Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = direct-twisting machine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7686 KB  
Article
Effect of Cutting Tool Structures on CFRP Interlaminar Drilling
by Peng Yang, Qingqing Li, Shujian Li, Pengnan Li and Tengfei Chang
Machines 2025, 13(10), 919; https://doi.org/10.3390/machines13100919 - 5 Oct 2025
Viewed by 588
Abstract
The interlaminar drilling of CFRPs is a new machining method different from traditional drilling, in which the feed direction of the drill bit is parallel to the interlayer interface. To reasonably select tools for CFRP interlaminar drilling, four different types of tool structures, [...] Read more.
The interlaminar drilling of CFRPs is a new machining method different from traditional drilling, in which the feed direction of the drill bit is parallel to the interlayer interface. To reasonably select tools for CFRP interlaminar drilling, four different types of tool structures, including twist drills, dagger drills, candlestick drills, and step drills, are employed to conduct interlaminar drilling. The axial force and the morphologies of material damage are extracted, the comprehensive damage factors are calculated, and the relation among tool structures, machining parameters, and outlet damage is analyzed. Results show that the peak axial force induced by the four types of tool structures reduces sequentially. The dagger drill and the candlestick drill tend to cause burrs and large-area surface tears, respectively, while the twist drill and the step drill will lead to more significant 3D tears. Among the four tools, the average comprehensive damage factor produced by twist drills is the smallest, making it more suitable for CFRP interlaminar drilling. In addition, this study establishes a mathematical prediction model for the peak axial force and the comprehensive damage factor and optimizes the process parameter combination of twist drills, with the spindle speed set to 4732.87 r/min and the feed speed to 0.137 mm/r. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

17 pages, 3353 KB  
Article
Design and Machine Learning Modeling of a Multi-Degree-of-Freedom Bionic Pneumatic Soft Actuator
by Yu Zhang, Linghui Peng, Wenchuan Zhao, Ning Wang and Zheng Zhang
Biomimetics 2025, 10(9), 615; https://doi.org/10.3390/biomimetics10090615 - 12 Sep 2025
Viewed by 854
Abstract
A novel multi-degree-of-freedom bionic Soft Pneumatic Actuator (SPA) inspired by the shoulder joint of a sea turtle is proposed. The SPA is mainly composed of a combination of oblique chamber actuator units capable of omnidirectional bending and bi-directional twisting, which can restore the [...] Read more.
A novel multi-degree-of-freedom bionic Soft Pneumatic Actuator (SPA) inspired by the shoulder joint of a sea turtle is proposed. The SPA is mainly composed of a combination of oblique chamber actuator units capable of omnidirectional bending and bi-directional twisting, which can restore the multi-modal motions of a sea turtle’s flipper limb in three-dimensional space. To address the nonlinear behavior of the complex structure of SPA, traditional modeling is difficult. The attitude information of each axis of the actuator is extracted in real time using a high-precision Inertial Measurement Unit (IMU), and the attitude outputs of the SPA are modeled using six machine learning methods. The results show that the XGBoost model performs best in attitude modeling. Its R2 can reach 0.974, and the average absolute errors of angles in Roll, Pitch, and Yaw axes are 1.315°, 1.543°, and 1.048°, respectively. The multi-axis attitude of the SPA can be predicted with high accuracy in real time. The studies on deformation capability, actuation output performance, and underwater validation experiments demonstrate that the SPA meets the bionic sea turtle shoulder joint requirements. This study provides a new theoretical foundation and technical path for the development, control, and bionic application of complex multi-degree-of-freedom SPA systems. Full article
(This article belongs to the Special Issue Bioinspired Structures for Soft Actuators: 2nd Edition)
Show Figures

