), 15 June (Mid), and 1 August (Late)—within the recommended sowing window for the region. In a parallel growth chamber study, the plants were exposed to two nighttime temperature regimes, of 15 °C (normal) and 20 °C (high), with consistent daytime conditions from booting to maturity. Late sowing resulted in shortened vegetative growth and grain filling periods and increased exposure to HNT during the reproductive phase. This resulted in elevated floret sterility, lower grain weight, and up to 40% yield loss. AVT#6 exhibited greater sensitivity to HNT despite maturing earlier. Leaf gas exchange analysis revealed increased nighttime respiration (Rn) and reduced assimilation (A), resulting in higher Rn/A ratio for late-sown crops. The results from controlled environment chambers resembled trends of the field experiment, producing lower grain yield and biomass under HNT. Cumulative nighttime hours above 20 °C correlated more strongly with yield losses than daytime heat. These findings highlight the need for HNT-tolerant genotypes and optimized sowing schedules under future climate scenarios. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

19 pages, 2340 KiB  
Article
Analysis of Olive Tree Flowering Behavior Based on Thermal Requirements: A Case Study from the Northern Mediterranean Region
by Maja Podgornik, Jakob Fantinič, Tjaša Pogačar and Vesna Zupanc
Climate 2025, 13(8), 156; https://doi.org/10.3390/cli13080156 - 23 Jul 2025
Viewed by 461
Abstract
In recent years, early olive fruit drop has been observed in the northern Mediterranean regions, causing significant economic losses, although the exact cause remains unknown. Recent studies have identified several possible causes; however, our understanding of how olive trees respond to these environmental [...] Read more.
In recent years, early olive fruit drop has been observed in the northern Mediterranean regions, causing significant economic losses, although the exact cause remains unknown. Recent studies have identified several possible causes; however, our understanding of how olive trees respond to these environmental stresses remains limited. This study includes an analysis of selected meteorological and flowering data for Olea europaea L. “Istrska belica” to evaluate the use of a chilling and forcing model for a better understanding of flowering time dynamics under a changing climate. The flowering process is influenced by high diurnal temperature ranges (DTRs) during the pre-flowering period, resulting in earlier flowering. Despite annual fluctuations due to various climatic factors, an increase in DTRs has been observed in recent decades, although the mechanisms by which olive trees respond to high DTRs remain unclear. The chilling requirements are still well met in the region (1500 ± 250 chilling units), although their total has declined over the years. According to the Chilling Hours Model, chilling units—referred to as chilling hours—represent the number of hours with temperatures between 0 and 7.2 °C, accumulated throughout the winter season. Growing degree hours (GDHs) are strongly correlated with the onset of flowering. These results suggest that global warming is already affecting the synchrony between olive tree phenology and environmental conditions in the northern Mediterranean and may be one of the reason for the green drop. Full article
(This article belongs to the Section Climate Adaptation and Mitigation)
Show Figures

Figure 1

34 pages, 5790 KiB  
Article
Urban Densification and Outdoor Thermal Comfort: Scenario-Based Analysis in Zurich’s Altstetten–Albisrieden District
by Yingying Jiang and Sacha Menz
Land 2025, 14(8), 1516; https://doi.org/10.3390/land14081516 - 23 Jul 2025
Viewed by 172
Abstract
The growing urban population has made densification a key focus of urban development. It is crucial to create an urban planning strategy that understands the environmental, social, and economic effects of densification at both the district and city levels. In Switzerland, densification is [...] Read more.
The growing urban population has made densification a key focus of urban development. It is crucial to create an urban planning strategy that understands the environmental, social, and economic effects of densification at both the district and city levels. In Switzerland, densification is a legally binding aim to foster housing and jobs within urban boundaries. The challenge is to accommodate population growth while maintaining a high quality of life. Zurich exemplifies this situation, necessitating the accommodation of approximately 25% of the anticipated increase in both the resident population and associated workplaces, as of 2016. This study examined the effects of urban densification on urban forms and microclimates in the Altstetten–Albisrieden district. It developed five densification scenarios based on current urban initiatives and assessed their impacts. Results showed that the current Building and Zoning Plan provides sufficient capacity to accommodate growth. Strategies such as densifying parcels older than fifty years and adding floors to newer buildings were found to minimally impact existing urban forms. Using the SOLWEIG model in the Urban Multi-scale Environmental Predictor (UMEP), this study simulated mean radiant temperature (Tmrt) in the selected urban areas. The results demonstrated that densification reduced daytime average temperatures by 0.60 °C and diurnal averages by 0.23 °C, but increased average nighttime temperatures by 0.38 °C. This highlights the importance of addressing warm nights. The study concludes that well-planned densification can significantly contribute to urban liveability, emphasising the need for thoughtful building design to improve outdoor thermal comfort. Full article
Show Figures

