Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = dissociation barrier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2402 KB  
Article
Characteristics of Nanosecond Bipolar Pulsed Water Electrode Dielectric Barrier Discharge for Ozone Generation
by Weitian Wu, Chenyang Jin, Yifan Wu, Xianyang Zeng, Linsheng Wei, Zhongqian Ling and Lijian Wang
Processes 2025, 13(11), 3619; https://doi.org/10.3390/pr13113619 - 8 Nov 2025
Viewed by 629
Abstract
This study investigates the ozone generation characteristics of a nanosecond bipolar pulse-excited single-water electrode (dielectric barrier discharge) DBD reactor, with a particular focus on the effects of pulse width (Tp) on discharge behavior, plasma parameters, and ozone generation efficiency. The [...] Read more.
This study investigates the ozone generation characteristics of a nanosecond bipolar pulse-excited single-water electrode (dielectric barrier discharge) DBD reactor, with a particular focus on the effects of pulse width (Tp) on discharge behavior, plasma parameters, and ozone generation efficiency. The results indicate that the bipolar pulse voltage displays a symmetric alternating waveform, and the reactor demonstrates excellent thermal stability. Rotation temperature (Trot) remains stable between 307 and 310 K (close to room temperature, which effectively suppresses O3 thermal decomposition), while vibrational temperature (Tvib) stabilizes at 3120 ± 50 K (sufficient to ensure the electron energy required for O2 dissociation). Electron excitation temperature (Texc) increases with both the specific input energy (SIE) and Tp. At SIE = 200 J/L, extending Tp from 200 ns to 1000 ns results in an increase in Texc from 2633 K to 2724 K. The ozone generation efficiency exhibits a “rise-then-decline” trend with increasing Tp. The optimal Tp is 500–600 ns, at which the maximum efficiency reaches 102 g/kWh (corresponding to SIE = 35.95 J/L), which is slightly higher than the peak efficiency of the unipolar pulse-driven water electrode reactor (99.64 ± 0.87 g/kWh, corresponding to SIE = 33.60 ± 1.53 J/L). This work innovatively applies nanosecond bipolar pulse excitation to a single-water electrode DBD reactor for ozone generation, an understudied configuration that integrates the discharge stability advantage of bipolar pulses and the superior cooling advantages of water electrodes. This study offers significant insights into the pulse power excitation of ozone generation. Full article
Show Figures

Figure 1

18 pages, 430 KB  
Article
Physical Activity Levels and Barriers Among Young People with Mental Disorders: A Mixed Methods Analysis Supporting the Development of a National Sport Mental Health Clinic
by Daniel Vella Fondacaro, Paul Mansell, Michela Agius, Karl Apap Gatt, Nicole Borg, Roberto Galea, Catherine Gatt, Gertrude Fenech, Adrian Richard, Caroline Vassallo and Matthew Slater
Sports 2025, 13(11), 399; https://doi.org/10.3390/sports13110399 - 6 Nov 2025
Viewed by 1208
Abstract
Background: While the positive relationship between mental health and physical activity (PA) is well established, numerous barriers are reported. This study analyzed PA levels and associated barriers in young people attending a national child and adolescent mental health service using a quantitatively driven [...] Read more.
Background: While the positive relationship between mental health and physical activity (PA) is well established, numerous barriers are reported. This study analyzed PA levels and associated barriers in young people attending a national child and adolescent mental health service using a quantitatively driven mixed methods design. Methods: From contacted patient families (n = 1284) meeting inclusion criteria, 23.67% (n = 304; age 12 to 18 years) completed a questionnaire (quantitative component/supplementary qualitative component). Statistical tests and thematic analysis were used to interpret data. Results: 57.24% (n = 174) of participants practiced PA/sport. Those in a sporting discipline did more PA overall, and males were almost twice as likely (OR = 1.98) to do PA/sports than females. PA levels were significantly different across mental disorder groups (highest in personality disorders and related traits, and lowest in disruptive behavioral or dissocial disorders). Participants supported the positive association between mental health and athletic performance, including the use of exercise prescriptions. Barriers to PA included excessive screentime, reduced mental health support/awareness, lack of appropriate facilities, financial difficulties, etc. Conclusion: Further research is needed. However, such results will serve to inform the development of the first documented sport mental health clinic for young people. Full article
Show Figures