Figure 1

21 pages, 21103 KB  
Article
Modelling Pore Size Distribution Function of Twist-Texturized Yarns and Single-Jersey Knitted Fabrics
by Leon Pauly, Lukas Maier, Sibylle Schmied, Albrecht Dinkelmann, Ulrich Nieken and Götz T. Gresser
Fibers 2025, 13(4), 48; https://doi.org/10.3390/fib13040048 - 16 Apr 2025
Cited by 1 | Viewed by 1538
Abstract
Pore sizes on the micrometre scale are a critical factor influencing the fluid transport properties of textiles. Consequently, the pore size distribution function is a desirable parameter in the design of textiles for technical applications. However, the experimental determination of pore size and [...] Read more.
Pore sizes on the micrometre scale are a critical factor influencing the fluid transport properties of textiles. Consequently, the pore size distribution function is a desirable parameter in the design of textiles for technical applications. However, the experimental determination of pore size and its distribution can be challenging, costly, or impractical. Knitted fabrics offer a wide range of porosity and pore size distribution properties. While statistical models have shown reasonable accuracy in predicting pore size distributions in nonwovens and filter media, no equivalent model exists for twist-texturized yarns and single-jersey knitted fabrics. This study presents a hierarchical pore model for single-jersey fabrics. The model uses a log-normal distribution for the intra-yarn pores in the yarn and cylindrical pores for inter-yarn pores between the yarns in the fabric. With these two pore sizes, the model quantitatively characterises the porous structure of the fabric. Initial validation of the model for intra-yarn pores on four yarns of different fibre finenesses shows that the model can cover the influence of different fibre counts. For the validation on the fabric scale, two tomography datasets of single-jersey knitted fabrics show that the presented model can capture the effect of different fabric structures. A parameter study visualises the effects of both yarn and knitting parameters on the pore size distribution function of single-jersey knitted fabrics. The mean pore sizes of the fabrics are given. The results deepen the understanding of the porous properties of knitted fabrics and provide a valuable direction for structural fabric development on knitting machines. Full article
Show Figures

Figure 1

24 pages, 2690 KB  
Article
CNN-Based Classification of Optically Critical Cutting Tools with Complex Geometry: New Insights for CNN-Based Classification Tasks
by Mühenad Bilal, Ranadheer Podishetti, Tangirala Sri Girish, Daniel Grossmann and Markus Bregulla
Sensors 2025, 25(5), 1575; https://doi.org/10.3390/s25051575 - 4 Mar 2025
Viewed by 1586
Abstract
Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of [...] Read more.
Sustainability has increasingly emphasized the importance of recycling and repairing materials. Cutting tools, such as milling cutters and drills, play a crucial role due to the high demands placed on products used in CNC machining. As a result, the repair and regrinding of these tools have become more essential. The geometric differences among machining tools determine their specific applications: twist drills have spiral flutes and pointed cutting edges designed for drilling, while end mills feature multiple sharp edges around the shank, making them suitable for milling. Taps and form cutters exhibit unique geometries and cutting-edge shapes, enabling the creation of complex profiles. However, measuring and classifying these tools for repair or regrinding is challenging due to their optical properties and coatings. This research investigates how lighting conditions affect the classification of tools for regrinding, addressing the shortage of skilled workers and the increasing need for automation. This paper compares different training strategies on two unique tool-specific datasets, each containing 36 distinct tools recorded under two lighting conditions—direct diffuse ring lighting and normal daylight. Furthermore, Grad-CAM heatmap analysis provides new insights into relevant classification features. Full article
(This article belongs to the Special Issue Advanced Sensing and Measurement Control Applications)
Show Figures