Figure 1

18 pages, 5087 KiB  
Article
SD-WACCM-X Study of Nonmigrating Tidal Responses to the 2019 Antarctic Minor SSW
by Chen-Ke-Min Teng, Zhiqiang Fan, Wei Cheng, Yusong Qin, Zhenlin Yang and Jingzhe Sun
Atmosphere 2025, 16(7), 848; https://doi.org/10.3390/atmos16070848 - 12 Jul 2025
Viewed by 239
Abstract
The 2019 Antarctic sudden stratospheric warming (SSW) is well captured by the specified dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X). This SSW is dominated by a strong quasi-stationary planetary wave with zonal wavenumber 1 (SPW1) activity, and nonmigrating [...] Read more.
The 2019 Antarctic sudden stratospheric warming (SSW) is well captured by the specified dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X). This SSW is dominated by a strong quasi-stationary planetary wave with zonal wavenumber 1 (SPW1) activity, and nonmigrating tides show great variations. The nonlinear interactions between SPW1 and diurnal, semidiurnal and terdiurnal migrating tides triggered by this SSW also have significant impacts on the variabilities of corresponding nonmigrating tides. This is clearly proven by the fact that the variations of the secondary nonmigrating tides, generated by the nonlinear interaction, show higher correlation during this SSW than those during the non-SSW period. Meanwhile, the SPW1 dominates the nonlinear interactions with diurnal, semidiurnal and terdiurnal migrating tides, and the corresponding secondary nonmigrating tides show concurrent increases with SPW1. In the ionosphere, the nonmigrating tidal oscillations exhibit consistent temporal variabilities with those shown in the neutral atmosphere, which demonstrates the neutral–ion coupling through nonmigrating tides and that nonmigrating tides are significant sources for the short-term ionospheric variability during this SSW event. Specifically, the enhancement of the ionospheric longitudinal wavenumber 4 structure coincides with the increase of the eastward-propagating diurnal tide with zonal wavenumber 3 (DE3), semidiurnal tide with zonal wavenumber 2 (SE2) and terdiurnal tide with zonal wavenumber 1 (TE1). Also, DE3 dominates the influence of nonmigrating tides on the ionospheric longitudinal wavenumber 4 structure during this SSW. Full article
(This article belongs to the Special Issue Ionospheric Disturbances and Space Weather)
Show Figures

Figure 1

14 pages, 7774 KiB  
Article
Temperature Differences Between Rooftop and Urban Canyon Sensors: Diurnal Dynamics, Drivers, and Implications
by Lorenzo Marinelli, Andrea Cecilia, Giampietro Casasanta, Alessandro Conidi, Igor Petenko and Stefania Argentini
Sensors 2025, 25(13), 4121; https://doi.org/10.3390/s25134121 - 2 Jul 2025
Viewed by 370
Abstract
Understanding temperature variations within the complex urban canopy layer (UCL) is challenging due to limitations and discrepancies between temperature measurements taken in urban canyons and on rooftops. The key question is how much these measurements differ and what factors contribute to these differences. [...] Read more.
Understanding temperature variations within the complex urban canopy layer (UCL) is challenging due to limitations and discrepancies between temperature measurements taken in urban canyons and on rooftops. The key question is how much these measurements differ and what factors contribute to these differences. According to the guidance by the World Meteorological Organization (WMO), rooftop observations are not encouraged for urban monitoring, due to potentially anomalous microclimatic conditions, whereas measurements within urban canyons are recommended. This is particularly relevant given the increasing number of rooftop sensors deployed through citizen science, raising questions about the representativeness of such data. This study aimed to address this knowledge gap by comparing temperatures within the UCL using two sensors: one located on a rooftop, and the other positioned within the canyon. The temperature difference between these two nearby locations followed a clear diurnal cycle, peaking at over 1 °C between 12:00 and 16:00 local time, with the canyon warmer than the rooftop. This daytime warming was primarily driven by solar radiation and, to a lesser extent, by wind speed, but only under clear-sky conditions. During the rest of the day, the temperature difference remained negligible. Full article
(This article belongs to the Special Issue Sensor-Based Systems for Environmental Monitoring and Assessment)
Show Figures