Figure 1

20 pages, 6811 KB  
Article
Plasma-Activated CO2 Dissociation to CO in Presence of CeO2 Mesoporous Catalysts
by Oleg V. Golubev, Alexey A. Sadovnikov and Anton L. Maximov
Molecules 2025, 30(21), 4312; https://doi.org/10.3390/molecules30214312 - 6 Nov 2025
Viewed by 2413
Abstract
The increasing atmospheric CO2 concentration is one of the major environmental challenges, necessitating not only emission reduction but also effective carbon utilization. Non-thermal plasma-catalytic CO2 conversion offers an efficient pathway under mild conditions by synergistically combining plasma activation with catalytic surface [...] Read more.
The increasing atmospheric CO2 concentration is one of the major environmental challenges, necessitating not only emission reduction but also effective carbon utilization. Non-thermal plasma-catalytic CO2 conversion offers an efficient pathway under mild conditions by synergistically combining plasma activation with catalytic surface reactions. In this study, mesoporous ceria catalysts were synthesized by different methods and characterized using N2 adsorption–desorption, SEM, XRD, XPS, CO2-TPD, and XRF techniques. The materials exhibited distinct textural and electronic properties, including variations in surface area, pore structure, and basicity. Plasma-catalytic CO2 dissociation experiments were conducted in a dielectric barrier discharge reactor at near-room temperature. Among the synthesized catalysts, Ce(mp)-4 demonstrated the highest CO2 conversion of 32.3% at a 5 kV input voltage and superior energy efficiency, which can be attributed to its meso-macroporous structure that promotes microdischarge formation and enhances CO2 adsorption–desorption dynamics. CO was the only product obtained, with near-100% selectivity. Catalyst stability testing showed no deactivation while spent catalyst characterization indicated carbon-containing species. The findings in this study highlight the critical role of tailored pore structure and basic-site distribution in optimizing plasma-catalytic CO2 dissociation performance, offering a promising strategy for energy-efficient CO2 utilization. Full article
(This article belongs to the Special Issue Innovative Chemical Pathways for CO2 Conversion)
Show Figures

Graphical abstract

29 pages, 3033 KB  
Systematic Review
From Policy to Practice: EU Circular Economy Legislation and Slovenia’s Implementation Challenges—A Systematic Review
by Erika Džajić Uršič, Alenka Pandiloska Jurak and Jelena Topić Božič
Sustainability 2025, 17(21), 9408; https://doi.org/10.3390/su17219408 - 23 Oct 2025
Cited by 2 | Viewed by 1437
Abstract
The Circular Economy (CE) has become a foundation of the European Union’s sustainability strategy, aiming to dissociate economic growth from resource use. This article examines the legislative and monitoring frameworks underpinning the European Union’s CE transition, with a particular focus on Slovenia. A [...] Read more.
The Circular Economy (CE) has become a foundation of the European Union’s sustainability strategy, aiming to dissociate economic growth from resource use. This article examines the legislative and monitoring frameworks underpinning the European Union’s CE transition, with a particular focus on Slovenia. A systematic review conducted in accordance with the PRISMA 2020 guidelines, EU-level policy analysis, and national indicator evaluation, this article explores the alignment between Slovenia’s national strategies and EU objectives. While Slovenia has demonstrated policy ambition and performs well in municipal recycling, it underperforms in circular material use and domestic material consumption. Governance fragmentation, limited sectoral integration, and monitoring challenges are key barriers. The study contributes to CE research by offering a country-level perspective on policy translation and performance. Recommendations are proposed to strengthen governance, data systems, and sector-specific roadmaps. These conclusions offer valuable insights for scholars and policymakers involved in implementing CE across multi-level governance systems. Full article
Show Figures

