Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = direct tensile bond strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5743 KiB  
Article
Effect of Grain Boundary Characteristics on Mechanical Properties and Irradiation Response in 3C-SiC: A Molecular Dynamics Simulation Study
by Wenying Liu, Fugen Deng, Jiajie Yu, Lin Chen, Yuyang Zhou, Yulu Zhou and Yifang Ouyang
Materials 2025, 18(15), 3545; https://doi.org/10.3390/ma18153545 - 29 Jul 2025
Viewed by 234
Abstract
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. [...] Read more.
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. The GB energy is positively and linearly correlated with the excess volume, but the linearity in SiC is not as good as in metals, which stems from the inhomogeneous structural relaxation near GBs induced by orientation-sensitive covalent bonding. For <110>STGBs, the shear strength exhibits symmetry with respect to the misorientation angle of 90°, which is consistent with ab initio calculations for Al in similar shear orientations. Cascades are performed with 8 keV silicon as the primary knock-on atom (PKA). No direct correlation is found between the sink efficiency of GBs for defects and GB characteristics, which comes from the complexity of the diatomic system during the recovery phase. For GBs with smaller values of Σ, the GBs exhibit a weaker blocking effect on the penetration of irradiated defects, resulting in a lower number of defects in GBs and a higher number of total surviving defects. In particular, it is seen that the percentage decrease in tensile strength after irradiation is positively correlated with the Σ value. Taken together, these results help to elucidate the impact of GB behavior on the mechanical properties of as well as the primary irradiation damage in SiC and provide a reference for creating improved materials through GB engineering. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

27 pages, 15704 KiB  
Article
Study on Mechanical Properties of Composite Basalt Fiber 3D-Printed Concrete Based on 3D Meso-Structure
by Shengxuan Ding, Jiren Li and Mingqiang Wang
Materials 2025, 18(14), 3379; https://doi.org/10.3390/ma18143379 - 18 Jul 2025
Viewed by 441
Abstract
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A [...] Read more.
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A total of 30 cube specimens (50 mm × 50 mm × 50 mm)—comprising three types (Corner, Stripe, and R-a-p)—were fabricated and tested under compressive and splitting tensile loading along three orthogonal directions using a 2000 kN electro-hydraulic testing machine. The results indicate that 3D-printed concrete exhibits significantly lower strength than cast-in-place concrete, which is attributed to weak interfacial bonds and interlayer pores. Notably, the R-a-p specimen’s Z-direction compressive strength is 38.7% lower than its Y-direction counterpart. To complement the mechanical tests, DIC, CT scanning, and SEM analyses were conducted to explore crack development, internal defect morphology, and microstructure. A finite element model based on the experimental data successfully reproduced the observed failure processes. This study not only enhances our understanding of anisotropic behavior in 3D-printed concrete but also offers practical insights for print-path optimization and sustainable structural design. Full article
(This article belongs to the Special Issue 3D Printing Materials in Civil Engineering)
Show Figures

Figure 1

18 pages, 2473 KiB  
Article
Experimental Investigations on Microstructure and Mechanical Properties of L-Shaped Structure Fabricated by WAAM Process of NiTi SMA
by Vatsal Vaghasia, Rakesh Chaudhari, Sakshum Khanna, Jash Modi and Jay Vora
J. Manuf. Mater. Process. 2025, 9(7), 239; https://doi.org/10.3390/jmmp9070239 - 11 Jul 2025
Viewed by 456
Abstract
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical [...] Read more.
In the present study, an L-shaped multi-walled structure of NiTi shape memory alloy (SMA) was fabricated by using the wire arc additive manufacturing (WAAM) method on a titanium substrate. The present study aims to investigate the fabricated structure for microstructure, macrostructure, and mechanical properties. The 40 layers of L-shaped structure were successfully fabricated at optimized parameters of wire feed speed at 6 m/min, travel speed at 12 mm/s, and voltage at 20 V. The macrographs demonstrated the continuous bonding among the layers with complete fusion. The microstructure in the area between the two middle layers has exhibited a mixture of columnar grains (both coarse and fine), interspersed with dendritic colonies. The microstructure in the topmost layers has exhibited finer colonial structures in relatively greater numbers. The microhardness (MH) test has shown the average values of 283.2 ± 3.67 HV and 371.1 ± 5.81 HV at the bottom and topmost layers, respectively. A tensile test was conducted for specimens extracted from deposition and build directions, which showed consistent mechanical behavior. For the deposition direction, the average ultimate tensile strength (UTS) and elongation (EL) were obtained as 831 ± 22.91 MPa and 14.32 ± 0.55%, respectively, while the build direction has shown average UTS and EL values of 774 ± 6.56 MPa and 14.16 ± 0.21%, respectively. The elongation exceeding 10% in all samples suggests that the fabricated structure demonstrates properties comparable to those of wrought metal. Fractography of all tensile specimens has shown good ductility and toughness. Lastly, a differential scanning calorimetry test was carried out to assess the retention of shape memory effect for the fabricated structure. The authors believe that the findings of this work will be valuable for various industrial applications. Full article
Show Figures