Figure 1

28 pages, 49508 KB  
Article
Rotationally Induced Local Heat Transfer Features in a Two-Pass Cooling Channel: Experimental–Numerical Investigation
by David Gutiérrez de Arcos, Christian Waidmann, Rico Poser, Jens von Wolfersdorf and Michael Göhring
Int. J. Turbomach. Propuls. Power 2024, 9(4), 34; https://doi.org/10.3390/ijtpp9040034 - 4 Nov 2024
Cited by 4 | Viewed by 3182
Abstract
Turbine blades for modern turbomachinery applications often exhibit complex twisted designs that aim to reduce aerodynamic losses, thereby improving the overall machine performance. This results in intricate internal cooling configurations that change their spanwise orientation with respect to the rotational axis. In the [...] Read more.
Turbine blades for modern turbomachinery applications often exhibit complex twisted designs that aim to reduce aerodynamic losses, thereby improving the overall machine performance. This results in intricate internal cooling configurations that change their spanwise orientation with respect to the rotational axis. In the present study, the local heat transfer in a generic two-pass turbine cooling channel is investigated under engine-similar rotating conditions (Ro={00.50}) through the transient Thermochromic Liquid Crystal (TLC) measurement technique. Three different angles of attack (α={18.5°;+8°;+46.5°}) are investigated to emulate the heat transfer characteristics in an internal cooling channel of a real turbine blade application at different spanwise positions. A numerical approach based on steady-state Reynolds-averaged Navier–Stokes (RANS) simulations in ANSYS CFX is validated against the experimental method, showing generally good agreement and, thus, qualifying for future heat transfer predictions. Experimental and numerical data clearly demonstrate the substantial impact of the angle of attack on the local heat transfer structure, especially for the radially outward flow of the first passage, owing to the particular Coriolis force direction at each angle of attack. Furthermore, results underscore the strong influence of the rotational speed on the overall heat transfer level, with an enhancement effect for the radially outward flow (first passage) and a reduction effect for the radially inward flow (second passage). Full article
Show Figures

Figure 1

46 pages, 501 KB  
Article
Algorithms for Various Trigonometric Power Sums
by Victor Kowalenko
Algorithms 2024, 17(8), 373; https://doi.org/10.3390/a17080373 - 22 Aug 2024
Cited by 1 | Viewed by 1803
Abstract
In this paper, algorithms for different types of trigonometric power sums are developed and presented. Although interesting in their own right, these trigonometric power sums arise during the creation of an algorithm for the four types of twisted trigonometric power sums defined in [...] Read more.
In this paper, algorithms for different types of trigonometric power sums are developed and presented. Although interesting in their own right, these trigonometric power sums arise during the creation of an algorithm for the four types of twisted trigonometric power sums defined in the introduction. The primary aim in evaluating these sums is to obtain exact results in a rational form, as opposed to standard or direct evaluation, which often results in machine-dependent decimal values that can be affected by round-off errors. Moreover, since the variable, m, appearing in the denominators of the arguments of the trigonometric functions in these sums, can remain algebraic in the algorithms/codes, one can also obtain polynomial solutions in powers of m and the variable r that appears in the cosine factor accompanying the trigonometric power. The degrees of these polynomials are found to be dependent upon v, the value of the trigonometric power in the sum, which must always be specified. Full article
(This article belongs to the Special Issue Numerical Optimization and Algorithms: 2nd Edition)
20 pages, 4793 KB  
Article
A Comprehensive Study on the Optimization of Drilling Performance in Hybrid Nano-Composites and Neat CFRP Composites Using Statistical and Machine Learning Approaches
by Tanzila Nargis, S. M. Shahabaz, Subash Acharya, Nagaraja Shetty, Rashmi Laxmikant Malghan and S. Divakara Shetty
J. Manuf. Mater. Process. 2024, 8(2), 67; https://doi.org/10.3390/jmmp8020067 - 29 Mar 2024
Cited by 8 | Viewed by 3188
Abstract
Carbon fiber-reinforced polymer (CFRP) composites have gradually replaced metals due to their exceptional strength-to-weight ratio compared to metallic materials. However, the drilling process often reveals various defects, such as surface roughness, influenced by different drilling parameters. This study explores the drilling quality of [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites have gradually replaced metals due to their exceptional strength-to-weight ratio compared to metallic materials. However, the drilling process often reveals various defects, such as surface roughness, influenced by different drilling parameters. This study explores the drilling quality of uni-directional CFRP composites, as well as hybrid Al2O3 alumina and hybrid SiC silicon carbide nano-composites, through experimental exploration using step, core, and twist drills. Response surface methodology (RSM) and statistical tools, including main effect plots, ANOVA, contour plots, and optimization techniques, were used to analyze the surface roughness of the hole. Optimization plots were drawn for optimal conditions, suggesting a spindle speed of 1500 rpm, feed of 0.01 mm/rev, and a 4 mm drill diameter for achieving minimum surface roughness. Furthermore, two machine learning models, artificial neural network (ANN) and random forest (RF), were used for predictive analysis. The findings revealed the robust predictive capabilities of both models, with RF demonstrating superior performance over ANN and RSM. Through visual comparisons and error analyses, more insights were gained into model accuracy and potential avenues for improvement. Full article
(This article belongs to the Topic Advanced Composites Manufacturing and Plastics Processing)
Show Figures

