Real-Time Fault Diagnosis and Fault-Tolerant Control Strategy for Hall Sensors in Permanent Magnet Brushless DC Motor Drives
Abstract
:1. Introduction
2. Ideal Hall Signal and Hall Sensor Fault Types
3. Realization of Control Strategy
3.1. Finite State Machine and Definition of Signals
3.2. Proposed RFD Method and Fault Analysis
3.3. Signal Reconstruction and Fault-Tolerant Control
4. Experimental Verification
4.1. Experimental Platform
4.2. STA Observer Experimental Results
4.3. Fault Diagnosis Experimental Results
4.4. Fault-Tolerant Control Experimental Results
4.4.1. Fault-Tolerant Control at Load Constant
4.4.2. Fault-Tolerant Control at Load Variation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Notation | Physical significance |
Hall signals of the Hall Sensors A, B and C | |
Edge signals of the Hall signals | |
Fault states of the Hall Sensors A, B and C | |
System states of the FSM | |
System events of the FSM | |
Variable constraint of the FSM | |
Time constraint of the FSM | |
Motor speed | |
Inertia moment | |
Viscous damping coefficient | |
Electromagnetic torque | |
Load torque | |
Armature current | |
Stator inductance | |
Stator resistance | |
Back electromotive force | |
Armature voltage | |
Torque constant | |
Back electromotive force constant | |
Estimated current | |
Estimated current error | |
Coefficient of the STA observer | |
Disturbance terms | |
Estimated speed | |
Residual value | |
Error threshold | |
Virtual reference speed |
References
- Park, Y.; Fernandez, D.; Lee, S.B.; Hyun, D.; Jeong, M.; Kommuri, S.K.; Cho, C.; Reigosa, D.; Briz, F. On-line detection of rotor eccentricity for PMSMs based on hall-effect field sensor measurements. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 4678–4685. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Lin, H.; Li, B.Q. Sliding-Mode Clamping Force Control of Electromechanical Brake System Based on Enhanced Reaching Law. IEEE Access 2021, 9, 19506–19515. [Google Scholar] [CrossRef]
- Kommuri, S.K.; Rath, J.J.; Veluvolu, K.C.; Defoort, M.; Soh, Y.C. Decoupled current control and sensor fault detection with second-order sliding mode for induction motor. IET Contr. Theory Appl. 2015, 9, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Griffo, A.; Wrobel, R.; Mellor, P.; Holliday, D.; Sangha, P.; Dinu, A.; Holme, M. The effect of magnetic saturation on sensorless control of a brushless permanent magnet motor under AC and DC excitation. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 1582–1589. [Google Scholar] [CrossRef]
- Shen, J.X.; Zhu, Z.Q.; Howe, D. Practical Issues in Sensorless Control of PM Brushless Machines Using Third-Harmonic Back-EMF. In Proceedings of the CES/IEEE 5th International Power Electronics and Motion Control Conference, Shanghai, China, 14–16 August 2006; pp. 1–5. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Deng, Z.Q.; Wang, X.L.; Ling, X.; Cao, X. Position Sensorless Control Based on Coordinate Transformation for Brushless DC Motor Drives. IEEE Trans. Power Electron. 2010, 25, 2365–2371. [Google Scholar] [CrossRef]
- Zhang, H.; Tu, Y.F.; Wang, T. Sensor-Less Control for Brushless DC Motors Based on Hybrid Sliding Mode Observer. In Proceedings of the International Conference on Intelligent Computation Technology and Automation (2014 ICICTA’07), Changsha, China, 25–26 October 2014; pp. 636–639. [Google Scholar] [CrossRef]