Figure 1

35 pages, 10135 KiB  
Article
Constitutive Model for Plain and Steel-Fibre-Reinforced Lightweight Aggregate Concrete Under Direct Tension and Pull-Out
by Hasanain K. Al-Naimi and Ali A. Abbas
Fibers 2025, 13(7), 84; https://doi.org/10.3390/fib13070084 - 23 Jun 2025
Viewed by 436
Abstract
In the present study, a programme of experimental investigations was carried out to examine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash [...] Read more.
In the present study, a programme of experimental investigations was carried out to examine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash (PFA), which is a by-product of coal-fired electricity power stations. Steel fibres were used with different aspect ratios and hooked ends with single, double and triple bends corresponding to 3D, 4D and 5D types of DRAMIX steel fibres, respectively. Key parameters such as the concrete compressive strength flck, fibre volume fraction Vf, number of bends nb, embedded length LE and inclination angle ϴf were considered. The fibres were added at volume fractions Vf of 1% and 2% to cover the practical range, and a direct tensile test was carried out using a purpose-built pull-out test developed as part of the present study. Thus, the tensile mechanical properties were established, and a generic constitutive tensile stress–crack width σ-ω model for both plain and fibrous lightweight concrete was created and validated against experimental data from the present study and from previous research found in the literature (including RILEM uniaxial tests) involving different types of lightweight aggregates, concrete strengths and steel fibres. It was concluded that the higher the number of bends nb and the higher the volume fraction Vf and concrete strength flck, the stronger the fibre–matrix interfacial bond and thus the more pronounced the enhancement provided by the fibres to the uniaxial tensile residual strength and ductility in the form of work and fracture energy. A fibre optimisation study was also carried out, and design recommendations are provided. Full article
Show Figures

Figure 1

22 pages, 3432 KiB  
Article
The Formation Mechanism of Residual Stress in Friction Stir Welding Based on Thermo-Mechanical Coupled Simulation
by Tianlei Yang, Xiao Wei, Jiangfan Zhou, Hao Jiang, Xinyu Liu and Zongzhe Man
Symmetry 2025, 17(6), 917; https://doi.org/10.3390/sym17060917 - 10 Jun 2025
Viewed by 442
Abstract
Friction Stir Welding (FSW) is widely used for high-strength aluminum alloys due to its solid-state bonding, which ensures superior weld quality and service stability. However, thermo-mechanical interactions during welding can induce complex residual stress distributions, compromising joint integrity. Previous studies have primarily focused [...] Read more.
Friction Stir Welding (FSW) is widely used for high-strength aluminum alloys due to its solid-state bonding, which ensures superior weld quality and service stability. However, thermo-mechanical interactions during welding can induce complex residual stress distributions, compromising joint integrity. Previous studies have primarily focused on thermal load-driven stress evolution, often neglecting mechanical factors such as the shear force generated by the stirring pin. This study develops a three-dimensional thermo-mechanical coupled finite element model based on a moving heat source. The model incorporates axial pressure from the tool shoulder and torque-derived shear force from the stirring pin. A hybrid surface–volumetric heat source is applied to represent frictional heating, and realistic mechanical boundary conditions are introduced to reflect actual welding conditions. Simulations on AA6061-T6 aluminum alloy show that under stable welding, the peak temperature in the weld zone reaches approximately 453 °C. Residual stress analysis indicates a longitudinal tensile peak of ~170 MPa under thermal loading alone, which reduces to ~150 MPa when mechanical loads are included, forming a characteristic M-shaped distribution. Further comparison with a Coupled Eulerian–Lagrangian (CEL) model reveals stress asymmetry, with higher tensile stress on the advancing side. This is primarily attributed to the directional shear force, which promotes greater plastic deformation on the advancing side than on the retreating side. The consistency between the proposed model and CEL results confirms its validity. This study provides a reliable framework for residual stress prediction in FSW and supports process parameter optimization. Full article
(This article belongs to the Special Issue Symmetry in Impact Mechanics of Materials and Structures)
Show Figures