Figure 1

17 pages, 22277 KB  
Article
A Whole W-Band Multi-Polarization Horn Antenna Based on Boifot-Type OMT
by Yun Zhao, Bo Zhu, Jiangqiao Ding and Sheng Li
Micromachines 2024, 15(3), 385; https://doi.org/10.3390/mi15030385 - 13 Mar 2024
Cited by 3 | Viewed by 2129
Abstract
A wideband multi-polarized square-horn antenna based on an orthogonal mode transducer (OMT) is developed for working in the whole W-band in this paper. The designed antenna is capable of radiating multiple polarization modes as horizontal polarization (HP) and vertical polarization (VP) when as [...] Read more.
A wideband multi-polarized square-horn antenna based on an orthogonal mode transducer (OMT) is developed for working in the whole W-band in this paper. The designed antenna is capable of radiating multiple polarization modes as horizontal polarization (HP) and vertical polarization (VP) when as single-port excitation and left-handed circular polarization (LHCP) and right-handed circular polarization (RHCP) when as dual-port excitation, owing to the characteristic of the OMT with the transmitting of orthogonally polarized waves. A CNC-layered fabrication approach is proposed, which means that the antenna prototype integrating with a Boifot-type OMT, turning waveguide, twisting waveguide and phase shifter is divided into three layers along the vertical direction to be fabricated based on computerized numerical control (CNC) technology. In the design, the turning waveguide and twisting waveguide are employed to achieve plane consistency of the antenna branch ports. Furthermore, a phase shifter is designed to compensate the orthogonally polarized waves, which can keep the phase of the orthogonally polarized waves consistent in a wideband frequency range from 75 GHz to 110 GHz. A prototype is fabricated and measured to verify the performance of the proposed multi-polarization antenna, and the measured results agree well with the simulation ones. In the whole W-band, the value of return loss is better than 10 dB of all polarization modes, and the value of AR of the LHCP and RHCP is below 3.5 dB. The maximum gain of the antenna reaches up to 18.8 dBi at 110 GHz. In addition, regarding the layered structure, the possible layered assembly error analysis is discussed, which verifies the feasibility of the layered machining for this antenna. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