Figure 1

20 pages, 752 KB  
Article
Healing Bodies, Healing Communities: A Community-Based Qualitative Study of Adult Survivors of Childhood Sexual Trauma in South Africa
by Leona Morgan, Sarojini Nadar and Ines Keygnaert
Healthcare 2025, 13(20), 2601; https://doi.org/10.3390/healthcare13202601 - 15 Oct 2025
Viewed by 1123
Abstract
Background: While sexual trauma is inherently an embodied experience, research on psychological interventions that is cognisant of geographic and socio-political community contexts within which embodied, therapeutic interventions occur remains limited. Decolonial, African and feminist community psychologies have noted this epistemic–ethical gap. Objectives: This [...] Read more.
Background: While sexual trauma is inherently an embodied experience, research on psychological interventions that is cognisant of geographic and socio-political community contexts within which embodied, therapeutic interventions occur remains limited. Decolonial, African and feminist community psychologies have noted this epistemic–ethical gap. Objectives: This paper explores the co-development of trauma-informed care pathways for adult survivors of childhood sexual trauma (CST) in under-resourced communities in Cape Town, South Africa. The study aimed to integrate intergenerational community knowledge, embodied therapeutic practices and collaborative approaches into locally relevant models of care. Methods: Drawing on feminist mental health frameworks, this qualitative study engaged 13 adult female survivors who identify as “coloured”. Embodiment was central in guiding the deconstructive therapeutic praxis, informing both the co-development of care pathways and the conceptualization of integrative trauma-informed care (ITIC) beyond pathologizing, deficit-based narratives. The cultivation of trust and the situated lived realities of survivors were foregrounded to illustrate the relational dimensions of trauma recovery. Results: Establishing relational safety emerged as the foundation for therapeutic engagement, supported by non-directive therapeutic probing. Grounding practices, affective regulation and embodied awareness enabled participants to process trauma at their own pace. Somatic engagement allowed the integration of dissociative experiences while strengthening relational resilience. Recovery was a continuous process, with participants reporting increased peace, authenticity and capacity for social connection despite structural barriers to community support. Conclusions: The development of care pathways was embedded within the research process itself, offering an approach that is culturally sensitive and responsive to survivors’ lived experiences. ITIC accounted for temporal, intergenerational and embodied trauma and should be adaptable across age and community-specific needs. The ITIC approach offers a transferable framework for co-developing de-pathologizing, culturally responsive interventions that can be adapted across diverse global contexts to support sustainable trauma integration. Full article
Show Figures

Figure 1

33 pages, 3206 KB  
Article
Bacillus subtilis DinG 3′⟶5′ Exo(ribo)nuclease: A Helpmate to Mitigate Replication Stress
by Begoña Carrasco, Rubén Torres, María López-Sanz, Rogelio Hernández-Tamayo, Peter L. Graumann and Juan C. Alonso
Int. J. Mol. Sci. 2025, 26(19), 9681; https://doi.org/10.3390/ijms26199681 - 4 Oct 2025
Viewed by 895
Abstract
Bacillus subtilis DinG/XPD-like paralogues, DinG and YpvA, have been implicated in overcoming replication stress. DinG possesses a DEDD exonuclease and DNA helicase domains, whereas YpvA lacks the DEDD exonuclease domain. We report that DinG·Mg2+ (hereafter referred to as DinG) degrades linear single-stranded [...] Read more.
Bacillus subtilis DinG/XPD-like paralogues, DinG and YpvA, have been implicated in overcoming replication stress. DinG possesses a DEDD exonuclease and DNA helicase domains, whereas YpvA lacks the DEDD exonuclease domain. We report that DinG·Mg2+ (hereafter referred to as DinG) degrades linear single-stranded (lss) DNA with 3′→5′ polarity and binds lssDNA with higher affinity than its exonuclease-deficient mutant DinG D10A E12A. DinG’s ssDNA-dependent ATPase activity neither stimulates nor inhibits DNA degradation. When bound to the 3′-end of forked DNA, DinG destabilises and degrades the substrate; however, in the presence of ATP, DinG dissociates before reaching the duplex junction. DinG degrades the RNA strand within RNA–DNA hybrids but does not cleave lssRNA unless complexed with Mn2+. DinG removes genomic R-loops, as RnhC and PcrA do. DinG physically interacts with RecA and PolA and functions in the same pathway as translesion synthesis (TLS) DNA polymerases (DNAPs) to respond to both spontaneous and methyl methanesulphonate (MMS)-induced mutagenesis. DinG-mGold forms spontaneous foci at or near replication forks, which become enriched following MMS or rifampicin treatment. We propose that DinG contributes to mitigating replication stress by degrading R-loop barriers and facilitating TLS, potentially via RecA-linked mechanisms. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

