Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,329)

Search Parameters:
Keywords = displacement distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1694 KiB  
Article
The Microscopic Mechanism of High Temperature Resistant Core-Shell Nano-Blocking Agent: Molecular Dynamics Simulations
by Zhenghong Du, Jiaqi Xv, Jintang Wang, Juyuan Zhang, Ke Zhao, Qi Wang, Qian Zheng, Jianlong Wang, Jian Li and Bo Liao
Polymers 2025, 17(14), 1969; https://doi.org/10.3390/polym17141969 - 17 Jul 2025
Abstract
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and [...] Read more.
China has abundant shale oil and gas resources, which have become a critical pillar for future energy substitution. However, due to the highly heterogeneous nature and complex pore structures of shale reservoirs, traditional plugging agents face significant limitations in enhancing plugging efficiency and adapting to extreme wellbore environments. In response to the technical demands of nanoparticle-based plugging in shale reservoirs, this study systematically investigated the microscopic interaction mechanisms of nano-plugging agent shell polymers (Ployk) with various reservoir minerals under different temperature and salinity conditions using molecular simulation methods. Key parameters, including interfacial interaction energy, mean square displacement, and system density distribution, were calculated to thoroughly analyze the effects of temperature and salinity variations on adsorption stability and structural evolution. The results indicate that nano-plugging agent shell polymers exhibit pronounced mineral selectivity in their adsorption behavior, with particularly strong adsorption performance on SiO2 surfaces. Both elevated temperature and increased salinity were found to reduce the interaction strength between the shell polymers and mineral surfaces and significantly alter the spatial distribution and structural ordering of water molecules near the interface. These findings not only elucidate the fundamental interfacial mechanisms of nano-plugging agents in shale reservoirs but also provide theoretical guidance for the precise design of advanced nano-plugging agent materials, laying a scientific foundation for improving the engineering application performance of shale oil and gas wellbore-plugging technologies. Full article
25 pages, 7778 KiB  
Article
Pressure Characteristics Analysis of the Deflector Jet Pilot Stage Under Dynamic Skewed Velocity Distribution
by Zhilin Cheng, Wenjun Yang, Liangcai Zeng and Lin Wu
Aerospace 2025, 12(7), 638; https://doi.org/10.3390/aerospace12070638 - 17 Jul 2025
Abstract
The velocity distribution at the deflector jet outlet significantly influences the pressure characteristics of the pilot stage, thereby affecting the dynamic performance of the servo valve. Conventional mathematical models fail to account for the influence of dynamic velocity distribution on pilot stage pressure [...] Read more.
The velocity distribution at the deflector jet outlet significantly influences the pressure characteristics of the pilot stage, thereby affecting the dynamic performance of the servo valve. Conventional mathematical models fail to account for the influence of dynamic velocity distribution on pilot stage pressure characteristics, resulting in significant deviations from actual situations. As the deflector shifts, the secondary jet velocity distribution transitions from a symmetric to an asymmetric dynamic profile, altering the pressure within the receiving chambers. To address this, a dynamic skewed velocity distribution model is proposed to more accurately capture the pressure characteristics. The relationship between the skewness coefficient and deflector displacement is established, and the pressure calculation method for the receiving chambers is refined accordingly. A comparative analysis shows that the proposed model aligns most closely with computational fluid dynamics results, achieving a 98% match in velocity distribution and a maximum pressure error of 1.43%. This represents an improvement of 84.98% over the normal model and 82.35% over the uniform model, confirming the superior accuracy of the dynamic skewed model in pilot stage pressure calculation. Full article
(This article belongs to the Special Issue Aerospace Vehicles and Complex Fluid Flow Modelling)
Show Figures

