Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,215)

Search Parameters:
Keywords = disease-related proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 847 KiB  
Article
Relationship Between Oxidative Stress and Cardiovascular Risk in Adolescents in Montenegro
by Aleksandra Klisic, Marija Bozovic, Barbara Ostanek, Janja Marc, Paschalis Karakasis, Filiz Mercantepe and Jelena Kotur-Stevuljevic
Int. J. Mol. Sci. 2025, 26(15), 7650; https://doi.org/10.3390/ijms26157650 (registering DOI) - 7 Aug 2025
Abstract
The pathophysiological mechanism linking oxidative stress and cardiovascular disease (CVD) is not completely elucidated, especially in young individuals. This study aimed to examine redox status in an adolescent Montenegrin population in relation to cardiovascular risk score (CVRS). A cohort of 182 adolescents (76% [...] Read more.
The pathophysiological mechanism linking oxidative stress and cardiovascular disease (CVD) is not completely elucidated, especially in young individuals. This study aimed to examine redox status in an adolescent Montenegrin population in relation to cardiovascular risk score (CVRS). A cohort of 182 adolescents (76% girls) aged between 16 and 19 was examined. Total antioxidant status (TAS), superoxide dismutase (SOD), advanced oxidation protein products (AOPPs), malondialdehyde (MDA), and total oxidant status (TOS) were determined. Pro-oxy score, anti-oxy score, and oxy score were calculated as comprehensive parameters of overall redox homeostasis status. CVRS was calculated by summarizing several risk factors (i.e., sex, age, obesity, hypertension, dyslipidemia, impaired fasting glucose, and smoking). A significant positive correlation between CVRS and TOS (rho = 0.246, p = 0.001) and AOPP (rho = 0.231, p = 0.002) and MDA (rho = 0.339, p < 0.001), respectively, and a negative correlation with the TAS/TOS ratio (rho= −0.208, p = 0.005) was observed. An increase in pro-oxy scores as well as oxy scores with CVRS risk increase were observed. Anti-oxy scores did not differ between CVRS subgroups. There is a significant relationship between cardiovascular risk score and oxidative stress in the adolescent Montenegrin population. These findings support the possibility for improvement of age-specific CVD risk algorithms by adding redox homeostasis parameters in addition to conventional ones. Full article
Show Figures

Figure 1

21 pages, 7477 KiB  
Article
Bidirectional Hypoxic Extracellular Vesicle Signaling Between Müller Glia and Retinal Pigment Epithelium Regulates Retinal Metabolism and Barrier Function
by Alaa M. Mansour, Mohamed S. Gad, Samar Habib and Khaled Elmasry
Biology 2025, 14(8), 1014; https://doi.org/10.3390/biology14081014 - 7 Aug 2025
Abstract
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia [...] Read more.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood–retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD). Extracellular vesicles (EVs) play a crucial role in intercellular communication, protein homeostasis, and immune modulation, and have emerged as promising diagnostic and therapeutic tools. Understanding the role of extracellular vesicles’ (EVs’) signaling machinery of glial cells and the retinal pigment epithelium (RPE) is critical for developing effective treatments for retinal degeneration. In this study, we investigated the bidirectional EV-mediated crosstalk between RPE and Müller cells under hypoxic conditions and its impact on cellular metabolism and retinal cell integrity. Our findings demonstrate that RPE-derived extracellular vesicles (RPE EVs) induce time-dependent metabolic reprogramming in Müller cells. Short-term exposure (24 h) promotes pathways supporting neurotransmitter cycling, calcium and mineral absorption, and glutamate metabolism, while prolonged exposure (72 h) shifts Müller cell metabolism toward enhanced mitochondrial function and ATP production. Conversely, Müller cell-derived EVs under hypoxia influenced RPE metabolic pathways, enhancing fatty acid metabolism, intracellular vesicular trafficking, and the biosynthesis of mitochondrial co-factors such as ubiquinone. Proteomic analysis revealed significant modulation of key regulatory proteins. In Müller cells, hypoxic RPE-EV exposure led to reduced expression of Dyskerin Pseudouridine Synthase 1 (DKc1), Eukaryotic Translation Termination Factor 1 (ETF1), and Protein Ser/Thr phosphatases (PPP2R1B), suggesting alterations in RNA processing, translational fidelity, and signaling. RPE cells exposed to hypoxic Müller cell EVs exhibited elevated Ribosome-binding protein 1 (RRBP1), RAC1/2, and Guanine Nucleotide-Binding Protein G(i) Subunit Alpha-1 (GNAI1), supporting enhanced endoplasmic reticulum (ER) function and cytoskeletal remodeling. Functional assays also revealed the compromised barrier integrity of the outer blood–retinal barrier (oBRB) under hypoxic co-culture conditions. These results underscore the adaptive but time-sensitive nature of retinal cell communication via EVs in response to hypoxia. Targeting this crosstalk may offer novel therapeutic strategies to preserve retinal structure and function in ischemic retinopathies. Full article
Show Figures

