Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,113)

Search Parameters:
Keywords = disrupting technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5123 KiB  
Article
Tailored Effects of Plasma-Activated Water on Hair Structure Through Comparative Analysis of Nitrate-Rich and Peroxide-Rich Formulations Across Different Hair Types
by Antonia de Souza Leal, Michaela Shiotani Marcondes, Ariane Leite, Douglas Leite, Clodomiro Alves Junior, Laurita dos Santos and Rodrigo Pessoa
Appl. Sci. 2025, 15(15), 8573; https://doi.org/10.3390/app15158573 (registering DOI) - 1 Aug 2025
Abstract
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy [...] Read more.
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy (Type 2), and coily/kinky (Type 4). The impact of PAW on hair structure and chemistry was evaluated using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV–Vis spectrophotometry, and physicochemical analyses of the liquids (pH, ORP, conductivity, and TDS). PAW-N, with high nitrate content (~500 mg/L), low pH (2.15), and elevated conductivity (6244 µS/cm), induced significant damage to porous hair types, including disulfide bond cleavage, protein oxidation, and lipid degradation, as indicated by FTIR and EDS data. SEM confirmed severe cuticle disruption. In contrast, PAW-P, containing >25 mg/L of hydrogen peroxide and exhibiting milder acidity and lower ionic strength, caused more localized and controlled oxidation with minimal morphological damage. Straight hair showed greater resistance to both treatments, while coily and wavy hair were more susceptible, particularly to PAW-N. These findings suggest that the formulation and ionic profile of PAW should be matched to hair porosity for safe oxidative treatments, supporting the use of PAW-P as a gentler alternative in hair care technologies. Full article
Show Figures