Figure 1

21 pages, 4823 KiB  
Article
Thermo-Mechanical Behavior of Polymer-Sealed Dual-Cavern Hydrogen Storage in Heterogeneous Rock Masses
by Chengguo Hu, Xiaozhao Li, Bangguo Jia, Lixin He and Kai Zhang
Energies 2025, 18(14), 3797; https://doi.org/10.3390/en18143797 - 17 Jul 2025
Abstract
Underground hydrogen storage (UHS) in geological formations offers a promising solution for large-scale energy buffering, but its long-term safety and mechanical stability remain concerns, particularly in fractured rock environments. This study develops a fully coupled thermo-mechanical model to investigate the cyclic response of [...] Read more.
Underground hydrogen storage (UHS) in geological formations offers a promising solution for large-scale energy buffering, but its long-term safety and mechanical stability remain concerns, particularly in fractured rock environments. This study develops a fully coupled thermo-mechanical model to investigate the cyclic response of a dual-cavern hydrogen storage system with polymer-based sealing layers. The model incorporates non-isothermal gas behavior, rock heterogeneity via a Weibull distribution, and fracture networks represented through stochastic geometry. Two operational scenarios, single-cavern and dual-cavern cycling, are simulated to evaluate stress evolution, displacement, and inter-cavity interaction under repeated pressurization. Results reveal that simultaneous operation of adjacent caverns amplifies tensile and compressive stress concentrations, especially in inter-cavity rock bridges (i.e., the intact rock zones separating adjacent caverns) and fracture-dense zones. Polymer sealing layers remain under compressive stress but exhibit increased residual deformation under cyclic loading. Contour analyses further show that fracture orientation and spatial distribution significantly influence stress redistribution and deformation localization. The findings highlight the importance of considering thermo-mechanical coupling and rock fracture mechanics in the design and operation of multicavity UHS systems. This modeling framework provides a robust tool for evaluating storage performance and informing safe deployment in complex geological environments. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

23 pages, 3031 KiB  
Article
Climbing the Pyramid: From Regional to Local Assessments of CO2 Storage Capacities in Deep Saline Aquifers of the Drava Basin, Pannonian Basin System
by Iva Kolenković Močilac, Marko Cvetković, David Rukavina, Ana Kamenski, Marija Pejić and Bruno Saftić
Energies 2025, 18(14), 3800; https://doi.org/10.3390/en18143800 - 17 Jul 2025
Abstract
Deep saline aquifers in the eastern part of Drava Basin were screened for potential storage sites. The input dataset included three seismic volumes, a rather extensive set of old seismic sections and 71 wells. Out of all identified potential storage objects, only two [...] Read more.
Deep saline aquifers in the eastern part of Drava Basin were screened for potential storage sites. The input dataset included three seismic volumes, a rather extensive set of old seismic sections and 71 wells. Out of all identified potential storage objects, only two sites were found to be situated in the favorable geological settings, meaning that the inspected wells drilled through structural traps had a seal at least 20 m thick which was intersected by only a few faults with rather limited displacement. Many more closed structures in the area were tested by exploration wells, but in all other wells, various problems were encountered, including inadequate reservoir properties, inadequate seal or inadequate depth of the identified trap. Analysis was highly affected by the insufficient quality and spatial distribution of the seismic input data, as well as in places with insufficient quality of input well datasets. An initial characterization of identified storage sites was performed, and their attributes were compared, with potential storage object B recognized as the one that should be further developed. However, given the depth and increased geothermal gradient of the potential storage object B, it is possible that it will be developed as a geothermal reservoir, and this brings forward the problem of concurrent subsurface use. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