Graphical abstract

26 pages, 2011 KiB  
Review
Substance Abuse and Cognitive Decline: The Critical Role of Tau Protein as a Potential Biomarker
by Liliana Rebolledo-Pérez, Jorge Hernández-Bello, Alicia Martínez-Ramos, Rolando Castañeda-Arellano, David Fernández-Quezada, Flavio Sandoval-García and Irene Guadalupe Aguilar-García
Int. J. Mol. Sci. 2025, 26(15), 7638; https://doi.org/10.3390/ijms26157638 - 7 Aug 2025
Abstract
Tau protein is essential for the structural stability of neurons, particularly through its role in microtubule assembly and axonal transport. However, when abnormally hyperphosphorylated or cleaved, Tau can aggregate into insoluble forms that disrupt neuronal function, contributing to the pathogenesis of neurodegenerative diseases [...] Read more.
Tau protein is essential for the structural stability of neurons, particularly through its role in microtubule assembly and axonal transport. However, when abnormally hyperphosphorylated or cleaved, Tau can aggregate into insoluble forms that disrupt neuronal function, contributing to the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD). Emerging evidence suggests that similar Tau-related alterations may occur in individuals with chronic exposure to psychoactive substances. This review compiles experimental, clinical, and postmortem findings that collectively indicate a substance-specific influence on Tau dynamics. Alcohol and opioids, for instance, promote Tau hyperphosphorylation and fragmentation through the activation of kinases such as GSK-3β and CDK5, as well as proteases like caspase-3, leading to neuroinflammation and microglial activation. Stimulants and dissociatives disrupt insulin signaling, increase oxidative stress, and impair endosomal trafficking, all of which can exacerbate Tau pathology. In contrast, cannabinoids and psychedelics may exert protective effects by modulating kinase activity, reducing inflammation, or enhancing neuroplasticity. Psychedelic compounds such as psilocybin and harmine have been demonstrated to decrease Tau phosphorylation and facilitate cognitive restoration in animal models. Although the molecular mechanisms differ across substances, Tau consistently emerges as a convergent target altered in substance-related cognitive disorders. Understanding these pathways may provide not only mechanistic insights into drug-induced neurotoxicity but also identify Tau as a valuable biomarker and potential therapeutic target for the prevention or treatment of cognitive decline associated with substance use. Full article
(This article belongs to the Special Issue Neurobiological Mechanisms of Addictive Disorders)
Show Figures