Figure 1

18 pages, 3573 KiB  
Article
A Field-Scale Assessment of the Impact of Conventional and Permeable Concrete Pavements on Surface and Air Temperatures
by Lu-Ming Chen, Jui-Wen Chen, Timothy J. Lecher and Paul C. Davidson
Environments 2025, 12(6), 192; https://doi.org/10.3390/environments12060192 - 7 Jun 2025
Viewed by 716
Abstract
Environmental impacts, such as elevated temperatures due to urban heat islands (UHIs), associated with land cover change due to urbanization, should not be ignored. In contrast to conventional impermeable concrete, permeable pavements have been implemented as green infrastructure strategies for achieving environmental benefits, [...] Read more.
Environmental impacts, such as elevated temperatures due to urban heat islands (UHIs), associated with land cover change due to urbanization, should not be ignored. In contrast to conventional impermeable concrete, permeable pavements have been implemented as green infrastructure strategies for achieving environmental benefits, such as stormwater management. Their impacts and benefits on other environmental aspects should not be ignored, especially for those with limited discussion in the literature. Therefore, this study monitored the surface and air temperatures of three types of pavements: conventional impermeable concrete (IC), pervious concrete (PC), and the patented JW Eco-technology (JW). As UHIs are more intense in the summer, temperature profiles during targeted periods when surface temperatures exceeded 40 °C for consecutive days were examined. In addition, as an available option at the study site, shade was created to evaluate its effect on surface temperatures across the pavement systems. Overall, the annual average surface and air temperatures of the three pavements were similar. However, seasonal and diurnal variations in temperatures were both observed, suggesting summer was the season when the differences in temperatures among pavements were most noticeable. Investigation during the targeted periods revealed that the average surface temperatures of PC were 2.4–2.7 °C and 3.2–3.3 °C higher than those observed on IC and JW, and the average air temperature of PC was 1.8 °C greater than that of IC and JW between 12:00 and 16:00. On the contrary, the average surface temperatures of PC were significantly lower than those on IC (1.3–1.4 °C) and JW (1.5 °C) between 21:00 and 5:00. Results also indicate that shade was an effective way to alleviate the high surface temperatures during the warm hours by lowering surface temperatures 21.0 °C, 15.4 °C, and 15.0 °C, for PC, IC, and JW, respectively. Finally, temperatures associated with the aqueducts of JW Eco-technology and the impacts on overall surface temperatures will be discussed. Full article
Show Figures