23 pages, 4745 KiB  
Article
Cable Force Optimization in Cable-Stayed Bridges Using Gaussian Process Regression and an Enhanced Whale Optimization Algorithm
by Bing Tu, Pengtao Zhang, Shunyao Cai and Chongyuan Jiao
Buildings 2025, 15(14), 2503; https://doi.org/10.3390/buildings15142503 - 16 Jul 2025
Viewed by 49
Abstract
Optimizing cable forces in cable-stayed bridges is challenging due to structural nonlinearity and the limitations of traditional methods, which often focus on isolated performance indicators. This study proposes an integrated framework combining Gaussian process regression (GPR) with an enhanced whale optimization algorithm improved [...] Read more.
Optimizing cable forces in cable-stayed bridges is challenging due to structural nonlinearity and the limitations of traditional methods, which often focus on isolated performance indicators. This study proposes an integrated framework combining Gaussian process regression (GPR) with an enhanced whale optimization algorithm improved by the Salp Swarm Algorithm (EWOSSA). GPR is first used to model the nonlinear relationship between cable forces and structural responses. The EWOSSA then efficiently optimizes the GPR-based model to identify optimal cable forces. A case study on a cable-stayed bridge with a 2 × 145 m main spans demonstrates the effectiveness of the proposed approach. Compared with conventional methods such as the internal-force equilibrium and zero-displacement methods, the EWOSSA-GPR framework achieves superior performance across multiple structural metrics. It ensures a more uniform cable force distribution, reduces girder displacements, and improves bending moment profiles, offering a comprehensive solution for optimal structural performance in cable-stayed bridges. Full article
(This article belongs to the Special Issue Experimental and Theoretical Studies on Steel and Concrete Structures)
Show Figures

Figure 1

14 pages, 985 KiB  
Article
Forefoot Centre of Pressure Patterns in Black Male African Recreational Runners with Pes Planus
by Jodie Dickson, Glen James Paton and Yaasirah Mohomed Choonara
J. Funct. Morphol. Kinesiol. 2025, 10(3), 273; https://doi.org/10.3390/jfmk10030273 - 16 Jul 2025
Viewed by 60
Abstract
Background: Pes planus is a condition where the arch of the foot collapses, resulting in the entire sole contacting the ground. The biomechanical implications of pes planus on gait have been widely studied; however, research specific to Black African populations, particularly recreational runners, [...] Read more.
Background: Pes planus is a condition where the arch of the foot collapses, resulting in the entire sole contacting the ground. The biomechanical implications of pes planus on gait have been widely studied; however, research specific to Black African populations, particularly recreational runners, is scarce. Aim: This study aimed to describe the forefoot centre of pressure (CoP) trajectory during the barefoot gait cycle among Black African recreational runners with pes planus. Methods: A prospective explorative and quantitative study design was employed. Participants included Black African male recreational runners aged 18 to 45 years diagnosed with pes planus. A Freemed™ 6050 force plate was used to collect gait data. Statistical analysis included cross-tabulations to identify patterns. Results: This study included 104 male participants across seven weight categories, with the majority in the 70-to-79 kg range (34.6%, n = 36). Most participants with pes planus showed a neutral foot posture (74.0%, n = 77) on the foot posture index 6 (FPI-6) scale. Flexible pes planus (94.2%, n = 98) was much more common than rigid pes planus (5.8%, n = 6). Lateral displacement of the CoP was observed in the right forefoot (90.4%, n = 94) and left forefoot (57.7%, n = 60). Load distribution patterns differed between feet, with the right foot favouring the medial heel, arch, and metatarsal heads, while the left foot favoured the lateral heel, medial heel, and lateral arch. No statistical significance was found in the cross-tabulations, but notable lateral CoP displacement in the forefoot was observed. Conclusions: The findings challenge the traditional view of pes planus causing overpronation and highlight the need for clinicians to reconsider standard diagnostic and management approaches. Further research is needed to explore the implications of these findings for injury prevention and management in this population. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