Figure 1

17 pages, 1058 KiB  
Review
The Role of Vitamin K Deficiency in Chronic Kidney Disease—A Scoping Review
by Valdemar Tybjerg Wegge, Mette Kjær Torbensen, Allan Linneberg and Julie Aaberg Lauridsen
Nutrients 2025, 17(15), 2559; https://doi.org/10.3390/nu17152559 - 5 Aug 2025
Abstract
Background/objectives: Chronic kidney disease (CKD) affects up to 15% of the global population and is driven by vascular and interstitial damage, and is most prevalent in persons with hypertension and diabetes. Vitamin K, a necessary cofactor for activation of vitamin K-dependent proteins [...] Read more.
Background/objectives: Chronic kidney disease (CKD) affects up to 15% of the global population and is driven by vascular and interstitial damage, and is most prevalent in persons with hypertension and diabetes. Vitamin K, a necessary cofactor for activation of vitamin K-dependent proteins may modulate these processes. It is well established that vitamin K deficiency is associated with CKD, but the therapeutic effects of supplementation on kidney function are still uncertain. We aimed to review the current evidence on the effect of vitamin K deficiency and supplementation on any marker of renal function and kidney disease, across general adult populations and CKD patient populations. Methods: A search was conducted in PubMed, targeting terms related to vitamin K status and CKD. Studies were included if they reported data on vitamin K status or supplementation in relation to kidney function outcomes. Results: A total of 16 studies were included. Nine interventional studies were included and confirmed that vitamin K supplementation improves biomarkers of vitamin K status but showed no consistent beneficial effects on renal function. Seven observational studies across populations found significant associations between vitamin K status and decline in kidney function; however, associations were often attenuated after adjustments. Conclusions: No clear effect of supplementation was observed on the reported kidney markers in patient populations. A clear association between low vitamin K status and impaired kidney function was confirmed. Studying heterogeneity makes the comparability and generalizability of the results difficult. Our review highlights the need for more cohort studies and clinical trials in general or patient populations. Full article
Show Figures

Figure 1

15 pages, 1353 KiB  
Review
Fyn Kinase: A Potential Target in Glucolipid Metabolism and Diabetes Mellitus
by Ruifeng Xiao, Cong Shen, Wen Shen, Xunan Wu, Xia Deng, Jue Jia and Guoyue Yuan
Curr. Issues Mol. Biol. 2025, 47(8), 623; https://doi.org/10.3390/cimb47080623 - 5 Aug 2025
Abstract
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting [...] Read more.
Fyn is widely involved in diverse cellular physiological processes, including cell growth and survival, and has been implicated in the regulation of energy metabolism and the pathogenesis of diabetes mellitus through multiple pathways. Fyn plays a role in increasing fat accumulation and promoting insulin resistance, and it also contributes to the development of diabetic complications such as diabetic kidney disease and diabetic retinopathy. The primary mechanism by which Fyn modulates lipid metabolism is that it inhibits AMP-activated protein kinase (AMPK). Additionally, it affects energy homeostasis through regulating specific signal pathways affecting lipid metabolism including pathways related to CD36, through enhancement of adipocyte differentiation, and through modulating insulin signal transduction. Inflammatory stress is one of the fundamental mechanisms in diabetes mellitus and its complications. Fyn also plays a role in inflammatory stress-related signaling cascades such as the Akt/GSK-3β/Fyn/Nrf2 pathway, exacerbating inflammation in diabetes mellitus. Therefore, Fyn emerges as a promising therapeutic target for regulating glucolipid metabolism and alleviating type 2 diabetes mellitus. This review synthesizes research on the role of Fyn in the regulation of energy metabolism and the development of diabetes mellitus, while exploring its specific regulatory mechanisms. Full article
Show Figures

Figure 1

20 pages, 690 KiB  
Review
Diabetes and Sarcopenia: Metabolomic Signature of Pathogenic Pathways and Targeted Therapies
by Anamaria Andreea Danciu, Cornelia Bala, Georgeta Inceu, Camelia Larisa Vonica, Adriana Rusu, Gabriela Roman and Dana Mihaela Ciobanu
Int. J. Mol. Sci. 2025, 26(15), 7574; https://doi.org/10.3390/ijms26157574 - 5 Aug 2025
Abstract
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative [...] Read more.
Diabetes mellites (DM) is a chronic disease with increasing prevalence worldwide and multiple health implications. Among them, sarcopenia is a metabolic disorder characterized by loss of muscle mass and function. The two age-related diseases, DM and sarcopenia, share underlying pathophysiological pathways. This narrative literature review aims to provide an overview of the existing evidence on metabolomic studies evaluating DM associated with sarcopenia. Advancements in targeted and untargeted metabolomics techniques could provide better insight into the pathogenesis of sarcopenia in DM and describe their entangled and fluctuating interrelationship. Recent evidence showed that sarcopenia in DM induced significant changes in protein, lipid, carbohydrate, and in energy metabolisms in humans, animal models of DM, and cell cultures. Newer metabolites were reported, known metabolites were also found significantly modified, while few amino acids and lipids displayed a dual behavior. In addition, several therapeutic approaches proved to be promising interventions for slowing the progression of sarcopenia in DM, including physical activity, newer antihyperglycemic classes, D-pinitol, and genetic USP21 ablation, although none of them were yet validated for clinical use. Conversely, ceramides had a negative impact. Further research is needed to confirm the utility of these findings and to provide potential metabolomic biomarkers that might be relevant for the pathogenesis and treatment of sarcopenia in DM. Full article
Show Figures