Figure 1

27 pages, 4956 KiB  
Review
Recent Advancements in Polypropylene Fibre-Reinforced 3D-Printed Concrete: Insights into Mix Ratios, Testing Procedures, and Material Behaviour
by Ben Hopkins, Wen Si, Mehran Khan and Ciaran McNally
J. Compos. Sci. 2025, 9(6), 292; https://doi.org/10.3390/jcs9060292 - 6 Jun 2025
Viewed by 1071
Abstract
This review presents a comprehensive analysis of polypropylene (PP) fibre incorporation in three-dimensional printed concrete (3DPC), focusing on the material behaviour in both fresh and hardened states. PP fibres play a critical role in improving rheological properties such as buildability, flowability, and extrudability. [...] Read more.
This review presents a comprehensive analysis of polypropylene (PP) fibre incorporation in three-dimensional printed concrete (3DPC), focusing on the material behaviour in both fresh and hardened states. PP fibres play a critical role in improving rheological properties such as buildability, flowability, and extrudability. While increased fibre content enhances interlayer bonding and shape retention through the fibre bridging mechanism, it also raises yield stress and viscosity, which may compromise extrudability. In the hardened state, PP fibres contribute to improvements in compressive and flexural strength up to an optimal dosage, beyond which performance may decline due to fibre clustering and reduced packing density. When aligned with the printing direction, fibres are particularly effective in mitigating shrinkage-induced cracking by redistributing internal tensile stress. However, their inclusion can lead to a slight increase in porosity and promote mechanical anisotropy. This review also discusses mix design parameters, fibre characteristics, and experimental protocols, while identifying key research gaps including the lack of standardized testing methods, limited understanding of fibre orientation effects, and insufficient exploration of hybrid fibre systems. Based on the synthesis of reported studies, optimal print quality and structural consistency have been associated with the use of 6 mm long fibres, nozzle diameters of 4 to 6 mm, and printing speeds ranging from 40 to 60 mm/s. Overall, PP fibre reinforcement shows strong potential for enhancing the structural integrity and dimensional stability of 3D-printed concrete, while emphasizing the need for further studies to optimize its use in practice. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

14 pages, 1360 KiB  
Article
Fracture Mechanics-Based Modelling of Post-Installed Adhesive FRP Composite Anchors in Structural Concrete Applications
by Amir Mofidi and Mona Rajabifard
J. Compos. Sci. 2025, 9(6), 282; https://doi.org/10.3390/jcs9060282 - 31 May 2025
Viewed by 450
Abstract
Adhesively bonded fibre-reinforced polymer (FRP) anchors have emerged as a progressive alternative to traditional steel anchors in concrete structures, owing to their superior corrosion resistance, high tensile strength, and light weight. Despite their increasing use, a robust mechanics-based bond model capable of accurately [...] Read more.
Adhesively bonded fibre-reinforced polymer (FRP) anchors have emerged as a progressive alternative to traditional steel anchors in concrete structures, owing to their superior corrosion resistance, high tensile strength, and light weight. Despite their increasing use, a robust mechanics-based bond model capable of accurately predicting the load transfer behaviour has not yet been developed. This study presents a fracture mechanics-based analytical bond model for post-installed adhesive FRP anchors embedded in concrete. The model formulation is derived from fundamental equilibrium and compatibility principles, incorporating a bilinear bond–slip law that captures both elastic and softening behaviours. A new expression for the effective bond length is also proposed. Validation of the model against a comprehensive database of direct pull-out tests reported in the literature shows excellent agreement between predicted and experimental pull-out forces (R2 = 0.980; CoV = 0.058). Future research should aim to extend the proposed model to account for confinement effects, long-term durability, the impact of adhesive type, and cyclic loading conditions. Full article
Show Figures