22 pages, 2892 KiB  
Article
Investigation of Bolt Grade Influence on the Structural Integrity of L-Type Flange Joints Using Finite Element Analysis
by Muhammad Waleed and Daeyong Lee
J. Mar. Sci. Eng. 2025, 13(7), 1346; https://doi.org/10.3390/jmse13071346 - 15 Jul 2025
Viewed by 87
Abstract
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt [...] Read more.
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt pretension through a finite element analysis (FEA) study of its key performance indicators, including stress distribution, deformation, and force–displacement behaviors. This paper studies two high-strength bolt grades, Grade 10.9 and Grade 12.9, and two main steps—first, bolt pretension and, second, external loading (tower shell tensile load)—to investigate the influence on joint reliability and safety margins. The novelty of this study lies in its specific focus on static axial loading conditions, unlike the existing literature that emphasizes fatigue or dynamic loads. Results show that the specimen carrying a higher bolt grade (12.9) has 18% more ultimate load carrying capacity than the specimen with a lower bolt grade (10.9). Increased pretension increases the stability of the joint and reduces the micro-movements between A and B (on model specimen), but could result in material fatigue if over-pretensioned. Comparative analysis of the different bolt grades has provided practical guidance on material selection and bolt pretension in L-type flange joints for wind turbine support structures. The findings of this work offer insights into the proper design of robust flange connections for high-demand applications by highlighting a balance among material properties, bolt pretension, and operational conditions, while also proposing optimized pretension and material recommendations validated against classical analytical models. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 3287 KiB  
Article
Interference Effect Between a Parabolic Notch and a Screw Dislocation in Piezoelectric Quasicrystals
by Yuanyuan Gao, Guanting Liu, Chengyan Wang and Junjie Fan
Crystals 2025, 15(7), 647; https://doi.org/10.3390/cryst15070647 - 15 Jul 2025
Viewed by 73
Abstract
This study investigates the coupling mechanism between a parabolic notch and dislocations in one-dimensional (1D) hexagonal piezoelectric quasicrystals (PQCs) based on the theory of complex variable functions. By applying perturbation techniques and the Cauchy integral, analytical solutions for complex potentials are derived, yielding [...] Read more.
This study investigates the coupling mechanism between a parabolic notch and dislocations in one-dimensional (1D) hexagonal piezoelectric quasicrystals (PQCs) based on the theory of complex variable functions. By applying perturbation techniques and the Cauchy integral, analytical solutions for complex potentials are derived, yielding closed-form expressions for the phonon–phason stress field and electric displacement field. Numerical examples reveal several key findings: significant stress concentration occurs at the notch root, accompanied by suppression of electric displacement; interference patterns between dislocation cores and notch-induced stress singularities are identified; the J-integral quantifies distance-dependent forces, size effects, and angular force distributions reflecting notch symmetry; and the energy-driven dislocation slip toward free surfaces leads to the formation of dislocation-free zones. These results provide new insights into electromechanical fracture mechanisms in quasicrystals. Full article
Show Figures

Figure 1

13 pages, 1422 KiB  
Brief Report
Detection of Lineage IV Peste Des Petits Ruminants Virus by RT-qPCR Assay via Targeting the Hemagglutinin Gene
by Jiao Xu, Qinghua Wang, Jiarong Yu, Yingli Wang, Huicong Li, Lin Li, Jingyue Bao and Zhiliang Wang
Viruses 2025, 17(7), 976; https://doi.org/10.3390/v17070976 - 12 Jul 2025
Viewed by 246
Abstract
Peste des petits ruminants virus (PPRV) has been classified into four lineages based on the nucleocapsid and fusion genes, with lineage IV strains being the most widely distributed. In Africa, recent epidemiological data revealed that PPRV lineage IV is increasingly displacing other lineages [...] Read more.
Peste des petits ruminants virus (PPRV) has been classified into four lineages based on the nucleocapsid and fusion genes, with lineage IV strains being the most widely distributed. In Africa, recent epidemiological data revealed that PPRV lineage IV is increasingly displacing other lineages in prevalence, suggesting a competitive advantage in viral transmission and adaptability. Moreover, a lineage IV strain was the only confirmed strain in Europe and Asia. In this study, a one-step Taqman quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) assay for lineage IV PPRV was established by targeting the hemagglutinin (H) gene. The results indicated that this method could detect approximately six copies of PPRV RNA, indicating high sensitivity. No cross-reactions with related viruses or other lineages of PPRV were observed. The results of a repeatability test indicated that the coefficient of variation values were low in both the inter-assay and intra-assay experimental groups. Detection of field samples indicated that all positive samples could be detected successfully using the developed method. This RT-qPCR assay provides a valuable tool to facilitate targeted surveillance and rapid differential diagnosis in regions with active circulation of PPRV lineage IV, enabling timely epidemiological investigations and strain-specific identification. Full article
Show Figures