15 pages, 9756 KB  
Article
Interaction of Oxygen Molecules with Fe Atom-Doped γ-Graphyne Surfaces: First-Principles Calculations
by Bin Zhao, Jiayi Yin, Zhuoting Xiong, Wentao Yang, Peng Guo, Meng Li, Haoxian Zeng and Jianjun Wang
Nanomaterials 2025, 15(19), 1479; https://doi.org/10.3390/nano15191479 - 27 Sep 2025
Viewed by 596
Abstract
The activation and dissociation of O2 molecules play a key role in the oxidation of toxic gas molecules and the oxygen reduction reaction (ORR) in hydrogen–oxygen fuel cells. The interactions between O2 molecules and the surfaces of Fe-doped γ-graphyne were systematically [...] Read more.
The activation and dissociation of O2 molecules play a key role in the oxidation of toxic gas molecules and the oxygen reduction reaction (ORR) in hydrogen–oxygen fuel cells. The interactions between O2 molecules and the surfaces of Fe-doped γ-graphyne were systematically explored, mainly adopting the combined method of the density functional theory with dispersion correction (DFT-D3) and the climbing image nudged elastic band (CI-NEB) method. The order of the formation energy values of these defective systems is Ef(FeC2) < Ef(FeC1) < Ef(FeD1) < Ef(VC1) < Ef(VD1) < Ef(VC2) < Ef(FeD2) < Ef(VD2), which indicates that the process of Fe dopant atoms substituting single-carbon atoms/double-carbon atoms is relatively easier than the formation of vacancy-like defects. The results of ab initio molecular dynamics (AIMD) simulations confirm that the doped systems can maintain structural stability at room temperature conditions. Fe-doped atoms transfer a certain amount of electrons to the adsorbed O2 molecules, thereby causing an increase in the O-O bond length of the adsorbed O2 molecules. The electrons obtained by the anti-bonding 2π* orbitals of the adsorbed O2 molecules are mainly derived from the 3d orbitals of Fe atoms. There is a competitive relationship between the substrate’s carbon atoms and the adsorbed O2 molecules for the charges transferred from Fe atoms. In the C1 and C2 systems, O2 molecules have a greater advantage in electron accepting ability compared to the substrate’s carbon atoms. The elongation of O-O bonds and the amount of charge transfer exhibit a positive relationship. More electrons are transferred from Fe-3d orbitals to adsorbed O2 molecules, occupying the 2π* orbitals of adsorbed O2 molecules, further elongating the O-O chemical bond until it breaks. The dissociation process of adsorbed O2 molecules on the surfaces of GY-Fe systems (C2 and D2 sites) involves very low energy barriers (0.016 eV for C2 and 0.12 eV for D2). Thus, our studies may provide useful insights for designing catalyst materials for oxidation reactions and the oxygen reduction reaction. Full article
Show Figures