Figure 1

25 pages, 4654 KiB  
Article
The Impacts of Heatwaves on Population Distribution in the Subtropical City: A Case Study of Nanchang, China
by Zixun Chen and Zongcai Wei
Land 2025, 14(6), 1209; https://doi.org/10.3390/land14061209 - 5 Jun 2025
Cited by 1 | Viewed by 431
Abstract
Global warming has intensified the frequency and intensity of heatwaves, particularly in urban areas, significantly affecting residents’ daily activities. Extant studies have mainly concentrated on the relationship between socio-economic attributes and the impacts of heatwaves on urban populations. However, the relationship between the [...] Read more.
Global warming has intensified the frequency and intensity of heatwaves, particularly in urban areas, significantly affecting residents’ daily activities. Extant studies have mainly concentrated on the relationship between socio-economic attributes and the impacts of heatwaves on urban populations. However, the relationship between the built environment and the impacts of heatwaves on urban population distribution has not received much attention. Furthermore, most studies have overlooked the temporal heterogeneity in heatwave impacts on population activities and distribution. Therefore, taking the central urban area of Nanchang as the case, this study investigated the impacts of heatwaves on population distribution and their temporal heterogeneity. Moreover, it identified the nonlinear relationships between built environment factors and population changes during heatwaves by using the XGBoost model and SHAP method. The results revealed that heatwaves exerted the largest impacts on population distribution during weekend nights, followed by weekend daytime and weekday nighttime, with the least impacts observed during weekday daytime. Furthermore, location and transportation factors significantly affected population changes during heatwaves across most time periods, with their influences being associated with policy factors such as the high-temperature leave policy for workers in industrial zones located in urban fringe areas and the cooling zone establishment policy for citizens in subway stations. Moreover, land use and building form factors exhibited significant temporal heterogeneity in their impacts on population changes during heatwaves. This temporal heterogeneity was fundamentally driven by individuals’ heat adaptation behaviors, the spatiotemporal patterns of their daily activities, and the diurnal variations in the built environment’s influence on local thermal environment. These findings provide valuable insights to proactively alleviate the adverse impacts of heatwaves. Full article
Show Figures

Figure 1

12 pages, 7951 KiB  
Communication
Tropospheric NO2 Column over Tibet Plateau According to Geostationary Environment Monitoring Spectrometer: Spatial, Seasonal, and Diurnal Variations
by Xue Zhang, Chunxiang Ye, Jhoon Kim, Hanlim Lee, Junsung Park, Yeonjin Jung, Hyunkee Hong, Weitao Fu, Xicheng Li, Yuyang Chen, Xingyi Wu, Yali Li, Juan Li, Peng Zhang, Zhuoxian Yan, Jiaming Zhang, Song Liu and Lei Zhu
Remote Sens. 2025, 17(10), 1690; https://doi.org/10.3390/rs17101690 - 12 May 2025
Viewed by 709
Abstract
Nitrogen oxides (NOx) are key precursors of tropospheric ozone and particulate matter. The sparse local observations make it challenging to understand NOx cycling across the Tibetan Plateau (TP), which plays a crucial role in regional and global atmospheric processes. Here, [...] Read more.
Nitrogen oxides (NOx) are key precursors of tropospheric ozone and particulate matter. The sparse local observations make it challenging to understand NOx cycling across the Tibetan Plateau (TP), which plays a crucial role in regional and global atmospheric processes. Here, we utilized Geostationary Environment Monitoring Spectrometer (GEMS) data to examine the tropospheric NO2 vertical column density (ΩNO2) spatiotemporal variability over TP, a pristine environment marked with natural sources. GEMS observations revealed that the ΩNO2 over TP is generally low compared with surrounding regions with significant surface emissions, such as India and the Sichuan basin. A spatial decreasing trend of ΩNO2 is observed from the south and center to the north over Tibet. Unlike the surrounding regions, the TP exhibits opposing seasonal patterns and a negative correlation between the surface NO2 and ΩNO2. In the Lhasa and Nam Co areas within Xizang, the highest ΩNO2 in spring contrasts with the lowest surface concentration. Diurnally, a midday increase in ΩNO2 in the warm season reflects some external sources affecting the remote area. Trajectory analysis suggests strong convection lifted air mass from India and Southeast Asia into the upper troposphere over the TP. These findings highlight the mixing interplay of nonlocal and local NOx sources in shaping NO2 variability in a high-altitude environment. Future research should explore these transport mechanisms and their implications for atmospheric chemistry and climate dynamics over the TP. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