Figure 1

34 pages, 1441 KiB  
Article
Empowering the Intelligent Transformation of the Manufacturing Sector Through New Quality Productive Forces: Value Implications, Theoretical Analysis, and Empirical Examination
by Yinyan Hu and Xinran Jia
Sustainability 2025, 17(15), 7006; https://doi.org/10.3390/su17157006 (registering DOI) - 1 Aug 2025
Abstract
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality [...] Read more.
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality development. Concurrently, the intelligent transformation of the manufacturing sector serves as a critical direction for China’s economic restructuring and upgrading. This paper places “new quality productive forces” and “intelligent transformation of manufacturing” within the same analytical framework. Starting from the logical chain of “new quality productive forces—three major mechanisms—intelligent transformation of manufacturing,” it concretizes the value implications of new quality productive forces into a systematic conceptual framework driven by the synergistic interaction of three major mechanisms: the mechanism of revolutionary technological breakthroughs, the mechanism of innovative allocation of production factors, and the mechanism of deep industrial transformation and upgrading. This study constructs a “3322” evaluation index system for NQPFs, based on three formative processes, three driving forces, two supporting systems, and two-dimensional characteristics. Simultaneously, it builds an evaluation index system for the intelligent transformation of manufacturing, encompassing intelligent technology, intelligent applications, and intelligent benefits. Using national time-series data from 2012 to 2023, this study assesses the development levels of both NQPFs and the intelligent transformation of manufacturing during this period. The study further analyzes the impact of NQPFs on the intelligent transformation of the manufacturing sector. The research results indicate the following: (1) NQPFs drive the intelligent transformation of the manufacturing industry through the three mechanisms of innovative allocation of production factors, revolutionary breakthroughs in technology, and deep transformation and upgrading of industries. (2) The development of NQPFs exhibits a slow upward trend; however, the outbreak of the pandemic and Sino-US trade frictions have caused significant disruptions to the development of new-type productive forces. (3) The level of intelligent manufacturing continues to improve; however, from 2020 to 2023, due to the impact of the COVID-19 pandemic and Sino-US trade conflicts, the level of intelligent benefits has slightly declined. (4) NQPFs exert a powerful driving force on the intelligent transformation of manufacturing, exerting a significant positive impact on intelligent technology, intelligent applications, and intelligent efficiency levels. Full article
26 pages, 3787 KiB  
Review
Insights to Resistive Pulse Sensing of Microparticle and Biological Cells on Microfluidic Chip
by Yiming Yao, Kai Zhao, Haoxin Jia, Zhengxing Wei, Yiyang Huo, Yi Zhang and Kaihuan Zhang
Biosensors 2025, 15(8), 496; https://doi.org/10.3390/bios15080496 (registering DOI) - 1 Aug 2025
Abstract
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through [...] Read more.
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through a nanopore, this technology offers detailed insights into the structure, charge, and dynamics of the analytes. In this work, the RPS platforms based on biological, solid-state, and other sensing pores, detailing their latest research progress and applications, are reviewed. Their core capability is the high-precision characterization of tiny particles, ions, and nucleotides, which are widely used in biomedicine, clinical diagnosis, and environmental monitoring. However, current RPS methods involve bottlenecks, including limited sensitivity (weak signals from sub-nanometer targets with low SNR), complex sample interference (high false positives from ionic strength, etc.), and field consistency (solid-state channel drift, short-lived bio-pores failing POCT needs). To overcome this, bio-solid-state fusion channels, in-well reactors, deep learning models, and transfer learning provide various options. Evolving into an intelligent sensing ecosystem, RPS is expected to become a universal platform linking basic research, precision medicine, and on-site rapid detection. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and Lab-on-Chip (Bio)sensors)
30 pages, 1293 KiB  
Article
Obstacles and Drivers of Sustainable Horizontal Logistics Collaboration: Analysis of Logistics Providers’ Behaviour in Slovenia
by Ines Pentek and Tomislav Letnik
Sustainability 2025, 17(15), 7001; https://doi.org/10.3390/su17157001 (registering DOI) - 1 Aug 2025
Abstract
The logistics industry faces challenges from evolving consumer expectations, technological advances, sustainability demands, and market disruptions. Logistics collaboration is in theory perceived as one of the most promising solutions to solve these issues, but here are still a lot of challenges that needs [...] Read more.
The logistics industry faces challenges from evolving consumer expectations, technological advances, sustainability demands, and market disruptions. Logistics collaboration is in theory perceived as one of the most promising solutions to solve these issues, but here are still a lot of challenges that needs to be better understood and addressed. While vertical collaboration among supply chain actors is well advanced, horizontal collaboration among competing service providers remains under-explored. This study developed a novel methodology based on the COM-B behaviour-change framework to better understand the main challenges, opportunities, capabilities and drivers that would motivate competing companies to exploit the potential of horizontal logistics collaboration. A survey was designed and conducted among 71 logistics service providers in Slovenia, chosen for its fragmented market and low willingness to collaborate. Statistical analysis reveals cost reduction (M = 4.21/5) and improved vehicle utilization (M = 4.29/5) as the primary motivators. On the other hand, maintaining company reputation (M = 4.64/5), fair resource sharing (M = 4.20/5), and transparency of logistics processes (M = 4.17/5) all persist as key enabling conditions. These findings underscore the pivotal role of behavioural drivers and suggest strategies that combine economic incentives with targeted trust-building measures. Future research should employ experimental designs in diverse national contexts and integrate vertical–horizontal approaches to validate causal pathways and advance theory. Full article
Show Figures