Figure 1

33 pages, 7555 KiB  
Article
A Quasi-Bonjean Method for Computing Performance Elements of Ships Under Arbitrary Attitudes
by Kaige Zhu, Jiao Liu and Yuanqiang Zhang
Systems 2025, 13(7), 571; https://doi.org/10.3390/systems13070571 - 11 Jul 2025
Viewed by 165
Abstract
Deep-sea navigation represents the future trend of maritime navigation; however, complex seakeeping conditions often lead to unconventional ship attitudes. Conventional calculation methods are insufficient for accurately assessing hull performance under heeled or extreme trim conditions. Drawing inspiration from Bonjean curve principles, this study [...] Read more.
Deep-sea navigation represents the future trend of maritime navigation; however, complex seakeeping conditions often lead to unconventional ship attitudes. Conventional calculation methods are insufficient for accurately assessing hull performance under heeled or extreme trim conditions. Drawing inspiration from Bonjean curve principles, this study proposes a Quasi-Bonjean (QB) method to compute ship performance elements in arbitrary attitudes. Specifically, the QB method first constructs longitudinally distributed hull sections from the Non-Uniform Rational B-Spline (NURBS) surface model, then simulates arbitrary attitudes through dynamic waterplane adjustments, and finally calculates performance elements via sectional integration. Furthermore, an Adaptive Surface Tessellation (AST) method is proposed to optimize longitudinal section distribution by minimizing the number of stations while maintaining high geometric fidelity, thereby enhancing the computational efficiency of the QB method. Comparative experiments reveal that the AST-generated 100-station sections achieve computational precision comparable to 200-station uniform distributions under optimal conditions, and the performance elements calculated by the QB method under multi-attitude conditions meet International Association of Classification Societies accuracy thresholds, particularly excelling in the displacement and vertical center of buoyancy calculations. These findings confirm that the QB method effectively addresses the critical limitations of traditional hydrostatic tables, providing a theoretical foundation for analyzing damaged ship equilibrium and evaluating residual stability. Full article
Show Figures

Figure 1

21 pages, 2469 KiB  
Article
Robust Low-Overlap Point Cloud Registration via Displacement-Corrected Geometric Consistency for Enhanced 3D Sensing
by Xin Wang and Qingguang Li
Sensors 2025, 25(14), 4332; https://doi.org/10.3390/s25144332 - 11 Jul 2025
Viewed by 224
Abstract
Accurate alignment of 3D point clouds, achieved by ubiquitous sensors such as LiDAR and depth cameras, is critical for enhancing perception capabilities in robotics, autonomous navigation, and environmental reconstruction. However, low-overlap scenarios—common due to limited sensor field-of-view or occlusions—severely degrade registration robustness and [...] Read more.
Accurate alignment of 3D point clouds, achieved by ubiquitous sensors such as LiDAR and depth cameras, is critical for enhancing perception capabilities in robotics, autonomous navigation, and environmental reconstruction. However, low-overlap scenarios—common due to limited sensor field-of-view or occlusions—severely degrade registration robustness and sensing reliability. To address this challenge, this paper proposes a novel geometric consistency optimization and rectification deep learning network named GeoCORNet. By synergistically designing a geometric consistency enhancement module, a bidirectional cross-attention mechanism, a predictive displacement rectification strategy, and joint optimization of overlap loss with displacement loss, GeoCORNet significantly improves registration accuracy and robustness in complex scenarios. The Attentive Cross-Consistency module of GeoCORNet integrates distance and angular consistency constraints with bidirectional cross-attention to significantly suppress noise from non-overlapping regions while reinforcing geometric coherence in overlapping areas. The predictive displacement rectification strategy dynamically rectifies erroneous correspondences through predicted 3D displacements instead of discarding them, maximizing the utility of sparse sensor data. Furthermore, a novel displacement loss function was developed to effectively constrain the geometric distribution of corrected point-pairs. Experimental results demonstrate that our method outperformed existing approaches in the aspects of registration recall, rotation error, and algorithm robustness under low-overlap conditions. These advances establish a new paradigm for robust 3D sensing in real-world applications where partial sensor data is prevalent. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