25 pages, 2706 KiB  
Article
Spatiotemporal Analysis of Air Pollution and Climate Change Effects on Urban Green Spaces in Bucharest Metropolis
by Maria Zoran, Dan Savastru, Marina Tautan, Daniel Tenciu and Alexandru Stanciu
Atmosphere 2025, 16(5), 553; https://doi.org/10.3390/atmos16050553 - 7 May 2025
Viewed by 736
Abstract
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban [...] Read more.
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban vegetation to air pollution and climate variability in the Bucharest metropolis in Romania from a spatiotemporal perspective during 2000–2024, with a focus on the 2020–2024 period. Through the synergy of time series in situ air pollution and climate data, and derived vegetation biophysical variables from MODIS Terra/Aqua satellite data, this study applied statistical regression, correlation, and linear trend analysis to assess linear relationships between variables and their pairwise associations. Green spaces were measured with the MODIS normalized difference vegetation index (NDVI), leaf area index (LAI), photosynthetically active radiation (FPAR), evapotranspiration (ET), and net primary production (NPP), which capture the complex characteristics of urban vegetation systems (gardens, street trees, parks, and forests), periurban forests, and agricultural areas. For both the Bucharest center (6.5 km × 6.5 km) and metropolitan (40.5 km × 40.5 km) test areas, during the five-year investigated period, this study found negative correlations of the NDVI with ground-level concentrations of particulate matter in two size fractions, PM2.5 (city center r = −0.29; p < 0.01, and metropolitan r = −0.39; p < 0.01) and PM10 (city center r = −0.58; p < 0.01, and metropolitan r = −0.56; p < 0.01), as well as between the NDVI and gaseous air pollutants (nitrogen dioxide—NO2, sulfur dioxide—SO2, and carbon monoxide—CO. Also, negative correlations between NDVI and climate parameters, air relative humidity (RH), and land surface albedo (LSA) were observed. These results show the potential of urban green to improve air quality through air pollutant deposition, retention, and alteration of vegetation health, particularly during dry seasons and hot summers. For the same period of analysis, positive correlations between the NDVI and solar surface irradiance (SI) and planetary boundary layer height (PBL) were recorded. Because of the summer season’s (June–August) increase in ground-level ozone, significant negative correlations with the NDVI (r = −0.51, p < 0.01) were found for Bucharest city center and (r = −76; p < 0.01) for the metropolitan area, which may explain the degraded or devitalized vegetation under high ozone levels. Also, during hot summer seasons in the 2020–2024 period, this research reported negative correlations between air temperature at 2 m height (TA) and the NDVI for both the Bucharest city center (r = −0.84; p < 0.01) and metropolitan scale (r = −0.90; p < 0.01), as well as negative correlations between the land surface temperature (LST) and the NDVI for Bucharest (city center r = −0.29; p< 0.01) and the metropolitan area (r = −0.68, p < 0.01). During summer seasons, positive correlations between ET and climate parameters TA (r = 0.91; p < 0.01), SI (r = 0.91; p < 0.01), relative humidity RH (r = 0.65; p < 0.01), and NDVI (r = 0.83; p < 0.01) are associated with the cooling effects of urban vegetation, showing that a higher vegetation density is associated with lower air and land surface temperatures. The negative correlation between ET and LST (r = −0.92; p < 0.01) explains the imprint of evapotranspiration in the diurnal variations of LST in contrast with TA. The decreasing trend of NPP over 24 years highlighted the feedback response of vegetation to air pollution and climate warming. For future green cities, the results of this study contribute to the development of advanced strategies for urban vegetation protection and better mitigation of air quality under an increased frequency of extreme climate events. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

15 pages, 2964 KiB  
Article
Monthly Diurnal Variations in Soil N2O Fluxes and Their Environmental Drivers in a Temperate Forest in Northeastern China: Insights from Continuous Automated Monitoring
by Chuying Guo, Leiming Zhang, Shenggong Li and Fuxi Ke
Forests 2025, 16(5), 766; https://doi.org/10.3390/f16050766 - 30 Apr 2025
Viewed by 318
Abstract
Global warming, driven by increased greenhouse gas emissions, is a critical global concern. However, long-term trends in emissions remain poorly understood due to limited year-round data. The automated chamber method was used for continuous monitoring of soil N2O fluxes in a [...] Read more.
Global warming, driven by increased greenhouse gas emissions, is a critical global concern. However, long-term trends in emissions remain poorly understood due to limited year-round data. The automated chamber method was used for continuous monitoring of soil N2O fluxes in a mixed forest in Northeast China’s Changbai Mountains, analyzing monthly diurnal patterns and their relationships with soil temperature (Ts) and soil volumetric water content (VWC). The results revealed significant diurnal and seasonal variations, with peak emissions at 11:00 during the growing season (May–October) and elevated nighttime fluxes in winter (March, April, November, and December). The optimal sampling time was 14:00, closely reflecting daily mean fluxes. Soil Ts and VWC were key drivers, with seasonal variability in their effects: N2O fluxes showed no significant relationship with Ts in January but strong correlations in February and March. The growing season Q10 values ranged from 0.4 to 7.2 (mean = 2.5), indicating high-temperature sensitivity. Soil VWC effects were complex, with moderate VWC promoting denitrification and excessive VWC suppressing microbial activity. These findings provide critical insights for optimizing N2O monitoring and improving emission estimates. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