Graphical abstract

13 pages, 2044 KB  
Article
Mechanism for Nucleotidyl Transfer in LINE-1 ORF2p Revealed by QM/MM Simulations
by Igor V. Polyakov, Kirill D. Miroshnichenko, Tatiana I. Mulashkina, Anna M. Kulakova and Maria G. Khrenova
Int. J. Mol. Sci. 2025, 26(17), 8661; https://doi.org/10.3390/ijms26178661 - 5 Sep 2025
Viewed by 1500
Abstract
The Long Interspersed Element-1 (L1) retrotransposon is an ancient genetic parasite that comprises a significant part of the human genome. ORF2p is a multifunctional enzyme with endonuclease (EN) and reverse transcriptase (RT) activities that mediate target-primed reverse transcription of RNA into DNA. Structural [...] Read more.
The Long Interspersed Element-1 (L1) retrotransposon is an ancient genetic parasite that comprises a significant part of the human genome. ORF2p is a multifunctional enzyme with endonuclease (EN) and reverse transcriptase (RT) activities that mediate target-primed reverse transcription of RNA into DNA. Structural studies of LINE-1 ORF2p consistently show a single Mg2+ cation in the reverse transcriptase active site, conflicting with the common DNA polymerase mechanism which involves two divalent cations. We explored a reaction pathway of the DNA elongation based on the recent high-resolution ternary complex structure of the ORF2p. The combined quantum and molecular mechanics approach at the QM (PBE0-D3/6-31G**)/MM (CHARMM) level is employed for biased umbrella sampling molecular dynamics simulations followed by umbrella integration utilized to obtain the free energy profile. The nucleotidyl transfer reaction proceeds in a single step with a free energy barrier of 15.1 ± 0.8 kcal/mol, and 7.8 ± 1.2 kcal/mol product stabilization relative to reagents. Concerted nucleophilic attack by DNA O3′ and proton transfer to Asp703 occur without a second catalytic metal ion. Estimated rate constant ∼60 s−1 aligns with RT kinetics, while analysis of the Laplacian of the electron density along the cleaving P-O bond identifies a dissociative mechanism. Full article
(This article belongs to the Special Issue Molecular Mechanism in DNA Replication and Repair)
Show Figures

Graphical abstract

22 pages, 4651 KB  
Review
Potential Issues and Optimization Solutions for High-Compression-Ratio Utilization in Hybrid-Dedicated Gasoline Engines
by Qiuyu Liu, Baitan Ma, Zhiqiang Zhang, Chunyun Fu and Zhe Kang
Energies 2025, 18(15), 4204; https://doi.org/10.3390/en18154204 - 7 Aug 2025
Cited by 1 | Viewed by 1192
Abstract
This systematic review critically examines the benefits and challenges of high-compression-ratio (CR) implementation in hybrid-dedicated engines, recognizing CR increase as a pivotal strategy for enhancing the indicated thermal efficiency to achieve carbon peak and carbon neutrality goals. However, excessively high CRs face critical [...] Read more.
This systematic review critically examines the benefits and challenges of high-compression-ratio (CR) implementation in hybrid-dedicated engines, recognizing CR increase as a pivotal strategy for enhancing the indicated thermal efficiency to achieve carbon peak and carbon neutrality goals. However, excessively high CRs face critical constraints, including intensified knock propensity, increased heat transfer (HTR) losses, reduced combustion stability, augmented dissociation losses, and cold-start misfire risks. The feasibility and necessity of CR enhancement in hybrid systems were comprehensively evaluated based on these factors, with fundamental mechanisms of the detrimental effects elucidated. To address these challenges, optimized countermeasures were synthesized: knock suppression via high-octane fuels, EGR technology, lean combustion, and in-cylinder water injection; heat transfer reduction through thermal barrier coatings and independent CR/expansion-ratio control; misfire risk monitoring using ion current or cylinder pressure sensors. These approaches provide viable pathways to overcome high-CR limitations and optimize engine performance. Nevertheless, current research remains confined to isolated solutions, warranting future focus on integrated optimization mechanisms investigating synergistic interactions of multiple strategies under high-CR conditions. Full article
Show Figures