- Haines, G.; Ertugrul, N. Wide Speed Range Sensorless Operation of Brushless Permanent-Magnet Motor Using Flux Linkage Increment. IEEE Trans. Ind. Electron. 2016, 63, 4052–4060. [Google Scholar] [CrossRef]
- Li, H.T.; Zheng, S.Q.; Ren, H.L. Self-Correction of Commutation Point for High-Speed Sensorless BLDC Motor With Low Inductance and Nonideal Back EMF. IEEE Trans. Power Electron. 2017, 32, 642–651. [Google Scholar] [CrossRef]
- Chen, S.H.; Zhou, X.Y.; Bai, G.C.; Wang, K.; Zhu, L.Q. Adaptive Commutation Error Compensation Strategy Based on a Flux Linkage Function for Sensorless Brushless DC Motor Drives in a Wide Speed Range. IEEE Trans. Power Electron. 2018, 33, 3752–3764. [Google Scholar] [CrossRef]
- Darba, A.; De Belie, F.; Melkebeek, J.A. A Back-EMF Threshold Self-Sensing Method to Detect the Commutation Instants in BLDC Drives. IEEE Trans. Ind. Electron. 2015, 62, 6064–6075. [Google Scholar] [CrossRef]
- Lan, J.L.; Patton, R.J. A new strategy for integration of fault estimation within fault-tolerant control. Automatica 2016, 69, 48–59. [Google Scholar] [CrossRef]
- Berriri, H.; Naouar, M.W.; Slama-Belkhodja, I. Easy and Fast Sensor Fault Detection and Isolation Algorithm for Electrical Drives. IEEE Trans. Power Electron. 2012, 27, 490–499. [Google Scholar] [CrossRef]
- Akrad, A.; Hilairet, M.; Diallo, D. Design of a Fault-Tolerant Controller Based on Observers for a PMSM Drive. IEEE Trans. Ind. Electron. 2011, 58, 1416–1427. [Google Scholar] [CrossRef]
- Giulii Capponi, F.; De Donato, G.; Del Ferraro, L.; Honorati, O.; Harke, M.C.; Lorenz, R.D. AC brushless drive with low-resolution Hall-effect sensors for surface-mounted PM Machines. IEEE Trans. Ind. Electron. 2006, 42, 526–535. [Google Scholar] [CrossRef]
- Li, H.T.; Li, W.Z.; Ren, H.L. Fault-Tolerant Inverter for High-Speed Low-Inductance BLDC Drives in Aerospace Applications. IEEE Trans. Power Electron. 2017, 32, 2452–2463. [Google Scholar] [CrossRef]
- Foo, G.H.B.; Zhang, X.; Vilathgamuwa, D.M. A Sensor Fault Detection and Isolation Method in Interior Permanent-Magnet Synchronous Motor Drives Based on an Extended Kalman Filter. IEEE Trans. Ind. Electron. 2013, 60, 3485–3495. [Google Scholar] [CrossRef]
- Fang, J.C.; Li, W.Z.; Li, H.T.; Xu, X.B. Online Inverter Fault Diagnosis of Buck-Converter BLDC Motor Combinations. IEEE Trans. Power Electron. 2015, 30, 2674–2688. [Google Scholar] [CrossRef]
- Eissa, M.A.; Ahmed, M.S.; Darwish, R.R.; Bassiuny, A.M. Improved fuzzy Luenberger observer-based fault detection for BLDC motor. In Proceedings of the International Conference on Computer Engineering & Systems (2015 ICCESS’10), Cairo, Egypt, 23–24 December 2015; pp. 167–174. [Google Scholar] [CrossRef]
- Selmi, T.; Baitie, H.E.; Masmoudi, A. An approach to diagnose and remediate failures of Hall Effect sensors in BLDC motors. In Proceedings of the 2015 International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), Kuwait City, Kuwait, 23–25 November 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Tashakori, A.; Ektesabi, M. A simple fault tolerant control system for Hall Effect sensors failure of BLDC motor. In Proceedings of the IEEE Conference on Industrial Electronics and Applications (2013 ICIEA’08), Melbourne, VIC, Australia, 19–21 June 2013; pp. 1011–1016. [Google Scholar] [CrossRef]