30 pages, 31813 KiB  
Article
Spatial and Temporal Variability of Near-Surface CO2 and Influencing Factors in Urban Communities
by Yueyue Wu, Yi Zheng, Jialei Liu, Qingxin Yang, Beixiang Shi, Chenghe Guan and Wanxin Deng
Land 2025, 14(4), 888; https://doi.org/10.3390/land14040888 - 17 Apr 2025
Viewed by 549
Abstract
CO2 is the primary contributor to global warming, and also the most significant anthropogenic emission gas in cities. This study investigates near-surface CO2 spatiotemporal variability patterns at the community scale to address the critical gap in urban CO2 high-resolution measurement [...] Read more.
CO2 is the primary contributor to global warming, and also the most significant anthropogenic emission gas in cities. This study investigates near-surface CO2 spatiotemporal variability patterns at the community scale to address the critical gap in urban CO2 high-resolution measurement and promote urban carbon neutrality. Combining fixed and mobile monitoring across five representative communities (1-km2 coverage) with two-hour temporal precision and 20 m spatial resolution, results revealed average CO2 concentrations of 440–480 ppm, exhibiting bimodal diurnal cycles and highlighting spatiotemporal divergent emission behaviors. Three communities peaked during 17:00–19:00 LT, while two peaked during 08:00–10:00 LT. Spatial correlation analysis identified two dominant patterns: road-adjacent “externally dominated” hotspots and “internally dominated” zones with elevated intra-community levels. Spearman correlation analysis, Random Forest, and Geographically and Temporally Weighted Regression models quantified spatial morphology and element contributions, demonstrating that building morphology exerted time-varying impacts across communities. Meanwhile, external traffic contributed 18–39% to concentration variability, while internal traffic and energy consumption drove localized peaks. The findings indicated that apart from the emission sources, the micro-scale urban spatial design elements also regulate the near-surface CO2 distribution. This high-resolution approach provides actionable insights for optimizing community layouts and infrastructure to mitigate localized emissions, advancing carbon neutrality targeted urban planning. Full article
Show Figures

Figure 1

17 pages, 3691 KiB  
Article
Evaluation of the Accuracy and Trend Consistency of Hourly Surface Solar Radiation Datasets of ERA5, MERRA-2, SARAH-E, CERES, and Solcast over China
by Han Wang and Yawen Wang
Remote Sens. 2025, 17(7), 1317; https://doi.org/10.3390/rs17071317 - 7 Apr 2025
Cited by 2 | Viewed by 758
Abstract
The global ambition to achieve carbon neutrality by the mid-21st century is driving a transition towards clean energy. Accurately assessing solar energy potential necessitates high-quality observations of hourly surface solar radiation (SSR). The performance of hourly SSR data from two reanalysis products (ERA5 [...] Read more.
The global ambition to achieve carbon neutrality by the mid-21st century is driving a transition towards clean energy. Accurately assessing solar energy potential necessitates high-quality observations of hourly surface solar radiation (SSR). The performance of hourly SSR data from two reanalysis products (ERA5 and MERRA-2) and three satellite-derived products (CERES, SARAH-E, and Solcast) is validated against 22 years of continuous surface observations over 96 stations across China. The accuracy (in %) and trend consistency (in % decade−1) of estimates from gridded products in reproducing the diurnal cycle and trend of SSR are generally lower at sunrise and sunset than at noon, and they are also reduced in the cold season (October to next March) compared with the warm season (April to September). Regionally, accuracy is generally lower in the southwestern plateau region, and the trend consistency of most products is lowest in the rugged and cloudy southern part of China. Among the evaluated datasets, Solcast and MERRA-2 exhibit the highest accuracy and trend consistency in capturing the diurnal pattern of SSR, respectively, while CERES demonstrates the best overall performance. Full article
Show Figures