Figure 1

14 pages, 2753 KB  
Article
Phosphorene-Supported Au(I) Fragments for Highly Sensitive Detection of NO
by Huimin Guo, Yuhan Liu and Xin Liu
Molecules 2025, 30(15), 3085; https://doi.org/10.3390/molecules30153085 - 23 Jul 2025
Viewed by 697
Abstract
The fabrication and application of single-site heterogeneous reaction centers are new frontiers in chemistry. Single-site heterogeneous reaction centers are analogous to metal centers in enzymes and transition-metal complexes: they are charged and decorated with ligands and would exhibit superior reactivity and selectivity in [...] Read more.
The fabrication and application of single-site heterogeneous reaction centers are new frontiers in chemistry. Single-site heterogeneous reaction centers are analogous to metal centers in enzymes and transition-metal complexes: they are charged and decorated with ligands and would exhibit superior reactivity and selectivity in chemical conversion. Such high reactivity would also result in significant response, such as a band gap or resistance change, to approaching molecules, which can be used for sensing applications. As a proof of concept, the electronic structure and reaction pathways with NO and NO2 of Au(I) fragments dispersed on phosphorene (Pene) were investigated with first-principle-based calculations. Atomic-deposited Au atoms on Pene (Au1-Pene) have hybridized Au states in the bulk band gap of Pene and a decreased band gap of 0.14 eV and would aggregate into clusters. Passivation of the Au hybrid states with -OH and -CH3 forms thermodynamically plausible HO-Au1-Pene and H3C-Au1-Pene and restores the band gap to that of bulk Pene. Inspired by this, HO-Au1-Pene and H3C-Au1-Pene were examined for detection of NO and NO2 that would react with -OH and -CH3, and the resulting decrease of band gap back to that of Au1-Pene would be measurable. HO-Au1-Pene and H3C-Au1-Pene are highly sensitive to NO and NO2, and their calculated theoretical sensitivities are all 99.99%. The reaction of NO2 with HO-Au1-Pene is endothermic, making the dissociation of product HNO3 more plausible, while the barriers for the reaction of CH3-Au1-Pene with NO and NO2 are too high for spontaneous detection. Therefore, HO-Au1-Pene is not eligible for NO2 sensing and CH3-Au1-Pene is not eligible for NO and NO2 sensing. The calculated energy barrier for the reaction of HO-Au-Pene with NO is 0.36 eV, and the reaction is about thermal neutral, suggesting HO-Au-Pene is highly sensitive for NO sensing and the reaction for NO detection is spontaneous. This work highlights the potential superior sensing performance of transition-metal fragments and their potential for next-generation sensing applications. Full article
Show Figures

Figure 1

8 pages, 1848 KB  
Article
Different Kinetics of Complement Opsonization, Immune Uptake, and IL-6 Cytokine Response After Bolus Injection of Superparamagnetic Iron Oxide Nanoworms in Mice
by Yue Li and Dmitri Simberg
J. Nanotheranostics 2025, 6(3), 16; https://doi.org/10.3390/jnt6030016 - 27 Jun 2025
Cited by 1 | Viewed by 1210 | Correction
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles are a promising platform for drug delivery and magnetic resonance imaging (MRI). However, complement activation and immune recognition remain major barriers to their clinical translation. Previously, we reported that dextran-coated SPIO nanoworms (NWs) trigger potent complement activation and [...] Read more.
Superparamagnetic iron oxide (SPIO) nanoparticles are a promising platform for drug delivery and magnetic resonance imaging (MRI). However, complement activation and immune recognition remain major barriers to their clinical translation. Previously, we reported that dextran-coated SPIO nanoworms (NWs) trigger potent complement activation and infusion reactions. Here, we systematically map the temporal sequence of immune events following SPIO NW administration, including C3 opsonization, granulocyte uptake, and cytokine release. In both in vitro and in vivo models, C3 deposition occurred rapidly, peaking at approximately 5 min post-incubation or post-injection. Higher Fe/plasma ratios led to reduced C3 deposition per particle, although the absolute amount of C3 bound was greater in vivo than in vitro. Notably, C3 dissociation from the particle surface exhibited a consistent half-life of ~14 min, independent of the NW injected dose and circulation time. Immune uptake by blood granulocytes was delayed relative to opsonization, becoming prominent only at 60 min post-injection. Further, cytokine release, measured by plasma IL-6 levels, displayed an even slower profile, with peak expression at 6 h post-injection. Together, these results reveal a distinct sequential immune response to SPIO NWs: rapid C3 opsonization, delayed cellular uptake, and late cytokine response. Understanding these dynamics provides a basis for developing strategies to inhibit complement activation and improve the hemocompatibility of SPIO-based theranostic agents. Full article
Show Figures