Figure 1

20 pages, 621 KiB  
Article
Support Needs of Agrarian Women to Build Household Livelihood Resilience: A Case Study of the Mekong River Delta, Vietnam
by Tran T. N. Tran, Tanh T. N. Nguyen, Elizabeth C. Ashton and Sharon M. Aka
Climate 2025, 13(8), 163; https://doi.org/10.3390/cli13080163 (registering DOI) - 1 Aug 2025
Abstract
Agrarian women are at the forefront of rural livelihoods increasingly affected by the frequency and severity of climate change impacts. However, their household livelihood resilience (HLR) remains limited due to gender-blind policies, scarce sex-disaggregated data, and inadequate consideration of gender-specific needs in resilience-building [...] Read more.
Agrarian women are at the forefront of rural livelihoods increasingly affected by the frequency and severity of climate change impacts. However, their household livelihood resilience (HLR) remains limited due to gender-blind policies, scarce sex-disaggregated data, and inadequate consideration of gender-specific needs in resilience-building efforts. Grounded in participatory feminist research, this study employed a multi-method qualitative approach, including semi-structured interviews and oral history narratives, with 60 women in two climate-vulnerable provinces. Data were analyzed through thematic coding, CATWOE (Customers, Actors, Transformation, Worldview, Owners, Environmental Constraints) analysis, and descriptive statistics. The findings identify nine major climate-related events disrupting livelihoods and reveal a limited understanding of HLR as a long-term, transformative concept. Adaptation strategies remain short-term and focused on immediate survival. Barriers to HLR include financial constraints, limited access to agricultural resources and technology, and entrenched gender norms restricting women’s leadership and decision-making. While local governments, women’s associations, and community networks provide some support, gaps in accessibility and adequacy persist. Participants expressed the need for financial assistance, vocational training, agricultural technologies, and stronger peer networks. Strengthening HLR among agrarian women requires gender-sensitive policies, investment in local support systems, and community-led initiatives. Empowering agrarian women as agents of change is critical for fostering resilient rural livelihoods and achieving inclusive, sustainable development. Full article
Show Figures

Graphical abstract

22 pages, 3527 KiB  
Review
Applications of Organoids and Spheroids in Anaplastic and Papillary Thyroid Cancer Research: A Comprehensive Review
by Deepak Gulwani, Neha Singh, Manisha Gupta, Ridhima Goel and Thoudam Debraj Singh
Organoids 2025, 4(3), 18; https://doi.org/10.3390/organoids4030018 - 1 Aug 2025
Abstract
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models [...] Read more.
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models offer unparalleled insights into tumor biology, therapeutic vulnerabilities, and resistance mechanisms. These models maintain essential tumor characteristics such as cellular diversity, spatial structure, and interactions with the microenvironment, making them extremely valuable for disease modeling and drug testing. This review emphasizes recent progress in the development and use of thyroid cancer organoids and spheroids, focusing on their role in replicating disease features, evaluating targeted therapies, and investigating epithelial–mesenchymal transition (EMT), cancer stem cell behavior, and treatment resistance. Patient-derived organoids have shown potential in capturing individualized drug responses, supporting precision oncology strategies for both differentiated and aggressive subtypes. Additionally, new platforms, such as thyroid organoid-on-a-chip systems, provide dynamic, high-fidelity models for functional studies and assessments of endocrine disruption. Despite ongoing challenges, such as standardization, limited inclusion of immune and stromal components, and culture reproducibility, advancements in microfluidics, biomaterials, and machine learning have enhanced the clinical and translational potential of these systems. Organoids and spheroids are expected to become essential in the future of thyroid cancer research, particularly in bridging the gap between laboratory discoveries and patient-focused therapies. Full article
Show Figures

Figure 1

14 pages, 1483 KiB  
Article
Molecular Dynamics Simulation of PFAS Adsorption on Graphene for Enhanced Water Purification
by Bashar Awawdeh, Matteo D’Alessio, Sasan Nouranian, Ahmed Al-Ostaz, Mine Ucak-Astarlioglu and Hunain Alkhateb
ChemEngineering 2025, 9(4), 83; https://doi.org/10.3390/chemengineering9040083 (registering DOI) - 1 Aug 2025
Abstract
The contamination of drinking water by per- and polyfluoroalkyl substances (PFASs) presents a global concern due to their extreme persistence, driven by strong C–F bonds. This study investigated the potential of graphene as a filtration material for PFAS removal, focusing on six key [...] Read more.
The contamination of drinking water by per- and polyfluoroalkyl substances (PFASs) presents a global concern due to their extreme persistence, driven by strong C–F bonds. This study investigated the potential of graphene as a filtration material for PFAS removal, focusing on six key compounds regulated by the U.S. EPA: PFOA, PFNA, GenX, PFBS, PFOS, and PFHxS. Using molecular simulations, adsorption energy, diffusion coefficients, and PFAS-to-graphene distances were analyzed. The results showed that adsorption strength increased with molecular weight; PFOS (500 g/mol) exhibited the strongest adsorption (−171 kcal/mol). Compounds with sulfonic acid head groups (e.g., PFOS) had stronger interactions than those with carboxylate groups (e.g., PFNA), highlighting the importance of head group chemistry. Shorter graphene-to-PFAS distances also aligned with higher adsorption energies. PFOS, for example, had the shortest distance at 8.23 Å (head) and 6.15 Å (tail) from graphene. Diffusion coefficients decreased with increasing molecular weight and carbon chain length, with lower molecules like PFBS (four carbon atoms) diffusing more rapidly than heavier ones like PFOS and PFNA. Interestingly, graphene enhanced PFAS mobility in water, likely by disrupting the water structure and lowering intermolecular resistance. These results highlight graphene’s promise as a high-performance material for PFAS removal and future water purification technologies. Full article
Show Figures