Figure 1

20 pages, 9477 KiB  
Article
Response of Spring Phenology to Pre-Seasonal Diurnal Warming in Deciduous Broad-Leaved Forests of Northern China
by Shaodong Huang, Chu Chu, Qianwen Kang, Yujie Li, Yuying Liang, Rui Li and Jia Wang
Forests 2025, 16(4), 638; https://doi.org/10.3390/f16040638 - 6 Apr 2025
Cited by 1 | Viewed by 441
Abstract
Preseason temperature has always been considered the most critical factor influencing vegetation phenology in the northern hemisphere. While numerous studies have examined the impact of daytime and nighttime warming on vegetation phenology in this region, the specific influence of day and night warming [...] Read more.
Preseason temperature has always been considered the most critical factor influencing vegetation phenology in the northern hemisphere. While numerous studies have examined the impact of daytime and nighttime warming on vegetation phenology in this region, the specific influence of day and night warming on deciduous broad-leaved forests (DBFs) in Northern China, where significant temperature variations occur between day and night, remains unclear. Furthermore, the sensitivity of daytime and nighttime warming during different preseason periods to phenology has not been quantitatively understood. We analyzed GIMMS3g NDVI data from 1985 to 2015 and employed a double logistic regression model to determine the phenological start of the season (SOS) for DBF in Northern China. To control for monthly precipitation effects, we conducted partial correlation analysis between monthly mean maximum daytime temperature (Tday_max), monthly mean minimum nighttime temperature (Tnight_min), diurnal temperature variation (DTR), and SOS. Our findings over the past 31 years indicate that 75.98% of the area exhibited an advanced trend, with an overall advance of 1.7 days per decade. Interestingly, regardless of Tday_max, Tnight_min, or DTR, most areas had a preseason length of 1 month, accounting for 50.26%, 34.45%, and 44.39%, respectively. Furthermore, approximately 50.68% of the area exhibited a significant negative correlation between preseason temperature and SOS for Tday_max, 34.02% for Tnight_min, and 35.80% for DTR. It can be found that the response of the SOS advance to Tday_max in DBFs in Northern China is more obvious than that to Tnight_min and DTR. Our study revealed that the difference in day and night temperature warming on DBFs in Northern China is not pronounced. Specifically, SOS advanced by 1.8 days, 1.98 days, and 1.95 days for every 1 °C increase in Tday_max, Tnight_min, and DTR, respectively. However, it is important to note that the distribution of advanced days resulting from the warming of these three preseason temperature indicators exhibited spatial heterogeneity. Although many studies have already established the influence of various meteorological indicators on spring phenology, determining which meteorological indicators should be employed to quantify their impact on phenology in different regions and vegetation types remains a subject for further exploration and investigation in the future. Full article
(This article belongs to the Special Issue Integrated Measurements for Precision Forestry)
Show Figures