Figure 1

9 pages, 2014 KB  
Article
Pd-Gated N-Polar GaN/AlGaN High-Electron-Mobility Transistor for High-Sensitivity Hydrogen Gas Detection
by Long Ge, Haineng Bai, Yidi Teng and Xifeng Yang
Crystals 2025, 15(6), 578; https://doi.org/10.3390/cryst15060578 - 18 Jun 2025
Viewed by 811
Abstract
Hydrogen gas sensing is critical for energy storage, industrial safety, and environmental monitoring. However, traditional sensors still face challenges in selectivity, sensitivity, and stability. This work introduces an innovative N-polar GaN/AlGaN high-electron-mobility transistor (HEMT) with a 10 nm Pd catalytic layer as a [...] Read more.
Hydrogen gas sensing is critical for energy storage, industrial safety, and environmental monitoring. However, traditional sensors still face challenges in selectivity, sensitivity, and stability. This work introduces an innovative N-polar GaN/AlGaN high-electron-mobility transistor (HEMT) with a 10 nm Pd catalytic layer as a hydrogen sensor. The device achieves ppm-level H2 detection with rapid recovery and reusability, which is comparable to or even exceeds the performance of conventional Ga-polar HEMTs. The N-polar structure enhances sensitivity through its unique polarization-induced 2DEG and intrinsic back barrier, while the Pd layer catalyzes H2 dissociation, forming a dipole layer that can modulate the Schottky barrier height. Experimental results demonstrate superior performance at both room temperature and elevated temperatures. Specifically, at 200 °C, the sensor exhibits a response of 102% toward 200 ppm H2, with response/recovery times of 150 s/17 s. This represents a 96% enhancement in sensitivity and a reduction of 180 s/14 s in response/recovery times compared to room-temperature conditions (23 °C). These findings highlight the potential of N-polar HEMTs for high-performance hydrogen sensing applications. Full article
Show Figures

Figure 1

13 pages, 1975 KB  
Article
Leaf Organogenesis Improves Recovery of Solid Polyploid Shoots from Chimeric Southern Highbush Blueberry
by Emily Walter, Akshaya Biswal, Peggy Ozias-Akins and Ye Chu
BioTech 2025, 14(2), 48; https://doi.org/10.3390/biotech14020048 - 12 Jun 2025
Cited by 2 | Viewed by 1446
Abstract
Interspecific and intersectional crosses have introduced valuable genetic traits for blueberry (Vaccinium sect. Cyanococcus) cultivar improvement. Introgression from Vaccinium species at the diploid, tetraploid, and hexaploid levels has been found in cultivated blueberries. Continued efforts to integrate wild blueberry genetic resources [...] Read more.
Interspecific and intersectional crosses have introduced valuable genetic traits for blueberry (Vaccinium sect. Cyanococcus) cultivar improvement. Introgression from Vaccinium species at the diploid, tetraploid, and hexaploid levels has been found in cultivated blueberries. Continued efforts to integrate wild blueberry genetic resources into blueberry breeding are essential to broaden the genetic diversity of cultivated blueberries. However, performing heteroploid crosses among Vaccinium species is challenging. Polyploid induction through tissue culture has been useful in bridging ploidy barriers. Mixoploid or chimeric shoots often are produced, along with solid polyploid mutants. These chimeras are mostly discarded because of their genome instability and the difficulty in identifying periclinal mutants carrying germline mutations. Since induced polyploidy in blueberries often results in a low frequency of solid mutant lines, it is important to recover solid polyploids through chimera dissociation. In this study, two vegetative propagation methods, i.e., axillary and adventitious shoot induction, were evaluated for their efficiency in chimera dissociation. Significantly higher rates of chimera dissociation were found in adventitious shoot induction compared to axillary shoot induction. Approximately 89% and 82% of the adventitious shoots induced from mixoploid lines 145.11 and 169.40 were solid polyploids, respectively, whereas only 25% and 53% of solid polyploids were recovered through axillary shoot induction in these lines. Effective chimera dissociation provides useful and stable genetic materials to enhance blueberry breeding. Full article
Show Figures