18 pages, 6089 KB  
Article
Workpiece Placement Optimization for Robot Machining Based on the Evaluation of Feasible Kinematic Directional Capabilities
by Saša Stradovnik and Aleš Hace
Appl. Sci. 2024, 14(4), 1531; https://doi.org/10.3390/app14041531 - 14 Feb 2024
Cited by 6 | Viewed by 2531
Abstract
Workpiece placement plays a crucial role when performing complex surface machining task robotically. If the feasibility of a robotic task needs to be guaranteed, the maximum available capabilities should be higher than the joint capabilities required for task execution. This can be challenging, [...] Read more.
Workpiece placement plays a crucial role when performing complex surface machining task robotically. If the feasibility of a robotic task needs to be guaranteed, the maximum available capabilities should be higher than the joint capabilities required for task execution. This can be challenging, especially when performing a complex surface machining task with a collaborative robot, which tend to have lower motion capabilities than conventional industrial robots. Therefore, the kinematic and dynamic capabilities within the robot workspace should be evaluated prior to task execution and optimized considering specific task requirements. In order to estimate maximum directional kinematic capabilities considering the requirements of the surface machining task in a physically consistent and accurate way, the Decomposed Twist Feasibility (DTF) method will be used in this paper. Estimation of the total kinematic performance capabilities can be determined accurately and simply using this method, adjusted specifically for robotic surface machining purposes. In this study, we present the numerical results that prove the effectiveness of the DTF method in identifying the optimal placement of predetermined machining tasks within the robot’s workspace that requires lowest possible joint velocities for task execution. These findings highlight the practicality of the DTF method in enhancing the feasibility of complex robotic surface machining operations. Full article
(This article belongs to the Topic Robotic Intelligent Machining System)
Show Figures

Figure 1

17 pages, 7456 KB  
Article
An Innovative H-Type Flux Switching Permanent Magnet Linear Generator for Thrust Force Enhancement
by Ehsan Farmahini Farahani, Nick J. Baker and Farshid Mahmouditabar
Energies 2023, 16(16), 5976; https://doi.org/10.3390/en16165976 - 14 Aug 2023
Cited by 21 | Viewed by 3296
Abstract
In this paper, two H-type flux switching permanent magnet linear generators with outer-translator and inner-translator configurations are discussed and compared to a more conventional flux switching topology. The stators consist of H-Type modules housing circumferential coils and are surrounded by two annular permanent [...] Read more.
In this paper, two H-type flux switching permanent magnet linear generators with outer-translator and inner-translator configurations are discussed and compared to a more conventional flux switching topology. The stators consist of H-Type modules housing circumferential coils and are surrounded by two annular permanent magnets. In conventional flux switching machines, the windings are orientated perpendicular to the direction of motion and the conductors twist around the magnets. In H-type topologies, the orientation of the windings is in the same plain as the magnets and parallel to the direction of motion, resulting in an increase in flux linkage. The proposed topologies are designed for a low operating speed and a large magnetic gap, as found in wave energy converters. All topologies are optimized using the Taguchi optimization approach with the goals of reducing force ripple and increasing the average thrust force and efficiency. The 2D finite element method (FEM) is used in the optimization stage to calculate the optimized parameters of the presented generators, after which the optimized structures are simulated using 3D FEM, and the results are extracted. The results of the optimization show that the H-type topologies deliver a 20% higher shear stress whilst offering an easier to assemble structure. Full article
(This article belongs to the Topic Future Generation Electric Machines and Drives)
Show Figures

Figure 1

14 pages, 4227 KB  
Article
Analyzing the Potential of Drill Bits 3D Printed Using the Direct Metal Laser Melting (DMLM) Technology to Drill Holes in Polyamide 6 (PA6)
by Lukasz Nowakowski, Michal Skrzyniarz, Slawomir Blasiak, Jaroslaw Rolek, Dimka Vasileva and Tanya Avramova
Materials 2023, 16(8), 3035; https://doi.org/10.3390/ma16083035 - 12 Apr 2023
Cited by 4 | Viewed by 2638
Abstract
Drilling with standard twist drill bits is the most common method to create cylindrical holes. With the constant development of additive manufacturing technologies and easier access to additive manufacturing equipment, it is now possible to design and fabricate solid tools suitable for various [...] Read more.
Drilling with standard twist drill bits is the most common method to create cylindrical holes. With the constant development of additive manufacturing technologies and easier access to additive manufacturing equipment, it is now possible to design and fabricate solid tools suitable for various machining applications. Specially designed 3D printed drill bits seem more convenient for standard and nonstandard drilling operations than conventionally made tools. The study described in this article aimed to analyze the performance of a solid twist drill bit made from steel 1.2709 using direct metal laser melting (DMLM), which was compared with that of a drill bit manufactured conventionally. The experiments involved assessing the dimensional and geometric accuracy of the holes made by the two types of drill bits and comparing the forces and torques occurring during the drilling of holes in cast polyamide 6 (PA6). Full article
Show Figures