Figure 1

18 pages, 5256 KiB  
Article
Impact of Alginate Oligosaccharides on Ovarian Performance and the Gut Microbial Community in Mice with D-Galactose-Induced Premature Ovarian Insufficiency
by Yan Zhang, Hongda Pan, Dao Xiang, Hexuan Qu and Shuang Liang
Antioxidants 2025, 14(8), 962; https://doi.org/10.3390/antiox14080962 - 5 Aug 2025
Abstract
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of [...] Read more.
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of AOSs on POI has not been previously explored. The current study explored the effects of AOSs on ovarian dysfunction in a mouse model of POI induced by D-galactose (D-gal). Female C57BL/6 mice were randomly divided into five groups: the control (CON), POI model (D-gal), and low-, medium-, and high-dose AOS groups (AOS-L, 100 mg/kg/day; AOS-M, 150 mg/kg/day; AOS-H, 200 mg/kg/day). For 42 consecutive days, mice in the D-gal, AOS-L, AOS-M, and AOS-H groups received daily intraperitoneal injections of D-gal (200 mg/kg/day), whereas those in the CON group received equivalent volumes of sterile saline. Following D-gal injection, AOSs were administered via gavage at the specified doses; mice in the CON and D-gal groups received sterile saline instead. AOS treatment markedly improved estrous cycle irregularities, normalized serum hormone levels, reduced granulosa cell apoptosis, and increased follicle counts in POI mice. Moreover, AOSs significantly reduced ovarian oxidative stress and senescence in POI mice, as indicated by lower levels of malondialdehyde (MDA), higher activities of catalase (CAT) and superoxide dismutase (SOD), and decreased protein expression of 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), 8-hydroxydeoxyguanosine (8-OHdG), and p16 in ovarian tissue. Analysis of the gut microbiota through 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis revealed significant differences in gut microbiota composition and SCFA levels (acetic acid and total SCFAs) between control and D-gal-induced POI mice. These differences were largely alleviated by AOS treatment. AOSs changed the gut microbiota by increasing the abundance of Ligilactobacillus and decreasing the abundance of Clostridiales, Clostridiaceae, Marinifilaceae, and Clostridium_T. Additionally, AOSs mitigated the decline in acetic acid and total SCFA levels observed in POI mice. Notably, the total SCFA level was significantly correlated with the abundance of Ligilactobacillus, Marinifilaceae, and Clostridium_T. In conclusion, AOS intervention effectively mitigates ovarian oxidative stress, restores gut microbiota homeostasis, and regulates the microbiota–SCFA axis, collectively improving D-gal-induced POI. Therefore, AOSs represent a promising therapeutic strategy for POI management. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

15 pages, 1257 KiB  
Article
Androgen receptors and Zinc finger (ZNF) Transcription Factors’ Interplay and Their miRNA Regulation in Prostate Cancer Prognosis
by Laura Boldrini, Savana Watts, Noah Schneider, Rithanya Saravanan and Massimo Bardi
Sci 2025, 7(3), 111; https://doi.org/10.3390/sci7030111 - 5 Aug 2025
Viewed by 30
Abstract
Transcription factors play crucial roles in regulating gene expression, and any dysregulation in their levels could be involved in cancer progression. The role of androgen receptors (AR) and zinc finger (ZNF) proteins in tumors, like prostate cancer (PC), remains poorly understood. Moreover, due [...] Read more.
Transcription factors play crucial roles in regulating gene expression, and any dysregulation in their levels could be involved in cancer progression. The role of androgen receptors (AR) and zinc finger (ZNF) proteins in tumors, like prostate cancer (PC), remains poorly understood. Moreover, due to the multifaceted transcriptional behavior of ARs and ZNFs, their biological role in cancer progression may also depend on the interplay with micro-RNAs (miRNAs). Based on The Cancer Genome Atlas (TCGA) database, we analyzed the expression levels of zinc finger transcripts and ARs in PC. Specifically, exploring their involvement in cancer progression and regulation by miRNAs. The analysis relied on several tools to create a multivariate combination of the original biomarkers to improve their diagnostic efficacy. Multidimensional Scaling (MDS) identified two new dimensions that were entered into a regression analysis to determine the best predictors of overall survival (OS) and disease-free interval (DFI). A combination of both dimensions predicted almost 50% (R2 = 0.46) of the original variance of OS. Kaplan–Meier survival analysis also confirmed the significance of these two dimensions regarding the clinical output. This study showed preliminary evidence that several transcription factor expression levels belonging to the zinc family and related miRNAs can effectively predict patients’ overall PC survivability. Full article
Show Figures

Figure 1

19 pages, 3995 KiB  
Article
Lectin Recognition Patterns in the Gut of Meccus (Triatoma) pallidipennis and Their Association with Trypanosoma cruzi Metacyclogenesis
by Berenice González-Rete, Juan Antonio López-Aviña, Olivia Alicia Reynoso-Ducoing, Margarita Cabrera-Bravo, Martha Irene Bucio-Torres, Mauro Omar Vences-Blanco, Elia Torres-Gutiérrez and Paz María Silvia Salazar-Schettino
Microorganisms 2025, 13(8), 1823; https://doi.org/10.3390/microorganisms13081823 - 5 Aug 2025
Viewed by 164
Abstract
The successful transmission of Trypanosoma cruzi, the causative agent of Chagas disease, depends on intricate interactions with its insect vector. In Mexico, Meccus pallidipennis is a relevant triatomine species involved in the parasite’s life cycle. In the gut of these insects, the parasite [...] Read more.
The successful transmission of Trypanosoma cruzi, the causative agent of Chagas disease, depends on intricate interactions with its insect vector. In Mexico, Meccus pallidipennis is a relevant triatomine species involved in the parasite’s life cycle. In the gut of these insects, the parasite moves from the anterior midgut (AMG) to the posterior midgut (PMG), where it multiplies. Finally, T. cruzi differentiates into its infective form by metacyclogenesis in the proctodeum or rectum (RE). This study aimed to characterize and compare the protein and glycoprotein profiles of the anterior midgut (AMG) and rectum (RE) of M. pallidipennis, and to assess their potential association with T. cruzi metacyclogenesis, with special attention to sex-specific differences. Insects were infected with the T. cruzi isolate ITRI/MX/12/MOR (Morelos). Protein profiles were analyzed by polyacrylamide gel electrophoresis, while glycoproteins were detected using ConA, WGA, and PNA lectins. The metacyclogenesis index was calculated for male and female triatomines. A lower overlap of protein fractions was found in the RE compared to the AMG between sexes, suggesting functional sexual dimorphism. Infected females showed greater diversity in glycoprotein patterns in the RE, potentially related to higher blood intake and parasite burden. The metacyclogenesis index was significantly higher in females than in males. These findings highlight sex-dependent differences in gut protein and glycoprotein profiles in M. pallidipennis, which may influence the efficiency of T. cruzi development within the vector. Further proteomic studies are needed to identify the molecular components involved and clarify their roles in parasite differentiation and suggest new targets for disrupting parasite transmission within the vector. Full article
Show Figures

Figure 1

16 pages, 4427 KiB  
Article
Garlic-Derived Allicin Attenuates Parkinson’s Disease via PKA/p-CREB/BDNF/DAT Pathway Activation and Apoptotic Inhibition
by Wanchen Zeng, Yingkai Wang, Yang Liu, Xiaomin Liu and Zhongquan Qi
Molecules 2025, 30(15), 3265; https://doi.org/10.3390/molecules30153265 - 4 Aug 2025
Viewed by 196
Abstract
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods [...] Read more.
Allicin (ALC), a naturally occurring organosulfur compound derived from garlic (Allium sativum), exhibits potential neuroprotective properties. Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by degeneration of dopaminergic neurons and motor dysfunction. This study utilized bioinformatics and network pharmacology methods to predict the anti-PD mechanism of ALC and established in vivo and in vitro PD models using 6-hydroxydopamine (6-OHDA) for experimental verification. Network pharmacological analysis indicates that apoptosis regulation and the PKA/p-CREB/BDNF signaling pathway are closely related to the anti-PD effect of ALC, and protein kinase A (PKA) and dopamine transporter (DAT) are key molecular targets. The experimental results show that ALC administration can alleviate the cytotoxicity of SH-SY5Y induced by 6-OHDA and simultaneously improve the motor dysfunction and dopaminergic neuron loss in PD mice. In addition, ALC can also activate the PKA/p-CREB/BDNF signaling pathway and increase the DAT level in brain tissue, regulate the expression of BAX and Bcl-2, and reduce neuronal apoptosis. These results indicate that ALC can exert anti-PD effects by up-regulating the PKA/p-CREB/BDNF/DAT signaling pathway and inhibiting neuronal apoptosis, providing theoretical support for the application of ALC in PD. Full article
(This article belongs to the Topic Natural Products and Drug Discovery—2nd Edition)
Show Figures

Figure 1

17 pages, 5839 KiB  
Article
Salvianolic Acid A Activates Nrf2-Related Signaling Pathways to Inhibit Ferroptosis to Improve Ischemic Stroke
by Yu-Fu Shang, Wan-Di Feng, Dong-Ni Liu, Wen-Fang Zhang, Shuang Xu, Dan-Hong Feng, Guan-Hua Du and Yue-Hua Wang
Molecules 2025, 30(15), 3266; https://doi.org/10.3390/molecules30153266 - 4 Aug 2025
Viewed by 196
Abstract
Ischemic stroke is a serious disease that frequently occurs in the elderly and is characterized by a complex pathophysiology and a limited number of effective therapeutic agents. Salvianolic acid A (SAL-A) is a natural product derived from the rhizome of Salvia miltiorrhiza, [...] Read more.
Ischemic stroke is a serious disease that frequently occurs in the elderly and is characterized by a complex pathophysiology and a limited number of effective therapeutic agents. Salvianolic acid A (SAL-A) is a natural product derived from the rhizome of Salvia miltiorrhiza, which possesses diverse pharmacological activities. This study aims to investigate the effect and mechanisms of SAL-A in inhibiting ferroptosis to improve ischemic stroke. Brain injury, oxidative stress and ferroptosis-related analysis were performed to evaluate the effect of SAL-A on ischemic stroke in photochemical induction of stroke (PTS) in mice. Lipid peroxidation levels, antioxidant protein levels, tissue iron content, nuclear factor erythroid 2-related factor 2 (Nrf2), and mitochondrial morphology changes were detected to explore its mechanism. SAL-A significantly attenuated brain injury, reduced malondialdehyde (MDA) and long-chain acyl-CoA synthase 4 (ACSL4) levels. In addition, SAL-A also amplified the antioxidative properties of glutathione (GSH) when under glutathione peroxidase 4 (GPX4), and the reduction in ferrous ion levels. In vitro, brain microvascular endothelial cells (b.End.3) exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) were used to investigate whether the anti-stroke mechanism of SAL-A is related to Nrf2. Following OGD/R, ML385 (Nrf2 inhibitor) prevents SAL-A from inhibiting oxidative stress, ferroptosis, and mitochondrial dysfunction in b.End.3 cells. In conclusion, SAL-A inhibits ferroptosis to ameliorate ischemic brain injury, and this effect is mediated through Nrf2. Full article
Show Figures

Graphical abstract

15 pages, 1474 KiB  
Article
Decline in Serum Lysophosphatidylcholine Species in Patients with Severe Inflammatory Bowel Disease
by Hauke Christian Tews, Tanja Elger, Muriel Huss, Johanna Loibl, Arne Kandulski, Martina Müller, Marcus Höring, Gerhard Liebisch and Christa Buechler
J. Clin. Med. 2025, 14(15), 5485; https://doi.org/10.3390/jcm14155485 - 4 Aug 2025
Viewed by 177
Abstract
Background/Objectives: Lysophosphatidylcholine (LPC) is composed of various lipid species, some of which exert pro-inflammatory and others anti-inflammatory activities. However, most of the LPC species analyzed to date are reduced in the serum of patients with inflammatory bowel disease (IBD) compared to healthy [...] Read more.
Background/Objectives: Lysophosphatidylcholine (LPC) is composed of various lipid species, some of which exert pro-inflammatory and others anti-inflammatory activities. However, most of the LPC species analyzed to date are reduced in the serum of patients with inflammatory bowel disease (IBD) compared to healthy controls. To our knowledge, the correlation between serum LPC species levels and measures of inflammation, as well as their potential as markers for monitoring IBD activity, has not yet been investigated. Methods: Thirteen LPC species, varying in acyl chain length and number of double bonds, were measured in the serum of 16 controls and the serum of 57 patients with IBD. Associations with C-reactive protein (CRP) and fecal calprotectin levels as markers of IBD severity were assessed. Results: Serum levels of LPC species did not differ between the healthy controls and the entire patient cohort. In patients with IBD, serum levels of LPC 16:1, 18:0, 18:3, 20:3, and 20:5, as well as total LPC concentrations, showed inverse correlations with both CRP and fecal calprotectin levels, indicating an association with inflammatory activity. Nine LPC species were significantly reduced in patients with high fecal calprotectin compared to those with low values. LPC species with 22 carbon atoms and 4 to 6 double bonds were not related to disease activity. Stool consistency and gastrointestinal symptoms did not influence serum LPC profiles. Corticosteroid treatment was associated with lower serum LPC 20:3 and 22:5 levels, while mesalazine, anti-TNF, and anti-IL-12/23 therapies had no significant impact on LPC concentrations. There was a strong positive correlation between LPC species containing 15 to 18 carbon atoms and serum cholesterol, triglycerides, and phosphatidylcholine levels. However, there was no correlation with markers of liver disease. Conclusions: Shorter-chain LPC species are reduced in patients with active IBD and reflect underlying hypolipidemia. While these lipid alterations provide insight into IBD-associated metabolic changes, they appear unsuitable as diagnostic or disease monitoring biomarkers. Full article
(This article belongs to the Special Issue Inflammatory Bowel Disease: Pathogenesis and Management Strategies)
Show Figures

Figure 1

16 pages, 2235 KiB  
Article
Plasma Lysophosphatidylcholine Levels Correlate with Prognosis and Immunotherapy Response in Squamous Cell Carcinoma
by Tomoyuki Iwasaki, Hidekazu Shirota, Eiji Hishinuma, Shinpei Kawaoka, Naomi Matsukawa, Yuki Kasahara, Kota Ouchi, Hiroo Imai, Ken Saijo, Keigo Komine, Masanobu Takahashi, Chikashi Ishioka, Seizo Koshiba and Hisato Kawakami
Int. J. Mol. Sci. 2025, 26(15), 7528; https://doi.org/10.3390/ijms26157528 - 4 Aug 2025
Viewed by 253
Abstract
Cancer is a systemic disease rather than a localized pathology and is characterized by widespread effects, including whole-body exhaustion and chronic inflammation. A thorough understanding of cancer pathophysiology requires a systemic approach that accounts for the complex interactions between cancer cells and host [...] Read more.
Cancer is a systemic disease rather than a localized pathology and is characterized by widespread effects, including whole-body exhaustion and chronic inflammation. A thorough understanding of cancer pathophysiology requires a systemic approach that accounts for the complex interactions between cancer cells and host tissues. To explore these dynamics, we employed a comprehensive metabolomic analysis of plasma samples from patients with either esophageal or head and neck squamous cell carcinoma (SCC). Plasma samples from 149 patients were metabolically profiled and correlated with clinical data. Among the metabolites identified, lysophosphatidylcholine (LPC) emerged as the sole biomarker strongly correlated with prognosis. A significant reduction in plasma LPC levels was linked to poorer overall survival. Plasma LPC levels demonstrated minimal correlation with patient-specific factors, such as tumor size and general condition, but showed significant association with the response to immune checkpoint inhibitor therapy. Proteomic and cytokine analyses revealed that low plasma LPC levels reflected systemic chronic inflammation, characterized by high levels of inflammatory proteins, the cytokines interleukin-6 and tumor necrosis factor-α, and coagulation-related proteins. These findings indicate that plasma LPC levels may be used as reliable biomarkers for predicting prognosis and evaluating the efficacy of immunotherapy in patients with SCC. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Figure 1

12 pages, 1094 KiB  
Review
DJ-1 Serves as a Central Regulator of Diabetes Complications
by Feng Zhou, Jia-Bin Zhou, Tian-Peng Wei, Dan Wu and Ru-Xing Wang
Curr. Issues Mol. Biol. 2025, 47(8), 613; https://doi.org/10.3390/cimb47080613 - 4 Aug 2025
Viewed by 89
Abstract
Diabetes mellitus poses a significant global health challenge, primarily due to its chronic metabolic dysregulation, leading to widespread tissue and organ damage. This systemic impact results in a range of complications that markedly reduce patients’ quality of life. Therefore it is critical to [...] Read more.
Diabetes mellitus poses a significant global health challenge, primarily due to its chronic metabolic dysregulation, leading to widespread tissue and organ damage. This systemic impact results in a range of complications that markedly reduce patients’ quality of life. Therefore it is critical to understand the mechanisms underlying these complications. DJ-1 (also known as PARK7) is a highly conserved multifunctional protein involved in antioxidative defense, metabolic equilibrium, and cellular survival. Recent studies have highlighted that DJ-1 is critically involved in the pathogenesis and progression of diabetic complications, including macrovascular issues like cardiovascular disease and microvascular conditions such as diabetic nephropathy, retinopathy, and neuropathy, suggesting that it may serve as a promising therapeutic target. Importantly, drugs targeting DJ-1 have shown therapeutic effects. This review provides a comprehensive overview of the current under-standing of DJ-1’s role in diabetes-related complications, emphasizing recent research advances. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

16 pages, 1652 KiB  
Review
Lipid−lncRNA Crossroads: An Overview of Interactions Between Lipids and lncRNA
by Andrea Bayona-Hernandez, Ana Miladinović, Ludovica Antiga, Pavel Hozak, Martin Sztacho and Enrique Castano
Cells 2025, 14(15), 1193; https://doi.org/10.3390/cells14151193 - 2 Aug 2025
Viewed by 217
Abstract
Long non-coding RNAs (lncRNAs) interact with a variety of biomolecules, including DNA, mRNAs, microRNA, and proteins, to regulate various cellular processes. Recently, their interactions with lipids have gained increasing attention as an emerging research area. Both lipids and lncRNAs play central roles in [...] Read more.
Long non-coding RNAs (lncRNAs) interact with a variety of biomolecules, including DNA, mRNAs, microRNA, and proteins, to regulate various cellular processes. Recently, their interactions with lipids have gained increasing attention as an emerging research area. Both lipids and lncRNAs play central roles in cellular regulation, and growing evidence reveals a complex interplay between these molecules. These interactions contribute to key biological functions, such as cancer progression, lipid droplet transport, autophagy, liquid−liquid phase separation, and the formation of organelles without membranes. Understanding the lipid−lncRNA interface opens new avenues for unraveling cellular regulation and disease mechanisms, holding great potential not only for elucidating the fundamental aspects of cellular biology but also for identifying innovative therapeutic targets for metabolic disorders and cancer. This review highlights the biological relevance of lipid–lncRNA interactions by exploring their roles in cellular organization, regulation, and diseases, including metabolic and cancer-related disorders. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

Back to TopTop