Figure 1

18 pages, 2909 KB  
Article
Characterization of a Supersonic Plasma Jet by Means of Optical Emission Spectroscopy
by Ruggero Barni, Hanaa Zaka, Dipak Pal, Irsa Amjad and Claudia Riccardi
Photonics 2025, 12(6), 595; https://doi.org/10.3390/photonics12060595 - 10 Jun 2025
Viewed by 1823
Abstract
We discuss an innovative thin film deposition method, Plasma Assisted Supersonic Jet Deposition, which combines the chemistry richness of a reactive cold plasma environment and the assembly control of the film growth allowed by a supersonic jet directed at the substrate. Optical Emission [...] Read more.
We discuss an innovative thin film deposition method, Plasma Assisted Supersonic Jet Deposition, which combines the chemistry richness of a reactive cold plasma environment and the assembly control of the film growth allowed by a supersonic jet directed at the substrate. Optical Emission Spectroscopy was used to characterize the plasma state and the supersonic jet, together with its interaction with the substrate. We obtained several results in the deposition of silicon oxide thin films from Hexamethyldisiloxane, with different degrees of organic groups retention. In particular we exploited the features of emission spectra to measure the plasma dissociation and oxidation degree of the organic groups, as a function of the jet parameters. If controlled growth is achieved, such films are nanostructured materials suitable for applications like catalysis, photo catalysis, energy conversion and storage, besides their traditional uses as a barrier or protective coatings. Full article
Show Figures

Figure 1

21 pages, 15873 KB  
Article
Structured Mesh-Type Pt/Mn/γ-Al2O3/Al Catalyst Enhanced the CO Oxidation at Room Temperature by In Situ Generation of Hydroxyl: Behavior and Mechanism
by Meijia Cao, Qingli Shu, Ran Zhang and Qi Zhang
Catalysts 2025, 15(5), 430; https://doi.org/10.3390/catal15050430 - 28 Apr 2025
Cited by 1 | Viewed by 1463
Abstract
Nowadays, Pt-based catalysts are widely applied in carbon monoxide (CO) removal at room temperature. However, the effects of abundant hydroxyl groups (OH*) on the decomposition of intermediate products and catalyst durability have rarely been studied. In this work, a novel hydroxyl-rich structured mesh-type [...] Read more.
Nowadays, Pt-based catalysts are widely applied in carbon monoxide (CO) removal at room temperature. However, the effects of abundant hydroxyl groups (OH*) on the decomposition of intermediate products and catalyst durability have rarely been studied. In this work, a novel hydroxyl-rich structured mesh-type Pt/Mn/γ-Al2O3/Al catalyst using a water vapor treatment (WVT) strategy to generate OH* in situ was developed. Firstly, density functional theory (DFT) calculations indicated that Mn-modification enhanced the adsorption capacity of CO and reduced the work function and the energy barrier of the catalytic reaction. Meanwhile, the water molecule dissociation ability of the Pt catalyst was improved. Secondly, the effects of WVT on the selected catalysts were investigated, and a possible reaction mechanism was proposed. XPS, FTIR, and TG results showed that WVT increased the content of OH*. Moreover, in situ FTIR further indicated that the increase of OH* content could alter the reaction path (from carbonate to formate pathway), thus enhancing the activity and durability of the catalyst. The selected catalyst exhibited excellent durability with 100% conversion within 200 h for 1000 ppm CO at room temperature. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

Back to TopTop