Graphical abstract

33 pages, 1497 KiB  
Article
Beyond Compliance: How Disruptive Innovation Unleashes ESG Value Under Digital Institutional Pressure
by Fang Zhang and Jianhua Zhu
Systems 2025, 13(8), 644; https://doi.org/10.3390/systems13080644 (registering DOI) - 1 Aug 2025
Abstract
Amid intensifying global ESG regulations and the expanding influence of green finance, China’s digital economy policies have emerged as key institutional instruments for promoting corporate sustainability. Leveraging the implementation of the National Big Data Comprehensive Pilot Zone as a quasi-natural experiment, this study [...] Read more.
Amid intensifying global ESG regulations and the expanding influence of green finance, China’s digital economy policies have emerged as key institutional instruments for promoting corporate sustainability. Leveraging the implementation of the National Big Data Comprehensive Pilot Zone as a quasi-natural experiment, this study utilizes panel data of Chinese listed firms from 2009 to 2023 and applies multi-period Difference-in-Differences (DID) and Spatial DID models to rigorously identify the policy’s effects on corporate ESG performance. Empirical results indicate that the impact of digital economy policy is not exerted through a direct linear pathway but operates via three institutional mechanisms, enhanced information transparency, eased financing constraints, and expanded fiscal support, collectively constructing a logic of “institutional embedding–governance restructuring.” Moreover, disruptive technological innovation significantly amplifies the effects of the transparency and fiscal mechanisms, but exhibits no statistically significant moderating effect on the financing constraint pathway, suggesting a misalignment between innovation heterogeneity and financial responsiveness. Further heterogeneity analysis confirms that the policy effect is concentrated among firms characterized by robust governance structures, high levels of property rights marketization, and greater digital maturity. This study contributes to the literature by developing an integrated moderated mediation framework rooted in institutional theory, agency theory, and dynamic capabilities theory. The findings advance the theoretical understanding of ESG policy transmission by unpacking the micro-foundations of institutional response under digital policy regimes, while offering actionable insights into the strategic alignment of digital transformation and sustainability-oriented governance. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

22 pages, 4043 KiB  
Article
Research Progress and Typical Case of Open-Pit to Underground Mining in China
by Shuai Li, Wencong Su, Tubing Yin, Zhenyu Dan and Kang Peng
Appl. Sci. 2025, 15(15), 8530; https://doi.org/10.3390/app15158530 (registering DOI) - 31 Jul 2025
Abstract
As Chinese open-pit mines progressively transition to deeper operations, challenges such as rising stripping ratios, declining slope stability, and environmental degradation have become increasingly pronounced. The sustainability of traditional open-pit mining models faces substantial challenges. Underground mining, offering higher resource recovery rates and [...] Read more.
As Chinese open-pit mines progressively transition to deeper operations, challenges such as rising stripping ratios, declining slope stability, and environmental degradation have become increasingly pronounced. The sustainability of traditional open-pit mining models faces substantial challenges. Underground mining, offering higher resource recovery rates and minimal environmental disruption, is emerging as a pivotal technological pathway for the green transformation of mining. Consequently, the transition from open-pit to underground mining has emerged as a central research focus within mining engineering. This paper provides a comprehensive review of key technological advancements in this transition, emphasizing core issues such as mine development system selection, mining method choices, slope stability control, and crown pillar design. A typical case study of the Anhui Xinqiao Iron Mine is presented to analyze its engineering approaches and practical experiences in joint development, backfilling mining, and ecological restoration. The findings indicate that the mine has achieved multi-objective optimization of resource utilization, environmental coordination, and operational capacity while ensuring safety and recovery efficiency. This offers a replicable and scalable technological demonstration for the green transformation of similar mines around the world. Full article
(This article belongs to the Topic New Advances in Mining Technology)
Show Figures