Figure 1

13 pages, 2379 KB  
Article
Wearable and Washable MnO2−Zn Battery Packaged by Vacuum Sealing
by Jun Ho Noh, Myoungeun Oh, Sunjin Kang, Hyeong Seok Lee, Yeong Jun Hong, Chaeyeon Park, Raeyun Lee and Changsoon Choi
Nanomaterials 2023, 13(2), 265; https://doi.org/10.3390/nano13020265 - 7 Jan 2023
Cited by 5 | Viewed by 3645
Abstract
Batteries are used in all types of electronic devices from conventional to advanced devices. Currently, batteries are evolving in the direction of extremely personalized yarn− or textile−structured textronic systems. However, the absence of a protective layer on such batteries is a critical limitation [...] Read more.
Batteries are used in all types of electronic devices from conventional to advanced devices. Currently, batteries are evolving in the direction of extremely personalized yarn− or textile−structured textronic systems. However, the absence of a protective layer on such batteries is a critical limitation to their practical use. In this study, we developed a wearable and washable MnO2−Zn textile battery that maintains its electrochemical capacity under various external environmental conditions through a vacuum−sealed packaging. The packaged textile battery was fabricated by vacuuming a polymer envelope containing the battery, followed by heat sealing with a vacuum packaging machine. The interior and exterior regions of the textile battery are completely separated by the packaging sheath to preclude leakage and intrusion of substances. The resulting packaged textile battery exhibits stable capacity retention performance under varying temperature and humidity; mechanical deformations due to bending, twisting, rubbing, and pressing; and several mechanical, chemical, and their combined washing cycles. On the basis of these demonstrations, we expect that our vacuum−packaged textile battery will offer new possibilities for practical and convenient use of textronics. Full article
Show Figures

Figure 1

18 pages, 16024 KB  
Article
Elastic–Plastic Material Deformation and Conveying Value of Twist-Free Turned Surfaces
by Richard Börner, Thomas Junge, Thirumanikandan Subramanian, Stefan Thielen, Oliver Koch and Andreas Schubert
Surfaces 2022, 5(3), 395-412; https://doi.org/10.3390/surfaces5030029 - 11 Sep 2022
Viewed by 3170
Abstract
Counter-surfaces for radial shaft seals are usually finished by infeed grinding to avoid macro twist structures on the surface since they can impose a conveying action on the lubricant. This can lead to either leakage or starved lubrication and subsequent thermal damage depending [...] Read more.
Counter-surfaces for radial shaft seals are usually finished by infeed grinding to avoid macro twist structures on the surface since they can impose a conveying action on the lubricant. This can lead to either leakage or starved lubrication and subsequent thermal damage depending on the direction of said conveying action. Turning processes can offer a more cost-effective surface finish, but conventional methods cause twist structures, which can impair the leakage prevention of the sealing system. An approach for the production of twist-free surfaces was developed based on new kinematics for turning. However, the surfaces produced with this approach using case hardened specimens made from the steel 16MnCr5 show deviating structural characteristics compared to the kinematic simulation. The causes of this and the resulting influence on the conveying value are the subjects of the research work. For this purpose, in addition to hardened steel, two other materials are considered: the steel 16MnCr5 in the unhardened hot rolled delivery condition and brass as a material with good machinability. The results clearly show that there is a deviation in the machining behavior of the steel materials compared to the kinematic surface simulations, especially in the repeatedly turned areas. This is mainly due to elastic–plastic deformation effects. Despite the actually twist-free surface profile, certain characteristics result in an anisotropic structure, which partially has an influence on the conveying value. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