Figure 1

19 pages, 6524 KiB  
Article
Characterization of Oil Well Cement–Formation Sheath Bond Strength
by Musaed N. J. AlAwad and Khalid A. Fattah
Eng 2025, 6(6), 117; https://doi.org/10.3390/eng6060117 - 29 May 2025
Viewed by 1184
Abstract
The aim of this study is to develop a simple and reliable laboratory testing procedure for evaluating the bond strength of cement–formation sheaths that considers cement slurry composition and contamination as well as formation strength and formation surface conditions (roughness and contamination). Additionally, [...] Read more.
The aim of this study is to develop a simple and reliable laboratory testing procedure for evaluating the bond strength of cement–formation sheaths that considers cement slurry composition and contamination as well as formation strength and formation surface conditions (roughness and contamination). Additionally, a simple and practical empirical correlation is developed for predicting cement–rock bond strength based on the routine mechanical properties of hard-set cement and formation rock. Cement slurries composed of Yamama cement type 1 and 25% local Saudi sand, in addition to 40% fresh water, are used for all investigations in this study. Oil well cementing is a crucial and essential operation in the drilling and completion of oil and gas wells. Cement is used to protect casing strings, isolate zones for production purposes, and address various hole problems. To effectively perform the cementing process, the cement slurry must be carefully engineered to meet the specific requirements of the reservoir conditions. In oil well cementing, the cement sheath is a crucial component of the wellbore system, responsible for maintaining structural integrity and preventing leakage. Shear bond strength refers to the force required to initiate the movement of cement from the rock formation or movement of the steel casing pipe from the cement sheath. Cement–formation sheath bond strength is a critical issue in the field of petroleum engineering and well cementing. Cement plays a crucial role in sealing the annulus (the space between the casing and the formation) and ensuring the structural integrity of the well. The bond strength between the cement and the surrounding geological formation is key to preventing issues such as fluid migration, gas leaks, and wellbore instability. To achieve the study objectives, sandstone and sandstone–cement composite samples are tested using conventional standard mechanical tests, and the results are used to predict cement–formation sheath bond strength. The utilized tests include uniaxial compression, direct tensile, and indirect tensile (Brazilian) tests. The predicted cement–rock sheath bond strength is compared to the conventional laboratory direct cement–formation sheath strength test outcomes. The results obtained from this study show that the modified uniaxial compression test, when used to evaluate cement–formation shear bond strength using cement–rock composite samples, provides reliable predictions for cement–formation sheath bond strength with an average error of less than 5%. Therefore, modified uniaxial compression testing using cement–rock composite samples can be standardized as a practical laboratory method for evaluating cement–formation sheath bond strength. Alternatively, for a simpler and more reliable prediction of cement–formation sheath bond strength (with an average error of less than 5%), the empirical correlation developed in this study using the standard compressive strength value of hard-set cement and the standard compressive strength value of the formation rock can be employed separately. For the standardization of this methodology, more generalized research should be conducted using other types of oil well cement and formation rocks. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

25 pages, 16617 KiB  
Article
Interface Optimization, Microstructural Characterization, and Mechanical Performance of CuCrZr/GH4169 Multi-Material Structures Manufactured via LPBF-LDED Integrated Additive Manufacturing
by Di Wang, Jiale Lv, Zhenyu Liu, Linqing Liu, Yang Wei, Cheng Chang, Wei Zhou, Yingjie Zhang and Changjun Han
Materials 2025, 18(10), 2206; https://doi.org/10.3390/ma18102206 - 10 May 2025
Viewed by 612
Abstract
CuCrZr/GH4169 multi-material structures combine the high thermal conductivity of copper alloys with the high strength of nickel-based superalloys, making them suitable for aerospace components that require efficient heat dissipation and high strength. However, additive manufacturing of such dissimilar metals faces challenges, with each [...] Read more.
CuCrZr/GH4169 multi-material structures combine the high thermal conductivity of copper alloys with the high strength of nickel-based superalloys, making them suitable for aerospace components that require efficient heat dissipation and high strength. However, additive manufacturing of such dissimilar metals faces challenges, with each laser powder bed fusion (LPBF) and laser directed energy deposition (LDED) process having its limitations. This study employed an LPBF-LDED integrated additive manufacturing (LLIAM) approach to fabricate CuCrZr/GH4169 components. CuCrZr segments were first produced by LPBF, followed by LDED deposition of GH4169 layers using optimized laser parameters. The microstructure, composition, and mechanical properties of the fabricated components were analyzed. Results show a sound metallurgical bond at the CuCrZr/GH4169 interface with minimal porosity and cracks (typical defects at the interface), achieved by exceeding a threshold laser energy density. Elemental interdiffusion forms a 100–200 μm transition zone, with a smooth hardness gradient (97 HV0.2 to 240 HV0.2). Optimized specimens exhibit tensile failure in the CuCrZr region (234 MPa), confirming robust interfacial bonding. These findings demonstrate LLIAM’s feasibility for CuCrZr/GH4169 and underscore the importance of balancing thermal conductivity and mechanical strength in multi-material components. These findings provide guidance for manufacturing aerospace components with both high thermal conductivity and high strength. Full article
(This article belongs to the Special Issue Development and Applications of Laser-Based Additive Manufacturing)
Show Figures