Figure 1

15 pages, 319 KiB  
Review
Toxoplasma gondii at the Host Interface: Immune Modulation and Translational Strategies for Infection Control
by Billy J. Erazo Flores and Laura J. Knoll
Vaccines 2025, 13(8), 819; https://doi.org/10.3390/vaccines13080819 (registering DOI) - 31 Jul 2025
Viewed by 50
Abstract
Toxoplasma gondii is an intracellular protozoan found worldwide that is capable of infecting nearly all warm-blooded animals, including humans. Its parasitic success lies in its capacity to create chronic infections while avoiding immune detection, altering host immune responses, and disrupting programmed cell death [...] Read more.
Toxoplasma gondii is an intracellular protozoan found worldwide that is capable of infecting nearly all warm-blooded animals, including humans. Its parasitic success lies in its capacity to create chronic infections while avoiding immune detection, altering host immune responses, and disrupting programmed cell death pathways. This review examines the complex relationship between T. gondii and host immunity, focusing on how the parasite influences innate and adaptive immune responses to survive in immune-privileged tissues. We present recent findings on the immune modulation specific to various parasite strains, the immunopathology caused by imbalanced inflammation, and how the parasite undermines host cell death mechanisms such as apoptosis, necroptosis, and pyroptosis. These immune evasion tactics enable prolonged intracellular survival and pose significant challenges for treatment and vaccine development. We also review advancements in therapeutic strategies, including host-directed approaches, nanoparticle drug delivery, and CRISPR-based technologies, along with progress in vaccine development from subunit and DNA vaccines to live-attenuated candidates. This review emphasizes the importance of T. gondii as a model for chronic infections and points out potential avenues for developing innovative therapies and vaccines aimed at toxoplasmosis and similar intracellular pathogens. Full article
(This article belongs to the Special Issue Intracellular Parasites: Immunology, Resistance, and Therapeutics)
19 pages, 1072 KiB  
Article
Efficient and Reliable Identification of Probabilistic Cloning Attacks in Large-Scale RFID Systems
by Chu Chu, Rui Wang, Nanbing Deng and Gang Li
Micromachines 2025, 16(8), 894; https://doi.org/10.3390/mi16080894 (registering DOI) - 31 Jul 2025
Viewed by 49
Abstract
Radio Frequency Identification (RFID) technology is widely applied in various scenarios, including logistics tracking, supply chain management, and target monitoring. In these contexts, the malicious cloning of legitimate tag information can lead to sensitive data leakage and disrupt the normal acquisition of tag [...] Read more.
Radio Frequency Identification (RFID) technology is widely applied in various scenarios, including logistics tracking, supply chain management, and target monitoring. In these contexts, the malicious cloning of legitimate tag information can lead to sensitive data leakage and disrupt the normal acquisition of tag information by readers, thereby threatening personal privacy and corporate security and incurring significant economic losses. Although some efforts have been made to detect cloning attacks, the presence of missing tags in RFID systems can obscure cloned ones, resulting in a significant reduction in identification efficiency and accuracy. To address these problems, we propose the block-based cloned tag identification (BCTI) protocol for identifying cloning attacks in the presence of missing tags. First, we introduce a block indicator to sort all tags systematically and design a block mechanism that enables tags to respond repeatedly within a block with minimal time overhead. Then, we design a superposition strategy to further reduce the number of verification times, thereby decreasing the execution overhead. Through an in-depth analysis of potential tag response patterns, we develop a precise method to identify cloning attacks and mitigate interference from missing tags in probabilistic cloning attack scenarios. Moreover, we perform parameter optimization of the BCTI protocol and validate its performance across diverse operational scenarios. Extensive simulation results demonstrate that the BCTI protocol meets the required identification reliability threshold and achieves an average improvement of 24.01% in identification efficiency compared to state-of-the-art solutions. Full article
Show Figures