25 pages, 2026 KiB  
Review
Mapping the Fat: How Childhood Obesity and Body Composition Shape Obstructive Sleep Apnoea
by Marco Zaffanello, Angelo Pietrobelli, Giorgio Piacentini, Thomas Zoller, Luana Nosetti, Alessandra Guzzo and Franco Antoniazzi
Children 2025, 12(7), 912; https://doi.org/10.3390/children12070912 - 10 Jul 2025
Viewed by 264
Abstract
Background/Objectives: Childhood obesity represents a growing public health concern. It is closely associated with obstructive sleep apnoea (OSA), which impairs nocturnal breathing and significantly affects neurocognitive and cardiovascular health. This review aims to analyse differences in fat distribution, anthropometric parameters, and [...] Read more.
Background/Objectives: Childhood obesity represents a growing public health concern. It is closely associated with obstructive sleep apnoea (OSA), which impairs nocturnal breathing and significantly affects neurocognitive and cardiovascular health. This review aims to analyse differences in fat distribution, anthropometric parameters, and instrumental assessments of paediatric OSA compared to adult OSA to improve the diagnostic characterisation of obese children. Methods: narrative review. Results: While adenotonsillar hypertrophy (ATH) remains a primary cause of paediatric OSA, the increasing prevalence of obesity has introduced distinct pathophysiological mechanisms, including fat accumulation around the pharynx, reduced respiratory muscle tone, and systemic inflammation. Children exhibit different fat distribution patterns compared to adults, with a greater proportion of subcutaneous fat relative to visceral fat. Nevertheless, cervical and abdominal adiposity are crucial in increasing upper airway collapsibility. Recent evidence highlights the predictive value of anthropometric and body composition indicators such as neck circumference (NC), neck-to-height ratio (NHR), neck-to-waist ratio (NWR), fat-to-muscle ratio (FMR), and the neck-to-abdominal-fat percentage ratio (NAF%). In addition, ultrasound assessment of lateral pharyngeal wall (LPW) thickness and abdominal fat distribution provides clinically relevant information regarding anatomical contributions to OSA severity. Among imaging modalities, dual-energy X-ray absorptiometry (DXA), bioelectrical impedance analysis (BIA), and air displacement plethysmography (ADP) have proven valuable tools for evaluating body fat distribution. Conclusions: Despite advances in the topic, a validated predictive model that integrates these parameters is still lacking in clinical practice. Polysomnography (PSG) remains the gold standard for diagnosis; however, its limited accessibility underscores the need for complementary tools to prioritise the identification of children at high risk. A multimodal approach integrating clinical, anthropometric, and imaging data could support the early identification and personalised management of paediatric OSA in obesity. Full article
(This article belongs to the Section Translational Pediatrics)
Show Figures

Figure 1

22 pages, 56730 KiB  
Article
Evolution Process of Toppling Deformations in Interbedded Anti-Inclined Rock Slopes
by Yibing Ning, Yanjun Shen, Tao Ding, Panpan Xu, Fenghao Duan, Bei Zhang, Bocheng Zhang and John Victor Smith
Appl. Sci. 2025, 15(14), 7727; https://doi.org/10.3390/app15147727 - 10 Jul 2025
Viewed by 137
Abstract
Rock slopes exhibiting anti-inclined interbedded strata have widespread distribution and complex deformation mechanisms. In this study, we used a physical model test with basal friction to replicate the evolution process of the slope deformation. Digital Image Correlation (DIC) and Particle Image Velocimetry (PIV) [...] Read more.
Rock slopes exhibiting anti-inclined interbedded strata have widespread distribution and complex deformation mechanisms. In this study, we used a physical model test with basal friction to replicate the evolution process of the slope deformation. Digital Image Correlation (DIC) and Particle Image Velocimetry (PIV) methods were used to capture the variation in slope velocity and displacement fields. The results show that the slope deformation is conducted by bending of soft rock layers and accumulated overturning of hard blocks along numerous cross joints. As the faces of the rock columns come back into contact, the motion of the slope can progressively stabilize. Destruction of the toe blocks triggers the formation of the landslides within the toppling zone. The toppling fracture zones form by tracing tensile fractures within soft rocks and cross joints within hard rocks, ultimately transforming into a failure surface which is located above the hinge surface of the toppling motion. The evolution of the slope deformation mainly undergoes four stages: the initial shearing, the free rotation, the creep, and the progressive failure stages. Full article
Show Figures