Figure 1

17 pages, 2896 KiB  
Article
Solar-Induced Fluorescence as Indicator of Downy Oak and the Influence of Some Environmental Variables at the End of the Growing Season
by Antoine Baulard, Jean-Philippe Mevy, Irène Xueref-Remy, Ilja Marco Reiter, Tommaso Julitta and Franco Miglietta
Remote Sens. 2025, 17(7), 1252; https://doi.org/10.3390/rs17071252 - 1 Apr 2025
Viewed by 380
Abstract
In the context of global warming, which is mainly due to the increasing atmospheric concentration of carbon dioxide, the prediction of climate change requires a good assessment of the involvement of vegetation in the global carbon cycle. In particular, determining when vegetative activity [...] Read more.
In the context of global warming, which is mainly due to the increasing atmospheric concentration of carbon dioxide, the prediction of climate change requires a good assessment of the involvement of vegetation in the global carbon cycle. In particular, determining when vegetative activity ceases in deciduous forests remains a great challenge. Remote sensing of solar-induced fluorescence (SIF) has been considered as a potential proxy for ecosystem photosynthesis and, therefore, a relevant indicator of the end of the vegetation period as compared to other vegetation indices, such as EVI (Enhanced Vegetation Index) and NDVI (Normalized Difference Vegetation Index). However, many challenges remain to be addressed due to the lack of knowledge of the response of SIF at different time scales, different species and different environmental conditions. The aim of this study was to explore the diurnal and seasonal variations in the SIFA and SIFB signals in a pubescent oak forest undergoing senescence. We show that apparent SIFA yield may be considered an earlier indicator of the end of the vegetation period compared to NDVI, which primarily reflects the ratio of SIFB/SIFA. The apparent SIFA yield signal was positively and highly correlated with PRI (Photochemical Reflectance Index), EVI and NDVI. Air contents in CO2 and O3 were similarly significantly correlated to SIFs emission but only during the growth phase of the phenology of Q. pubescens. At the seasonal scale, the results show that SIF variations were mainly driven by variations in PAR, air VPD and temperature. A higher dependence of the SIF signal on these last three variables was observed at the diurnal scale through Pearson correlation coefficients, which were greater than seasonal ones. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

14 pages, 1337 KiB  
Article
Time-of-Day Effects on Post-Activation Potentiation Protocols: Effects of Different Tension Loads on Agility and Vertical Jump Performance in Judokas
by Bilal Karakoç, Özgür Eken, Ahmet Kurtoğlu, Oğuzhan Arslan, İsmihan Eken and Safaa M. Elkholi
Medicina 2025, 61(3), 426; https://doi.org/10.3390/medicina61030426 - 28 Feb 2025
Cited by 1 | Viewed by 961
Abstract
Background and Objectives: This study aimed to investigate the effects of different tension loads in post-activation potentiation protocols on agility and vertical jump performance across different times of day in trained judokas, addressing a significant gap in understanding the interaction between diurnal [...] Read more.
Background and Objectives: This study aimed to investigate the effects of different tension loads in post-activation potentiation protocols on agility and vertical jump performance across different times of day in trained judokas, addressing a significant gap in understanding the interaction between diurnal variations and post-activation potentiation protocol responses in combat sports. Materials and Methods: Seventeen male judokas (age: 21.41 ± 1.37 years) with ≥2 years of training experience participated in the study. Participants completed three different protocols: specific warm-up, the 80% post-activation potentiation protocol, and the 100% post-activation potentiation protocol, performed both in the morning (09:00–11:00) and evening (17:00–19:00) sessions. Performance was assessed using the Illinois Agility Test and countermovement jump. Protocols were randomized and counterbalanced over a 3-week period, with a minimum 48 h recovery between sessions. Statistical analysis employed repeated measures ANOVA (3 × 2) with Greenhouse–Geisser corrections. Results: Significant differences were observed in both protocols and time interactions for agility (F = 41.691, ηp2 = 0.864, p < 0.001; F = 23.893, ηp2 = 0.123, p < 0.001) and countermovement jump performance (F = 7.471, ηp2 = 0.410, p = 0.002; F = 38.651, ηp2 = 0.530, p < 0.001). The 80% post-activation potentiation protocol demonstrated superior performance outcomes compared to both specific warm-up and 100% post-activation potentiation protocols. Evening performances were generally better than morning performances for both agility and countermovement jump; however, the protocols/time interaction was not statistically significant (p > 0.05). Conclusions: The 80% post-activation potentiation protocol was most effective for enhancing both agility and vertical jump performance in judokas, with superior results observed during evening sessions. These findings provide valuable insights for optimizing warm-up strategies in judo competition, suggesting that lower-intensity post-activation potentiation protocols might be more beneficial than maximal loading, particularly during evening competitions. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

Back to TopTop