Figure 1

18 pages, 5271 KiB  
Article
Advancing High-Performance Composites in Additive Manufacturing (AM) Through Pre-Impregnation and Direct Ink Writing for Scalable 3D Printing
by Yuanrui Wang, Yuchen Ding, Kai Yu and Guoying Dong
J. Compos. Sci. 2025, 9(5), 218; https://doi.org/10.3390/jcs9050218 - 29 Apr 2025
Viewed by 1030
Abstract
Additive manufacturing (AM) has the potential to revolutionize the fabrication of continuous carbon fiber-reinforced polymer composites (CCFRPCs). Among AM techniques, direct ink writing (DIW) with ultraviolet (UV) curable resin shows promise for creating CCFRPCs with high manufacturing speed, high fiber volume fraction, and [...] Read more.
Additive manufacturing (AM) has the potential to revolutionize the fabrication of continuous carbon fiber-reinforced polymer composites (CCFRPCs). Among AM techniques, direct ink writing (DIW) with ultraviolet (UV) curable resin shows promise for creating CCFRPCs with high manufacturing speed, high fiber volume fraction, and low energy consumption. However, issues such as incomplete curing and weak interfacial bonding, particularly in dense fiber bundles, limit the mechanical performance. This study addressed these challenges using pre-impregnated systems (PISs), which is a process developed to impregnate dry fiber bundles with partially cured resin before being used for DIW printing, to enhance resin-fiber adhesion and fiber–fiber bonding within fiber bundles. By optimizing resin viscosity and curing conditions in the PIS process, samples treated by PIS achieved improved mechanical properties. Tensile and bending tests revealed significant performance gains over non-PIS treated samples, with tensile stiffness increasing by at least 39% and bending stiffness by 45% in 3K fiber bundles. Tensile samples with thicker fiber bundles (6K and 12K) exhibited similar improvements. On the other hand, while all samples exhibit enhanced mechanical properties under bending deformation, the improvement of flexural stiffness and strength with thicker fiber bundles is shown to be less significant than those with 3K fiber bundles. Overall, composites made with PIS-treated fibers can enhance mechanical performance compared with those made with non-PIS-treated fibers, offering the scaling capability of printing thicker fiber bundles to reduce processing time while maintaining improved properties. It emphasizes the importance of refining the pre-processing strategies of large continuous fiber bundles in the AM process to achieve optimal mechanical properties. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites, 2nd Edition)
Show Figures

Figure 1

19 pages, 13447 KiB  
Article
Study on the Microstructure and Mechanical Properties of 7085 Aluminum Alloy Reinforced by In Situ (ZrB2 + Al2O3) Nanoparticles and Rare Earth Er
by Yuqiang Zhang, Yutao Zhao, Xizhou Kai, Jiadong Yang, Hanfei Zhu and Ying Shan
Materials 2025, 18(9), 2009; https://doi.org/10.3390/ma18092009 - 29 Apr 2025
Viewed by 573
Abstract
This study investigates the synergistic strengthening effects of in situ synthesized nano (ZrB2 + Al2O3) particles and rare earth Er microalloying on the microstructure and mechanical properties of 7085 aluminum alloy. The composite material was prepared through a [...] Read more.
This study investigates the synergistic strengthening effects of in situ synthesized nano (ZrB2 + Al2O3) particles and rare earth Er microalloying on the microstructure and mechanical properties of 7085 aluminum alloy. The composite material was prepared through a melt direct reaction combined with rolling and T6 heat treatment, with microstructural evolution characterized by metallurgical microscopy, XRD, and SEM. Results demonstrate that the addition of 3 vol.% in situ nano (ZrB2 + Al2O3) particles optimally enhances both strength and toughness, achieving a tensile strength of 635.4 MPa (16.2% increase) and elongation after fracture of 16.2% (14.9% improvement) compared to the matrix alloy. Excessive particle content (5 vol.%) leads to severe clustering and deteriorated interfacial bonding, causing performance degradation. Introducing 0.3 wt.% Er improves particle distribution uniformity and promotes Al3(Er,Zr) precipitate formation, refining grains and strengthening interfaces. This further elevates tensile strength to 654.8 MPa (19.7% increase) and elongation to 16.6% (17.7% improvement). The research reveals the synergistic optimization mechanism between particle content and Er addition, providing theoretical support for designing high-performance aluminum matrix composites. Full article
Show Figures

Figure 1

24 pages, 3557 KiB  
Article
Novel Compounds for Hair Repair: Chemical Characterization and In Vitro Analysis of Thiol Cross-Linking Agents
by Sami El Khatib, Dalal Hammoudi Halat, Sanaa Khaled, Ahmed Malki and Bassam Alameddine
Pharmaceuticals 2025, 18(5), 632; https://doi.org/10.3390/ph18050632 - 27 Apr 2025
Viewed by 1971
Abstract
Introduction: Hair damage from chemical treatments, mechanical stress, and environmental factors can lead to significant degradation in hair quality, necessitating effective solutions for restoration. The aim of this study was to develop and evaluate novel compounds for repairing hair damage through the chemical [...] Read more.
Introduction: Hair damage from chemical treatments, mechanical stress, and environmental factors can lead to significant degradation in hair quality, necessitating effective solutions for restoration. The aim of this study was to develop and evaluate novel compounds for repairing hair damage through the chemical regeneration of disulfide bridges. Materials and Methods: Three novel thiol-reactive cross-linking agents (APA, STA, SAA) were synthesized and characterized. Their efficacy in repairing hair damage was evaluated through in vitro tensile strength tests on human hair fibers, comparing treated and untreated samples. Cysteine reactivity tests were also performed to assess the capability of these agents to restore disulfide bridges in hair keratin. Results: The tensile strength tests revealed significant improvements in the mechanical properties of treated hair fibers compared to untreated samples. APA demonstrated the highest efficacy in restoring tensile strength and elasticity, showing higher performance in mechanical strengthening. The cysteine reactivity tests confirmed that APA could effectively re-establish disulfide bonds, particularly at higher temperatures. STA, while less effective than APA, showed substantial efficiency in restoring disulfide bonds. When compared to the reference agent, both APA and STA exhibited higher performance in tensile strength and cysteine reactivity, with APA showing the greatest improvement in mechanical properties. Conclusions: Our study successfully revealed the potential of the synthesized thiol-reactive cross-linking agents in repairing hair damage by chemically regenerating disulfide bridges. These findings offer a promising new direction for the development of advanced hair repair treatments in the cosmetic industry. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

17 pages, 8805 KiB  
Article
Microstructure and Mechanical Properties of Brass-Clad Copper Stranded Wires in High-Speed Solid/Liquid Continuous Composite Casting and Drawing
by Yu Lei, Xiao Liu, Yanbin Jiang, Fan Zhao, Xinhua Liu and Jianxin Xie
Metals 2025, 15(5), 482; https://doi.org/10.3390/met15050482 - 24 Apr 2025
Viewed by 478
Abstract
A solid/liquid continuous composite casting technology was developed to produce brass-clad copper stranded wire billets efficiently with continuous casting speeds ranging from 200 mm/min to 1000 mm/min. As the casting speed increased, the microstructure of the brass cladding transformed at an angle to [...] Read more.
A solid/liquid continuous composite casting technology was developed to produce brass-clad copper stranded wire billets efficiently with continuous casting speeds ranging from 200 mm/min to 1000 mm/min. As the casting speed increased, the microstructure of the brass cladding transformed at an angle to the radial direction. The wire billet prepared at a casting speed of 600 mm/min was then subjected to drawing. As the percentage reduction in area of the billet increased from 11.9 to 81.5% during the drawing process, the tensile strength improved from 336 MPa to 534 MPa, while the elongation after fracture decreased from 30.1 to 4.7%. Meanwhile, dislocation, dislocation cells, and microbands successively formed in the pure copper strand wires, while twins, shear bands, dislocation pile-ups, and secondary twins gradually formed in the brass cladding. During the drawing process, the interface between copper and brass remained metallurgically bonded, exhibiting coordinated deformation behavior. This paper clarified the evolution of microstructure and mechanical properties of brass-clad copper stranded wires in high-speed solid/liquid continuous composite casting and drawing, which could provide important reference for industrial production. Full article
Show Figures