12 pages, 2433 KB  
Article
Analysis of the Twisting Tension in the Direct-Twisting Machine and the Fitting Model Based on the Experimental Data
by Shunqi Mei, Mengying Zhang, Di Qi, Liye Yang, Qiao Xu and Ming Zhang
Appl. Sci. 2022, 12(9), 4298; https://doi.org/10.3390/app12094298 - 24 Apr 2022
Cited by 3 | Viewed by 3688
Abstract
The tension of the balloon yarn in the direct-twisting machine affects the yarn breakage and balloon shape, which in turn affects the energy consumption and yarn productivity of the direct-twisting machine. At present, research on the balloon tension of an industrial yarn direct-twisting [...] Read more.
The tension of the balloon yarn in the direct-twisting machine affects the yarn breakage and balloon shape, which in turn affects the energy consumption and yarn productivity of the direct-twisting machine. At present, research on the balloon tension of an industrial yarn direct-twisting machine is very rare, both in China and abroad. In this regard, this paper establishes a theoretical model for balloon yarn tension during the yarn twisting process of an industrial yarn direct-twisting machine based on yarn balloon kinematics. The experiment of the yarn balloon tension of the direct-twisting machine under different yarn fineness and different spindle angular speed is carried out. The influence of the angular speed of the spindle, the yarn fineness, and other factors on the tension of the balloon yarn in the direct-twisting machine is investigated. By using mathematical statistics and regression analysis methods, the fitting equations of the yarn balloon tension of the direct-twisting machine are established. The research results show that the relationship between the balloon yarn tension of the direct-twisting machine, the angular velocity of the spindle, and the yarn fineness can be fitted by a quadratic polynomial. The predicted value of balloon yarn tension based on the fitted equation has a small relative error compared to the measured value, and the prediction result is more reliable and accurate. This paper contributes specifically by adding to the understanding of how to model the yarn tension for the specific machine and the range of the test. It also contributes to the generical methodology on how to develop such a model. Full article
(This article belongs to the Special Issue Selected Papers from MMSE 2021)
Show Figures

Figure 1

23 pages, 3761 KB  
Article
Real-Time Fault Diagnosis and Fault-Tolerant Control Strategy for Hall Sensors in Permanent Magnet Brushless DC Motor Drives
by Xi Zhang, Yiyun Zhao, Hui Lin, Saleem Riaz and Hassan Elahi
Electronics 2021, 10(11), 1268; https://doi.org/10.3390/electronics10111268 - 25 May 2021
Cited by 19 | Viewed by 4977
Abstract
The Hall sensor is the most commonly used position sensor of the permanent magnet brushless direct current (PMBLDC) motor. Its failure may lead to a decrease in system reliability. Hence, this article proposes a novel methodology for the Hall sensors fault diagnosis and [...] Read more.
The Hall sensor is the most commonly used position sensor of the permanent magnet brushless direct current (PMBLDC) motor. Its failure may lead to a decrease in system reliability. Hence, this article proposes a novel methodology for the Hall sensors fault diagnosis and fault-tolerant control in PMBLDC motor drives. Initially, the Hall sensor faults are analyzed and classified into three fault types. Taking the Hall signal as the system state and the conducted MOSFETs as the system event, the extended finite state machine (EFSM) of the motor in operation is established. Meanwhile, a motor speed observer based on the super twisting algorithm (STA) is designed to obtain the speed signal of the proposed strategy. On this basis, a real-time Hall sensor fault diagnosis strategy is established by combining the EFSM and the STA speed observer. Moreover, this article proposes a Hall signal reconstruction strategy, which can generate compensated Hall signal to realize fault-tolerant control under single or double Hall sensor faults. Finally, theoretical analysis and experimental results validate the superior effectiveness of the proposed real-time fault diagnosis and fault-tolerant control strategy. Full article
Show Figures

Figure 1

Back to TopTop