- Sova, V.; Chalupa, J.; Grepl, R. Fault tolerant BLDC motor control for hall sensors failure. In Proceedings of the International Conference on Automation and Computing, (2015, ICAC’21), Glasgow, UK, 11–12 September 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Choi, C.; Lee, K.; Lee, W. Observer-Based Phase-Shift Fault Detection Using Adaptive Threshold for Rotor Position Sensor of Permanent-Magnet Synchronous Machine Drives in Electromechanical Brake. IEEE Trans. Ind. Electron. 2015, 62, 1964–1974. [Google Scholar] [CrossRef]
- Song, Z.; Li, J.; Ouyang, M.; Gu, J.; Feng, X.; Lu, D. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM. Chin. J. Mech. Eng. 2013, 26, 813–822. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, W.X.; Yang, J.F. Fault diagnosis of low-cost hall-effect sensors used in controlling permanent magnet synchronous motor. In Proceedings of the International Conference on Electrical Machines and Systems (2016 ICEMS’19), Chiba, Japan, 13–16 November 2016; pp. 1–5. [Google Scholar]
- Mehta, H.; Thakar, U.; Joshi, V.; Rathod, K.; Kurulkar, P. Hall sensor fault detection and fault tolerant control of PMSM drive system. In Proceedings of the International Conference on Industrial Instrumentation and Control (ICIC), Pune, India, 28–30 May 2015; pp. 624–629. [Google Scholar] [CrossRef]
- Scelba, G.; De Donato, G.; Scarcella, G.; Giulii Capponi, F.; Bonaccorso, F. Fault-Tolerant Rotor Position and Velocity Estimation Using Binary Hall-Effect Sensors for Low-Cost Vector Control Drives. IEEE Trans. Ind. Appl. 2014, 50, 3403–3413. [Google Scholar] [CrossRef]
- Scelba, G.; De Donato, G.; Pulvirenti, M.; Giulii Capponi, F.; Scarcella, G. Hall-Effect Sensor Fault Detection, Identification, and Compensation in Brushless DC Drives. IEEE Trans. Ind. Appl. 2016, 52, 1542–1554. [Google Scholar] [CrossRef]
- Dong, L.H.; Jatskevich, J.; Huang, Y.W.; Chapariha, M.; Liu, J.L. Fault Diagnosis and Signal Reconstruction of Hall Sensors in Brushless Permanent Magnet Motor Drives. IEEE Trans. Energy Convers. 2016, 31, 118–131. [Google Scholar] [CrossRef]
- Dong, L.H.; Huang, Y.W.; Jatskevich, J.; Liu, J.L. Improved Fault-Tolerant Control for Brushless Permanent Magnet Motor Drives With Defective Hall Sensors. IEEE Trans. Energy Convers. 2016, 31, 789–799. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, M. Fast Fault Diagnosis Method for Hall Sensors in Brushless DC Motor Drives. IEEE Trans. Power Electron. 2019, 34, 2585–2596. [Google Scholar] [CrossRef]
- Lu, H.X.; Li, J.; Qu, R.H.; Ye, D.L.; Lu, Y.; Zhang, R. Post-fault model predictive control of asymmetrical six-phase permanent magnet machine with improved mathematical model. In Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 21–24 May 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Lee, S.T.; Hur, J. Detection Technique for Stator Inter-Turn Faults in BLDC Motors Based on Third-Harmonic Components of Line Currents. IEEE Trans. Ind. Appl. 2017, 53, 143–150. [Google Scholar] [CrossRef]
- Jezernik, K.; Horvat, R.; Harnik, J. Finite-State Machine Motion Controller: Servo Drives. IEEE Ind. Electron. Mag. 2012, 6, 13–23. [Google Scholar] [CrossRef]
- El-Maleh, A.H. Finite state machine-based fault tolerance technique with enhanced area and power of synthesised sequential circuits. IET Comput. Digit. Tech. 2017, 11, 159–164. [Google Scholar] [CrossRef]
- He, S.Y.; Huang, L.S.; Gao, G.; Wang, G.H.; Wang, Z.J.; Chen, X.J. Design of Real-Time Control in Poloidal Field Power Supply Based on Finite-State Machine. IEEE Trans. Plasma Sci. 2019, 47, 1878–1883. [Google Scholar] [CrossRef]