Figure 1

16 pages, 581 KiB  
Article
Financial Literacy and Sustainable Food Production in Rural Nigeria: Access and Adoption Perspectives
by Benedict Ogbemudia Imhanrenialena and Eveth Nkeiruka Nwobodo-Anyadiegwu
Sustainability 2025, 17(15), 6941; https://doi.org/10.3390/su17156941 - 30 Jul 2025
Viewed by 174
Abstract
Despite the importance of financial literacy, particularly in sustaining and improving rural agriculture, it is documented in the literature that little is known about financial literacy, particularly in rural communities in developing countries. Responding to the calls for research to address this gap, [...] Read more.
Despite the importance of financial literacy, particularly in sustaining and improving rural agriculture, it is documented in the literature that little is known about financial literacy, particularly in rural communities in developing countries. Responding to the calls for research to address this gap, the current study investigates how financial literacy relates to access to funding, innovative service adoption, and sustainable food production among agricultural food producers in Nigeria’s rural communities. A probability sampling technique was used to draw 460 samples from registered rural farmers in the Central Bank of Nigeria’s Anchored Borrower’s Programme for food production in Edo State, Nigeria. Quantitative data were collected using a structured questionnaire. The hypotheses were tested using regression analysis, while descriptive statistics were deployed to analyse the demographic data of the respondents. The outcomes suggest that financial literacy has significant links with access to funding, innovative service adoption and sustainable food production among agricultural food producers in Nigerian rural communities. Based on the outcomes, it is concluded that financial literacy significantly influences sustainable food production in Nigerian rural communities. As such, there is a need for the Nigerian government and financial authorities to embark on a financial literacy drive to increase financial literacy, particularly in light of ever-evolving disruptive financial technologies. Full article
Show Figures

Figure 1

18 pages, 475 KiB  
Article
How Environmental Turbulence Shapes the Path from Resilience to Sustainability: Useful Insights Gathered from Small and Medium Enterprises (SMEs)
by Ahmet Serdar İbrahimcioğlu and Hakan Kitapçı
Sustainability 2025, 17(15), 6938; https://doi.org/10.3390/su17156938 - 30 Jul 2025
Viewed by 119
Abstract
In the context of small and medium-sized enterprises (SMEs), organizational resilience has emerged as a critical capability for navigating dynamic and turbulent environments. The ability of firms to sustain their performance despite external disruptions, particularly those arising from market and technological change, is [...] Read more.
In the context of small and medium-sized enterprises (SMEs), organizational resilience has emerged as a critical capability for navigating dynamic and turbulent environments. The ability of firms to sustain their performance despite external disruptions, particularly those arising from market and technological change, is paramount for achieving long-term sustainability. This study offers a novel contribution by examining how two key dimensions of environmental turbulence—market turbulence and technological turbulence—moderate the relationship between organizational resilience capacity and sustainability performance. Our empirical findings, based on data from 423 SMEs, demonstrate that while organizational resilience positively correlates with sustainability performance, this relationship is significantly weakened under high levels of market and technological turbulence, indicating a negative moderating effect. These results advance resource-based and dynamic capabilities theory by highlighting the contingent nature of resilience in unstable contexts. Furthermore, this study provides practical guidance. SMEs should strategically invest in resilience-building efforts and continuously adapt their strategies in response to environmental fluctuations. Targeted approaches to managing different forms of turbulence and forming resilience-oriented collaborations can enhance sustainability outcomes. This research makes significant contributions to theory and practice; however, there are limitations that future research should take into account in order to appropriately utilize this study’s findings. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