Figure 1

13 pages, 3494 KiB  
Article
First-Principles Study on the Alloying Segregation and Ideal Fracture at Coherent B2-NiAl and BCC-Fe Interface
by Hui Chen, Yu Wang, Jianshu Zheng, Chengzhi Zhao, Qing Li, Xin Wei and Boning Zhang
Materials 2025, 18(8), 1805; https://doi.org/10.3390/ma18081805 - 15 Apr 2025
Viewed by 429
Abstract
Nano-precipitates play a vital role in the development of ultra-high strength steels (UHSSs). In recent decades, the B2-NiAl phase, which forms highly coherent interfaces with the BCC-Fe matrix, has attracted significant attention for enhancing the strength of UHSSs. However, direct experimental investigation of [...] Read more.
Nano-precipitates play a vital role in the development of ultra-high strength steels (UHSSs). In recent decades, the B2-NiAl phase, which forms highly coherent interfaces with the BCC-Fe matrix, has attracted significant attention for enhancing the strength of UHSSs. However, direct experimental investigation of alloying elements—specifically their atomic distribution and the resulting effects on the interfacial bonding strength of nano-precipitates—remains challenging. This study uses density functional theory (DFT)-based first-principles calculations to investigate the role of alloying elements in modifying interfacial characteristics. Six elements—Al, Ni, Co, Cr, Mo, and C—are introduced at various occupation sites within the coherent interface model to calculate the formation energy. The predicted preferential distribution of solid-solution atoms aligns well with experimental findings. Stable configurations of alloying segregation are selected for first-principles rigid tensile fracture tests along the <001> direction. Electronic structure analysis reveals that Co, Cr, and Mo segregation enhances interface strength due to solute-induced high charge density and the preservation of bonding characteristics of bulk phases at the interface. The results offer valuable insights and practical guidance for developing novel ultrahigh-strength structural steels strengthened by B2-NiAl. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 7683 KiB  
Article
Performance of Laser-Clad Transition Layers on H13 Steel
by Junbo Zhang, Bing Du, Fuzhen Sun, Yang Liu and Yan Li
Materials 2025, 18(7), 1418; https://doi.org/10.3390/ma18071418 - 23 Mar 2025
Viewed by 502
Abstract
This study addresses the crack formation problem when laser cladding CoCrFeNiAl high-entropy alloy onto H13 hot-work die steel, aiming to identify suitable transition layer materials. Five nickel-based alloys—Inconel 718, Inconel 625, Hastelloy X, FGH4096, and FGH4169—are selected as alternatives. Three-point bending and hot [...] Read more.
This study addresses the crack formation problem when laser cladding CoCrFeNiAl high-entropy alloy onto H13 hot-work die steel, aiming to identify suitable transition layer materials. Five nickel-based alloys—Inconel 718, Inconel 625, Hastelloy X, FGH4096, and FGH4169—are selected as alternatives. Three-point bending and hot tensile tests are conducted to assess performance under different stress directions. Test results show that the FGH4096 and FGH4169 coatings fail due to insufficient element diffusion and weak interfacial bonding. Cracks appear at the coating–substrate interface of Inconel 625 and Hastelloy X. In contrast, Inconel 718 performs best, with excellent thermal expansion matching and strong stress resistance. In the three-point bending test, the specimens with Inconel 718 transition layers did not show cracks during the loading process, while specimens with some other alloy transition layers cracked or fractured, which proves that Inconel 718 can effectively enhance the bonding force between the coating and the substrate and improve the material’s performance under bending stress. In the hot tensile test, the stress–strain curve of Inconel 718 is at a high position with a high yield strength, showing excellent resistance to plastic deformation and significantly improving the performance of the nickel-based layer under hot tensile conditions. Therefore, Inconel 718 is identified as the optimal transition layer material. Full article
Show Figures

Figure 1

Back to TopTop