- Garcia-Vargas, I.; Senhadji-Navarro, R. Finite State Machines With Input Multiplexing: A Performance Study. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 867–871. [Google Scholar] [CrossRef]
- Yin, Y.F.; Liu, B.; Ni, H.Y. Real-time embedded software testing method based on extended finite state machine. J. Syst. Eng. Electron. 2012, 23, 276–285. [Google Scholar] [CrossRef]
- Hierons, R. Controllable Testing from Nondeterministic Finite State Machines with Multiple Ports. IEEE Trans. Comput. 2011, 60, 1818–1822. [Google Scholar] [CrossRef] [Green Version]
- Kommuri, S.K.; Rath, J.J.; Veluvolu, K.C. Sliding-Mode-Based Observer–Controller Structure for Fault-Resilient Control in DC Servomotors. IEEE Trans. Ind. Electron. 2018, 65, 918–929. [Google Scholar] [CrossRef]
- Moreno, J.A.; Osorio, M. Strict Lyapunov Functions for the Super-Twisting Algorithm. IEEE Trans. Autom. Control 2012, 57, 1035–1040. [Google Scholar] [CrossRef]
Fault Types | Fault States | Faulty Sensor (s) |
---|---|---|
Normal Operation | Fa = 0, Fb = 0, Fc = 0 | None |
Single Fault | Fa = 1, Fb = 0, Fc = 0 | A |
Fa = 0, Fb = 1, Fc = 0 | B | |
Fa = 0, Fb = 0, Fc = 1 | C | |
Double Fault | Fa = 1, Fb = 1, Fc = 0 | A, B |
Fa = 1, Fb = 0, Fc = 1 | A, C | |
Fa = 0, Fb = 1, Fc = 1 | B, C |
System State | Sector | Ha Hb Hc |
---|---|---|
S1 | H1 = 100 | |
S2 | H2 = 110 | |
S3 | H3 = 010 | |
S4 | H4 = 001 | |
S5 | H5 = 001 | |
S6 | H6 = 101 | |
S7 | None | H7 = 111 |
S8 | None | H8 = 000 |
System Event | Conducted MOSFETs |
---|---|
C1 | Q1/Q4 |
C2 | Q1/Q6 |
C3 | Q3/Q2 |
C4 | Q3/Q6 |
C5 | Q5/Q2 |
C6 | Q5/Q4 |
Variable Constraint | Edge Signal | Variable Constraint | Edge Signal |
---|---|---|---|
X1→2 | Eb = 1 | X1→6 | Ec = 1 |
X2→3 | Ea = −1 | X2→1 | Eb = −1 |
X3→4 | Ec = 1 | X3→2 | Ea = 1 |
X4→5 | Eb = −1 | X4→3 | Ec = −1 |
X5→6 | Ea = 1 | X5→4 | Eb = 1 |
X6→1 | Ec = −1 | X6→5 | Ea = −1 |
Rated Power | Rated Speed | Rated Torque | Rated Voltage |
---|---|---|---|
35 W | 1500 rpm | 24 V |
M1 | M2 | Performance | |||
---|---|---|---|---|---|
Fault Sector and Fault Time | 335.0 ms | 335.0 ms | 336.0 ms | M1 Faster | |
362.0 ms | 362.0 ms | 368.7 ms | M1 Faster | ||
372.0 ms | 375.2 ms | 376.5 ms | M1 Faster |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhao, Y.; Lin, H.; Riaz, S.; Elahi, H. Real-Time Fault Diagnosis and Fault-Tolerant Control Strategy for Hall Sensors in Permanent Magnet Brushless DC Motor Drives. Electronics 2021, 10, 1268. https://doi.org/10.3390/electronics10111268
Zhang X, Zhao Y, Lin H, Riaz S, Elahi H. Real-Time Fault Diagnosis and Fault-Tolerant Control Strategy for Hall Sensors in Permanent Magnet Brushless DC Motor Drives. Electronics. 2021; 10(11):1268. https://doi.org/10.3390/electronics10111268
Chicago/Turabian StyleZhang, Xi, Yiyun Zhao, Hui Lin, Saleem Riaz, and Hassan Elahi. 2021. "Real-Time Fault Diagnosis and Fault-Tolerant Control Strategy for Hall Sensors in Permanent Magnet Brushless DC Motor Drives" Electronics 10, no. 11: 1268. https://doi.org/10.3390/electronics10111268
APA StyleZhang, X., Zhao, Y., Lin, H., Riaz, S., & Elahi, H. (2021). Real-Time Fault Diagnosis and Fault-Tolerant Control Strategy for Hall Sensors in Permanent Magnet Brushless DC Motor Drives. Electronics, 10(11), 1268. https://doi.org/10.3390/electronics10111268