50 pages, 937 KiB  
Review
Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7364; https://doi.org/10.3390/ijms26157364 - 30 Jul 2025
Viewed by 192
Abstract
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model [...] Read more.
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model of care. The general purpose of this review is to contemporaneously reflect on how these advances will impact neurosurgical care by providing us with more precise diagnostic and treatment pathways. We hope to provide a relevant review of the recent advances in genomics and multi-omics in the context of clinical practice and highlight their transformational opportunities in the existing models of care, where improved molecular insights can support improvements in clinical care. More specifically, we will highlight how genomic profiling, CRISPR-Cas9, and multi-omics platforms (genomics, transcriptomics, proteomics, and metabolomics) are increasing our understanding of central nervous system (CNS) disorders. Achievements obtained with transformational technologies such as single-cell RNA sequencing and intraoperative mass spectrometry are exemplary of the molecular diagnostic possibilities in real-time molecular diagnostics to enable a more directed approach in surgical options. We will also explore how identifying specific biomarkers (e.g., IDH mutations and MGMT promoter methylation) became a tipping point in the care of glioblastoma and allowed for the establishment of a new taxonomy of tumors that became applicable for surgeons, where a change in practice enjoined a different surgical resection approach and subsequently stratified the adjuvant therapies undertaken after surgery. Furthermore, we reflect on how the novel genomic characterization of mutations like DEPDC5 and SCN1A transformed the pre-surgery selection of surgical candidates for refractory epilepsy when conventional imaging did not define an epileptogenic zone, thus reducing resective surgery occurring in clinical practice. While we are atop the crest of an exciting wave of advances, we recognize that we also must be diligent about the challenges we must navigate to implement genomic medicine in neurosurgery—including ethical and technical challenges that could arise when genomic mutation-based therapies require the concurrent application of multi-omics data collection to be realized in practice for the benefit of patients, as well as the constraints from the blood–brain barrier. The primary challenges also relate to the possible gene privacy implications around genomic medicine and equitable access to technology-based alternative practice disrupting interventions. We hope the contribution from this review will not just be situational consolidation and integration of knowledge but also a stimulus for new lines of research and clinical practice. We also hope to stimulate mindful discussions about future possibilities for conscientious and sustainable progress in our evolution toward a genomic model of precision neurosurgery. In the spirit of providing a critical perspective, we hope that we are also adding to the larger opportunity to embed molecular precision into neuroscience care, striving to promote better practice and better outcomes for patients in a global sense. Full article
(This article belongs to the Special Issue Molecular Insights into Glioblastoma Pathogenesis and Therapeutics)
Show Figures

Figure 1

28 pages, 1431 KiB  
Article
From Mine to Market: Streamlining Sustainable Gold Production with Cutting-Edge Technologies for Enhanced Productivity and Efficiency in Central Asia
by Mohammad Shamsuddoha, Adil Kaibaliev and Tasnuba Nasir
Logistics 2025, 9(3), 100; https://doi.org/10.3390/logistics9030100 - 29 Jul 2025
Viewed by 128
Abstract
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and [...] Read more.
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and disruptions, and incorporating modernized waste management and advancements in gold bar processing technologies. This study explores how advanced technologies and improved logistical processes can enhance efficiency and sustainability. Method: This paper examines gold production processes in Kyrgyzstan, a gold-producing country in Central Asia. The case study approach combines qualitative interviews with industry stakeholders and a system dynamics (SD) simulation model to compare current operations with a technology-based scenario. Results: The simulation model shows improved outcomes when innovative technologies are applied to ore processing, waste refinement, and gold bar production. The results also indicate an approximate twenty-five percent reduction in transport time, a thirty percent decrease in equipment downtime, a thirty percent reduction in emissions, and a fifteen percent increase in gold extraction when using artificial intelligence, smart logistics, and regional smelting. Conclusions: The study concludes with recommendations to modernize equipment, localize processing, and invest in digital logistics to support sustainable mining and improve operational performance in Kyrgyzstan’s gold sector. Full article
(This article belongs to the Topic Sustainable Supply Chain Practices in A Digital Age)
Show Figures

Figure 1

Back to TopTop