Figure 1

21 pages, 7691 KiB  
Article
Compound Instability Effect and Countermeasures of Pit-in-Pit in Collapsible Loess Strata
by Jiawei Xu, Peilong Yuan, Jinxing Lai, Peiyao Che, Xiangcheng Su and Xulin Su
Appl. Sci. 2025, 15(14), 7710; https://doi.org/10.3390/app15147710 - 9 Jul 2025
Viewed by 199
Abstract
The construction of pit-in-pit has become increasingly challenging due to the bad geological conditions, particularly in collapsible loess strata. To understand its supporting characteristics and failure mode, it is necessary to study the composite instability mechanism in the loess strata. This research systematically [...] Read more.
The construction of pit-in-pit has become increasingly challenging due to the bad geological conditions, particularly in collapsible loess strata. To understand its supporting characteristics and failure mode, it is necessary to study the composite instability mechanism in the loess strata. This research systematically investigates the interacting instability modes of pit-in-pit under a collapsible loess stratum, studies the effects of different reinforcement parameters through physical model tests, analyzes the significance level of each reinforcement factor, and monitors the displacement of the foundation pit during construction in a pit project in Zhengzhou. The result shows that the soil pressure distribution law of the pit in a collapsible loess formation is a complex function of soil parameters, the relative positional relationship between the inner and outer foundation pits, and the time of immersion. The model test shows that the width and depth of reinforced soil have the most significant influence. The reinforcement measures proposed in this paper can effectively control the displacement of each measuring point during the foundation pit excavation, which can provide a reference for similar projects. Full article
Show Figures

Figure 1

18 pages, 2925 KiB  
Article
Study on the Effect of Pile Spacing on the Bearing Performance of Low-Capping Concrete Expanded-Plate Group Pile Foundations Under Composite Stress
by Yongmei Qian, Yawen Yu, Miao Ma, Yu Mu, Zhongwei Ma and Tingting Zhou
Buildings 2025, 15(14), 2412; https://doi.org/10.3390/buildings15142412 - 9 Jul 2025
Viewed by 163
Abstract
The spacing between piles plays a crucial role in determining the load-bearing capacity of CEP group pile foundations equipped with a bearing platform. In this research, five sets of six-pile models with different pile spacings were created using ANSYS finite element analysis. To [...] Read more.
The spacing between piles plays a crucial role in determining the load-bearing capacity of CEP group pile foundations equipped with a bearing platform. In this research, five sets of six-pile models with different pile spacings were created using ANSYS finite element analysis. To understand how damage impacts the system, this study examined displacement patterns and stress distribution within both the piles and the adjacent soil. Additionally, the force interaction between the piles and soil was explored to uncover the underlying failure mechanisms. The results shed light on how varying pile spacing affects the overall bearing capacity of the foundations. Based on our thorough analysis, we pinpoint the most effective pile spacing configuration. The findings reveal that, generally speaking, increasing the distance between piles tends to boost the load-bearing capacity of the entire group foundation. However, this relationship is not linear; once the spacing surpasses four times the cantilever’s diameter, further widening does not yield noticeable gains in performance. In real-world scenarios, it is advisable to keep the spacing between 3.5 to 4 times the cantilever diameter for optimal results. Moreover, the stability of the bearing platform and the plate plays a vital role in resisting sideways forces. Ensuring that the shear strength of the surrounding soil aligns with established standards is essential for maintaining the overall durability and safety of the group pile system. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop