Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,844)

Search Parameters:
Keywords = discovery of species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 865 KiB  
Review
Proteomics-Based Approaches to Decipher the Molecular Strategies of Botrytis cinerea: A Review
by Olivier B. N. Coste, Almudena Escobar-Niño and Francisco Javier Fernández-Acero
J. Fungi 2025, 11(8), 584; https://doi.org/10.3390/jof11080584 - 6 Aug 2025
Abstract
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. [...] Read more.
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. Recent advances in mass spectrometry-based proteomics—including LC-MS/MS, iTRAQ, MALDI-TOF, and surface shaving—have enabled the in-depth characterization of B. cinerea subproteomes such as the secretome, surfactome, phosphoproteome, and extracellular vesicles, revealing condition-specific pathogenic mechanisms. Notably, in under a decade, the proportion of predicted proteins experimentally identified has increased from 10% to 52%, reflecting the rapid progress in proteomic capabilities. We explore how proteomic studies have significantly enhanced our knowledge of the fungus secretome and the role of extracellular vesicles (EVs), which play key roles in pathogenesis, by identifying secreted proteins—such as pH-responsive elements—that may serve as biomarkers and therapeutic targets. These technologies have also uncovered fine regulatory mechanisms across multiple levels of the fungal proteome, including post-translational modifications (PTMs), the phosphomembranome, and the surfactome, providing a more integrated view of its infection strategy. Moreover, proteomic approaches have contributed to a better understanding of host–pathogen interactions, including aspects of the plant’s defensive responses. Furthermore, this review discusses how proteomic data have helped to identify metabolic pathways affected by novel, more environmentally friendly antifungal compounds. A further update on the advances achieved in the field of proteomics discovery for the organism under consideration is provided in this paper, along with a perspective on emerging tools and future developments expected to accelerate research and improve targeted intervention strategies. Full article
(This article belongs to the Special Issue Plant Pathogenic Sclerotiniaceae)
Show Figures

Figure 1

24 pages, 3312 KiB  
Article
To What Extent Are the Type Localities of Minerals Part of Geological Heritage? A Global Review and the Case of Spain as an Example
by Ramón Jiménez-Martínez, Luis Carcavilla, Jerónimo López-Martínez, Juan Manuel Monasterio and Hugo Hermosilla
Heritage 2025, 8(8), 314; https://doi.org/10.3390/heritage8080314 - 6 Aug 2025
Abstract
Currently, approximately 6000 mineral species have been identified, and every year, approximately 100 more are discovered. The discovery of a new mineral has a close relationship with geological heritage. It involves the definition of both the type mineral (the specimen from which the [...] Read more.
Currently, approximately 6000 mineral species have been identified, and every year, approximately 100 more are discovered. The discovery of a new mineral has a close relationship with geological heritage. It involves the definition of both the type mineral (the specimen from which the sample used for the description of the new mineral species was obtained) and the type locality (the location where the corresponding specimen was found). All type minerals constitute elements of movable geological heritage and must be kept in a museum or a reference research center. However, not all type localities are recognized as geological heritage sites (geosites), despite their connection to a heritage interest. This article discusses these different considerations regarding type minerals and type localities as geological heritage in a general context. In addition, the situation in the case of Spain is analyzed, which, for various reasons, can serve as a model at the international level. It is concluded that type localities should be considered part of the geological heritage, and that the number of type minerals is always greater than that of type localities. Full article
(This article belongs to the Section Geoheritage and Geo-Conservation)
Show Figures

Figure 1

29 pages, 6672 KiB  
Article
Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway
by Nuttapon Songnaka, Adisorn Ratanaphan, Namfa Sermkaew, Somchai Sawatdee, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul and Apichart Atipairin
Antibiotics 2025, 14(8), 805; https://doi.org/10.3390/antibiotics14080805 - 6 Aug 2025
Abstract
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial activity of an AMP from a soil-derived bacterial isolate against Gram-negative bacteria. Method: Soil bacteria were isolated and screened for antimicrobial activity. The bioactive peptide was purified and determined its structure and antimicrobial efficacy. Genomic analysis was conducted to predict the biosynthetic gene clusters (BGCs) responsible for AMP production. Results: Genomic analysis identified the isolate as Paenibacillus sp. Na14, which exhibited low genomic similarity (61.0%) to other known Paenibacillus species, suggesting it may represent a novel species. The AMP from the Na14 strain exhibited heat stability up to 90 °C for 3 h and retained its activity across a broad pH range from 3 to 11. Structural analysis revealed that the Na14 peptide consisted of 14 amino acid residues, adopting an α-helical structure. This peptide exhibited bactericidal activity at concentrations of 2–4 µg/mL within 6–12 h, and its killing rate was concentration-dependent. The peptide was found to disrupt the bacterial membranes. The Na14 peptide shared 64.29% sequence similarity with brevibacillin 2V, an AMP from Brevibacillus sp., which also belongs to the Paenibacillaceae family. Genomic annotation identified BGCs associated with secondary metabolism, with a particular focus on non-ribosomal peptide synthetase (NRPS) gene clusters. Structural modeling of the predicted NRPS enzymes showed high similarity to known NRPS modules in Brevibacillus species. These genomic findings provide evidence supporting the similarity between the Na14 peptide and brevibacillin 2V. Conclusions: This study highlights the discovery of a novel AMP with potent activity against Gram-negative pathogens and provides new insight into conserved AMP biosynthetic enzymes within the Paenibacillaceae family. Full article
Show Figures

Graphical abstract

13 pages, 9267 KiB  
Article
Curcuma nivea (Zingiberaceae), a New Compact Species with Horticultural Potential from Eastern Thailand
by Piyaporn Saensouk, Surapon Saensouk, Charun Maknoi, Det Song and Thawatphong Boonma
Horticulturae 2025, 11(8), 908; https://doi.org/10.3390/horticulturae11080908 (registering DOI) - 4 Aug 2025
Viewed by 46
Abstract
The genus Curcuma (Zingiberaceae) is a diverse group of plants widely distributed across tropical Asia, with several new species recently described in Thailand. This study documents and clarifies the taxonomic status of a new species, Curcuma nivea Saensouk, P.Saensouk & Boonma sp. nov., [...] Read more.
The genus Curcuma (Zingiberaceae) is a diverse group of plants widely distributed across tropical Asia, with several new species recently described in Thailand. This study documents and clarifies the taxonomic status of a new species, Curcuma nivea Saensouk, P.Saensouk & Boonma sp. nov., discovered in eastern Thailand, and evaluates its horticultural potential. Morphological comparisons were conducted with closely related species in the Curcuma subgenus Hitcheniopsis (Baker) K. Schum., focusing on diagnostic vegetative and floral traits. Curcuma nivea is characterized by its compact habit and white flowers marked with two reddish lines at the base of the labellum, lacking the yellow blotch typical of related species. Additionally, it shows the absence of both epigynous glands and anther spurs, consistent with subgeneric features. Its distinctive morphology and attractive floral display have led to its cultivation as an ornamental pot plant. The discovery of C. nivea contributes to the growing documentation of Curcuma diversity in Thailand and underscores the significance of ongoing botanical exploration and conservation. Furthermore, its compact form and unique floral traits highlight its promise for use in ornamental horticulture and breeding programs. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

26 pages, 6743 KiB  
Review
Nudibranchs as Sources of Marine Natural Products with Antitumor Activity: A Comprehensive Review
by Máximo Servillera, Mercedes Peña, Laura Cabeza, Héctor J. Pula, Jose Prados and Consolación Melguizo
Mar. Drugs 2025, 23(8), 319; https://doi.org/10.3390/md23080319 - 3 Aug 2025
Viewed by 245
Abstract
Nudibranchs have garnered increasing interest in biomedical research due to their complex chemical defense mechanisms, many of which are derived from their diet, including sponges, cnidarians, tunicates, and algae. Their remarkable ability to sequester dietary toxins and synthesize secondary metabolites positions them as [...] Read more.
Nudibranchs have garnered increasing interest in biomedical research due to their complex chemical defense mechanisms, many of which are derived from their diet, including sponges, cnidarians, tunicates, and algae. Their remarkable ability to sequester dietary toxins and synthesize secondary metabolites positions them as a promising source of biologically active compounds with potential therapeutic applications, particularly in oncology. This study aimed to review and summarize the available literature on the bioactive potential of nudibranch-derived compounds, focusing mainly on their antitumor properties. Although research in this area is still limited, recent studies have identified alkaloids and terpenoids isolated from species such as Dolabella auricularia, Jorunna funebris, Dendrodoris fumata, and members of the genus Phyllidia. These compounds exhibit notable cytotoxic activity against human cancer cell lines, including those from colon (HCT-116, HT-29, SW-480), lung (A549), and breast (MCF7) cancer. These findings suggest that compounds derived from nudibranchs could serve as scaffolds for the development of more effective and selective anticancer therapies. In conclusion, nudibranchs represent a valuable yet underexplored resource for antitumor drug discovery, with significant potential to contribute to the development of novel cancer treatments. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents, 4th Edition)
Show Figures

Graphical abstract

59 pages, 1351 KiB  
Review
The Redox Revolution in Brain Medicine: Targeting Oxidative Stress with AI, Multi-Omics and Mitochondrial Therapies for the Precision Eradication of Neurodegeneration
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7498; https://doi.org/10.3390/ijms26157498 - 3 Aug 2025
Viewed by 131
Abstract
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce [...] Read more.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation. We are now at the threshold of precision redox medicine, driven by advances in syndromic multi-omics integration, Artificial Intelligence biomarker identification, and the precision of patient-specific therapeutic interventions. This paper will aim to reveal a mechanistically deep assessment of oxidative stress and its contribution to diseases of neurodegeneration, with an emphasis on oxidatively modified proteins (e.g., carbonylated tau, nitrated α-synuclein), lipid peroxidation biomarkers (F2-isoprostanes, 4-HNE), and DNA damage (8-OHdG) as significant biomarkers of disease progression. We will critically examine the majority of clinical trial studies investigating mitochondria-targeted antioxidants (e.g., MitoQ, SS-31), Nrf2 activators (e.g., dimethyl fumarate, sulforaphane), and epigenetic reprogramming schemes aiming to re-establish antioxidant defenses and repair redox damage at the molecular level of biology. Emerging solutions that involve nanoparticles (e.g., antioxidant delivery systems) and CRISPR (e.g., correction of mutations in SOD1 and GPx1) have the potential to transform therapeutic approaches to treatment for these diseases by cutting the time required to realize meaningful impacts and meaningful treatment. This paper will argue that with the connection between molecular biology and progress in clinical hyperbole, dynamic multi-targeted interventions will define the treatment of neurodegenerative diseases in the transition from disease amelioration to disease modification or perhaps reversal. With these innovations at our doorstep, the future offers remarkable possibilities in translating network-based biomarker discovery, AI-powered patient stratification, and adaptive combination therapies into individualized/long-lasting neuroprotection. The question is no longer if we will neutralize oxidative stress; it is how likely we will achieve success in the new frontier of neurodegenerative disease therapies. Full article
Show Figures

Figure 1

10 pages, 216 KiB  
Perspective
Silicon Is the Next Frontier in Plant Synthetic Biology
by Aniruddha Acharya, Kaitlin Hopkins and Tatum Simms
SynBio 2025, 3(3), 12; https://doi.org/10.3390/synbio3030012 - 3 Aug 2025
Viewed by 74
Abstract
Silicon has a striking similarity to carbon and is found in plant cells. However, there is no specific role that has been assigned to silicon in the life cycle of plants. The amount of silicon in plant cells is species specific and can [...] Read more.
Silicon has a striking similarity to carbon and is found in plant cells. However, there is no specific role that has been assigned to silicon in the life cycle of plants. The amount of silicon in plant cells is species specific and can reach levels comparable to macronutrients. Silicon is used extensively in artificial intelligence, nanotechnology, and the digital revolution, and thus can serve as an informational molecule such as nucleic acids. The diverse potential of silicon to bond with different chemical species is analogous to carbon; thus, it can serve as a structural candidate similar to proteins. The discovery of large amounts of silicon on Mars and the moon, along with the recent development of enzyme that can incorporate silicon into organic molecules, has propelled the theory of creating silicon-based life. The bacterial cytochrome has been modified through directed evolution such that it could cleave silicon–carbon bonds in organo-silicon compounds. This consolidates the idea of utilizing silicon in biomolecules. In this article, the potential of silicon-based life forms has been hypothesized, along with the reasoning that autotrophic virus-like particles could be used to investigate such potential. Such investigations in the field of synthetic biology and astrobiology will have corollary benefits for Earth in the areas of medicine, sustainable agriculture, and environmental sustainability. Full article
Show Figures

Graphical abstract

17 pages, 6461 KiB  
Article
Southernmost Eurasian Record of Reindeer (Rangifer) in MIS 8 at Galería (Atapuerca, Spain): Evidence of Progressive Southern Expansion of Glacial Fauna Across Climatic Cycles
by Jan van der Made, Ignacio A. Lazagabaster, Paula García-Medrano and Isabel Cáceres
Quaternary 2025, 8(3), 43; https://doi.org/10.3390/quat8030043 - 1 Aug 2025
Viewed by 180
Abstract
During the Pleistocene, the successive ice ages prompted the southward expansion of the “Mammoth Steppe” ecosystem, a prevalent habitat that supported species adapted to cold environments such as the mammoth, woolly rhinoceros, and reindeer. Previously, the earliest evidence for such cold-adapted species in [...] Read more.
During the Pleistocene, the successive ice ages prompted the southward expansion of the “Mammoth Steppe” ecosystem, a prevalent habitat that supported species adapted to cold environments such as the mammoth, woolly rhinoceros, and reindeer. Previously, the earliest evidence for such cold-adapted species in the Iberian Peninsula dated back to Marine Isotope Stage 6 (MIS 6, ~191–123 ka). This paper reports the discovery of a reindeer (Rangifer) tooth from Unit GIII of the Galería site at the Atapuerca-Trinchera site complex, dated to MIS 8 (~300–243 ka). This find is significant as it represents not only the oldest evidence of glacial fauna in the Iberian Peninsula but also the southernmost occurrence of reindeer in Europe of this age. The presence of Rangifer at this latitude (42°21′ N) during MIS 8 suggests that the glacial conditions affected the Iberian fauna earlier and with greater intensity than previously understood. Over the subsequent climatic cycles, cold-adapted species spread further south, reaching Madrid (40°20′) during the penultimate glacial period and the province of Granada (37°01′) during the last glacial maximum. The coexistence of human fossils and lithic artefacts within Units GII and GIII at Galería indicates that early humans also inhabited these glacial environments at Atapuerca. This study elaborates on the morphological and archaeological significance of the reindeer fossil, emphasizing its role in understanding the biogeographical patterns of glacial fauna and the adaptability of Middle Pleistocene human populations. Full article
Show Figures

Figure 1

18 pages, 7210 KiB  
Article
Species Delimitation Methods Facilitate the Identification of Cryptic Species Within the Broadly Distributed Species in Homoeocerus (Tliponius) (Insecta: Hemiptera: Coreidae)
by Jingyu Liang, Shujing Wang, Jingyao Zhang, Juhong Chen, Siying Fu, Zhen Ye, Huai-Jun Xue, Yanfei Li and Wenjun Bu
Insects 2025, 16(8), 797; https://doi.org/10.3390/insects16080797 - 1 Aug 2025
Viewed by 254
Abstract
Widespread species may exhibit considerable genetic variation among populations due to their extensive distribution ranges, and may even give rise to new species in remote areas. Integrative species delimitation via multiple types can provide a robust framework for accurate species identification and rapid [...] Read more.
Widespread species may exhibit considerable genetic variation among populations due to their extensive distribution ranges, and may even give rise to new species in remote areas. Integrative species delimitation via multiple types can provide a robust framework for accurate species identification and rapid discovery of cryptic diversity. The subgenus Tliponius (Hemiptera: Coreidae: Homoeocerus) has several species and three broadly distributed species across China. In this study, we selected as many geographical sample sites of widely distributed species as possible and conducted species identification based on integrated taxonomy of morphological, mitochondrial and SNP data for 28 individuals within Tliponius. Our results revealed a cryptic lineage previously subsumed under the polytypic H. unipunctatus in Yunnan Province and described as Homoeocerus (Tliponius) dianensis Liang, Li & Bu sp. nov. The presence of seven distinct species within Tliponius was supported by species delimitation and divided into two clades: (H. dilatatus + (H. marginellus + (H. unipunctatus + H. dianensis sp. nov.))) and (H. yunnanensis + (H. laevilineus + H. marginiventris). Based on our findings, extensive sampling of widespread species is highly important for the accuracy of species delimitation and the discovery of cryptic species. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects)
Show Figures

Figure 1

17 pages, 1978 KiB  
Article
Insights into Persian Gulf Beach Sand Mycobiomes: Promises and Challenges in Fungal Diversity
by Abolfazl Saravani, João Brandão, Bahram Ahmadi, Ali Rezaei-Matehkolaei, Mohammad Taghi Hedayati, Mahdi Abastabar, Hossein Zarrinfar, Mojtaba Nabili, Leila Faeli, Javad Javidnia, Shima Parsay, Zahra Abtahian, Maryam Moazeni and Hamid Badali
J. Fungi 2025, 11(8), 554; https://doi.org/10.3390/jof11080554 - 26 Jul 2025
Viewed by 428
Abstract
Beach Sand Mycobiome is currently among the most important health challenges for viticulture in the world. Remarkably, the study of fungal communities in coastal beach sand and recreational waters remains underexplored despite their potential implications for human health. This research aimed to assess [...] Read more.
Beach Sand Mycobiome is currently among the most important health challenges for viticulture in the world. Remarkably, the study of fungal communities in coastal beach sand and recreational waters remains underexplored despite their potential implications for human health. This research aimed to assess the prevalence of fungal species and the antifungal susceptibility profiles of fungi recovered from the beaches of the Persian Gulf and the Sea of Oman. Sand and seawater samples from 39 stations distributed within 13 beaches along the coastline were collected between May and July 2023. The grown isolates were identified at the species level based on morphological characteristics and DNA sequencing. Antifungal susceptibility testing was performed according to the Clinical Laboratory Standards Institute guidelines. Of 222 recovered isolates, 206 (92.8%) filamentous fungi and 16 (7.2%) yeast strains were identified. Sand-recovered fungi comprised 82.9%, while water-originated fungi accounted for 17.1%. The DNA sequencing technique categorized 191 isolates into 13 genera and 26 species. The most recovered genus was Aspergillus (68.9%), and Aspergillus terreus sensu stricto was the commonly identified species (26.14%). Voriconazole was the most effective antifungal drug against Aspergillus species. Research on fungal contamination levels at these locations could provide a foundation for establishing regulatory frameworks to diminish fungal risks, thereby enhancing public health protection. The ecological significance of fungal communities in sandy beaches to human infections remains to be explored, and earlier reports in the literature may motivate researchers to focus on detecting this mycobiome in natural environments where further investigation is warranted. Ultimately, our discovery serves as a reminder that much remains to be learned about pathogenic fungi and underscores the need for vigilance in areas where emerging pathogens have not yet been identified. Full article
(This article belongs to the Special Issue Fungi Activity on Remediation of Polluted Environments, 2nd Edition)
Show Figures

Figure 1

14 pages, 3991 KiB  
Article
Detection of Pestalotiopsis abbreviata sp. nov., the Causal Agent of Pestalotiopsis Leaf Blight on Camellia japonica Based on Metagenomic Analysis
by Sung-Eun Cho, Ki Hyeong Park, Keumchul Shin and Dong-Hyeon Lee
J. Fungi 2025, 11(8), 553; https://doi.org/10.3390/jof11080553 - 25 Jul 2025
Viewed by 291
Abstract
Tree diseases affecting Camellia japonica have emerged as a significant threat to the health and longevity of this ornamental tree, particularly in countries where this tree species is widely distributed and cultivated. Among these, Pestalotiopsis spp. have been frequently reported and are considered [...] Read more.
Tree diseases affecting Camellia japonica have emerged as a significant threat to the health and longevity of this ornamental tree, particularly in countries where this tree species is widely distributed and cultivated. Among these, Pestalotiopsis spp. have been frequently reported and are considered one of the most impactful fungal pathogens, causing leaf blight or leaf spot, in multiple countries. Understanding the etiology and distribution of these diseases is essential for effective management and conservation of C. japonica populations. The traditional methods based on pathogen isolation and pure culture cultivation for diagnosis of tree diseases are labor intensive and time-consuming. In addition, the frequent coexistence of the major pathogens with other endophytes within a single C. japonica tree, coupled with inconsistent symptom expression and the occurrence of pathogens in asymptomatic hosts, further complicates disease diagnosis. These challenges highlight the urgent need to develop more rapid, accurate, and efficient diagnostic or monitoring tools to improve disease monitoring and management on trees, including C. japonica. To address these challenges, we applied a metagenomic approach to screen fungal communities within C. japonica trees. This method enabled comprehensive detection and characterization of fungal taxa present in symptomatic and asymptomatic tissues. By analyzing the correlation between fungal dominance and symptom expression, we identified key pathogenic taxa associated with disease manifestation. To validate the metagenomic approach, we employed a combined strategy integrating metagenomic screening and traditional fungal isolation to monitor foliar diseases in C. japonica. The correlation between dominant taxa and symptom expression was confirmed. Simultaneously, traditional isolation enabled the identification of a novel species, Pestalotiopsis, as the causal agent of leaf spot disease on C. japonica. In addition to confirming previously known pathogens, our study led to the discovery and preliminary characterization of a novel fungal taxon with pathogenic potential. Our findings provide critical insights into the fungal community of C. japonica and lay the groundwork for developing improved, rapid diagnostic tools for effective disease monitoring and management of tree diseases. Full article
Show Figures

Figure 1

26 pages, 1809 KiB  
Review
Salt-Adapted Microorganisms: A Promising Resource for Novel Anti-Cancer Drug Discovery
by Longteng Fang, Liping Xu, Marhaba Kader, Tingting Ding, Shiyang Lu, Dong Wang, Amit Raj Sharma and Zhiwei Zhang
Mar. Drugs 2025, 23(8), 296; https://doi.org/10.3390/md23080296 - 24 Jul 2025
Viewed by 476
Abstract
Microorganisms serve as a vital source of natural anticancer agents, with many of their secondary metabolites already employed in clinical oncology. In recent years, salt-adapted microbes, including halophilic and halotolerant species from marine, salt lake, and other high-salinity environments, have gained significant attention. [...] Read more.
Microorganisms serve as a vital source of natural anticancer agents, with many of their secondary metabolites already employed in clinical oncology. In recent years, salt-adapted microbes, including halophilic and halotolerant species from marine, salt lake, and other high-salinity environments, have gained significant attention. Their unique adaptation mechanisms and diverse secondary metabolites offer promising potential for novel anticancer drug discovery. This review consolidated two decades of research alongside current global cancer statistics to evaluate the therapeutic potential of salt-adapted microorganisms. Halophilic and halotolerant species demonstrate significant promise, with their bioactive metabolites exhibiting potent inhibitory effects against major cancer cell lines, particularly in lung and breast cancer. Evidence reveals structurally unique secondary metabolites displaying enhanced cytotoxicity compared to conventional anticancer drugs. Collectively, salt-adapted microorganisms represent an underexplored yet high-value resource for novel anticancer agents, offering potential solutions to chemotherapy resistance and treatment-related toxicity. Full article
Show Figures

Figure 1

41 pages, 2824 KiB  
Review
Assessing Milk Authenticity Using Protein and Peptide Biomarkers: A Decade of Progress in Species Differentiation and Fraud Detection
by Achilleas Karamoutsios, Pelagia Lekka, Chrysoula Chrysa Voidarou, Marilena Dasenaki, Nikolaos S. Thomaidis, Ioannis Skoufos and Athina Tzora
Foods 2025, 14(15), 2588; https://doi.org/10.3390/foods14152588 - 23 Jul 2025
Viewed by 719
Abstract
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a [...] Read more.
Milk is a nutritionally rich food and a frequent target of economically motivated adulteration, particularly through substitution with lower-cost milk types. Over the past decade, significant progress has been made in the authentication of milk using advanced proteomic and chemometric approaches, with a focus on the discovery and application of protein and peptide biomarkers for species differentiation and fraud detection. Recent innovations in both top-down and bottom-up proteomics have markedly improved the sensitivity and specificity of detecting key molecular targets, including caseins and whey proteins. Peptide-based methods are especially valuable in processed dairy products due to their thermal stability and resilience to harsh treatment, although their species specificity may be limited when sequences are conserved across related species. Robust chemometric approaches are increasingly integrated with proteomic pipelines to handle high-dimensional datasets and enhance classification performance. Multivariate techniques, such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), are frequently employed to extract discriminatory features and model adulteration scenarios. Despite these advances, key challenges persist, including the lack of standardized protocols, variability in sample preparation, and the need for broader validation across breeds, geographies, and production systems. Future progress will depend on the convergence of high-resolution proteomics with multi-omics integration, structured data fusion, and machine learning frameworks, enabling scalable, specific, and robust solutions for milk authentication in increasingly complex food systems. Full article
Show Figures

Figure 1

18 pages, 1947 KiB  
Article
Whole-Genome Sequencing and Biosynthetic Gene Cluster Analysis of Novel Entomopathogenic Bacteria Xenorhabdus thailandensis ALN 7.1 and ALN 11.5
by Wipanee Meesil, Jiranun Ardpairin, Liam K. R. Sharkey, Sacha J. Pidot, Apichat Vitta and Aunchalee Thanwisai
Biology 2025, 14(8), 905; https://doi.org/10.3390/biology14080905 - 22 Jul 2025
Viewed by 736
Abstract
Xenorhabdus species are entomopathogenic bacteria that live in symbiosis with Steinernema nematodes and produce a wide range of bioactive secondary metabolites. This study aimed to characterize the complete genomes and biosynthetic potential of two novel Xenorhabdus isolates, ALN7.1 and ALN11.5, recovered from Steinernema [...] Read more.
Xenorhabdus species are entomopathogenic bacteria that live in symbiosis with Steinernema nematodes and produce a wide range of bioactive secondary metabolites. This study aimed to characterize the complete genomes and biosynthetic potential of two novel Xenorhabdus isolates, ALN7.1 and ALN11.5, recovered from Steinernema lamjungense collected in Northern Thailand. High-quality genome assemblies were generated, and phylogenomic comparisons confirmed that both isolates belonged to the recently described species Xenorhabdus thailandensis. The assembled genomes were approximately 4.02 Mb in size, each comprising a single circular chromosome with a GC content of 44.6% and encoding ~3800 protein-coding sequences, consistent with the features observed in other members of the genus. Biosynthetic gene cluster (BGCs) prediction using antiSMASH identified 19 BGCs in ALN7.1 and 18 in ALN11.5, including known clusters for holomycin, pyrrolizixenamide, hydrogen cyanide, and gamexpeptide C, along with several uncharacterized clusters, suggesting unexplored metabolic potential. Comparative analyses highlighted conserved yet strain-specific BGC profiles, indicating possible diversification within the species. These results provide genomic insights into X. thailandensis ALN7.1 and ALN11.5 and support their potential as valuable sources for the discovery of novel natural products and for future biotechnological applications. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

15 pages, 1351 KiB  
Review
Unraveling the Complexity of Plant Trichomes: Models, Mechanisms, and Bioengineering Strategies
by Tiantian Chen, Yanfei Ma and Jiyan Qi
Int. J. Mol. Sci. 2025, 26(14), 7008; https://doi.org/10.3390/ijms26147008 - 21 Jul 2025
Viewed by 431
Abstract
Trichomes—microscopic appendages on the plant epidermis—play vital roles as both protective barriers and specialized biosynthetic factories. Acting as the first line of defense against environmental stressors, they also produce a wide range of pharmaceutically valuable secondary metabolites. This mini-review highlights recent advances in [...] Read more.
Trichomes—microscopic appendages on the plant epidermis—play vital roles as both protective barriers and specialized biosynthetic factories. Acting as the first line of defense against environmental stressors, they also produce a wide range of pharmaceutically valuable secondary metabolites. This mini-review highlights recent advances in understanding the development, structure, and function of trichomes, with a focus on glandular secretory trichomes (GSTs) in key species such as Artemisia annua and Solanum lycopersicum. We explore how insights from these systems are driving innovation in plant synthetic biology, including modular genetic engineering and metabolic channeling strategies. These breakthroughs are paving the way for scalable, plant-based platforms to produce high-value compounds. By integrating molecular mechanisms with emerging technologies, this review outlines a forward-looking framework for leveraging trichomes in sustainable agriculture, natural product discovery, and next-generation biomanufacturing. Full article
Show Figures

Figure 1

Back to TopTop