Fracture Mechanics-Based Modelling of Post-Installed Adhesive FRP Composite Anchors in Structural Concrete Applications
Abstract
:1. Introduction
2. Research Significance
3. Bond Model
- Stage I, for 0 ≤ ≤
- Stage II, for < ≤
3.1. Elastic Stage (Stage I)
3.2. Softening Stage (Stage II)
4. Discussions on the Behaviour of the Proposed Bond Model
Predictions of the Proposed Model Versus Experimental Results
5. Recommendations
- The mechanics-based bond model developed in this study provides a predictive tool for estimating the pull-out capacity of FRP anchors. Practitioners and design engineers are encouraged to incorporate this model into design procedures.
- The model’s predictions highlight the critical influence of embedment length on the pull-out force. Designers should consider the calculated effective bond length to ensure adequate anchorage, especially in applications where limited embedment is feasible.
- When selecting adhesive types and concrete strengths, it is crucial to carefully consider adhesive curing conditions and environmental factors, as they significantly impact the overall bond performance and long-term durability of the anchor system.
6. Conclusions
- This article offers a mechanics-based predictive model specifically tailored to post-installed adhesive FRP anchors, filling a gap not addressed in existing design guidelines such as CSA A23.3:24 or ACI 355-19(21).
- This study proposes a new closed-form expression for predicting the pull-out force of FRP anchors based on material and geometric properties, enabling rational design beyond empirical methods and enhancing the analytical understanding of load transfer mechanisms in FRP–concrete joints.
- The model is not only validated but also formulated in a practical, design-ready format that can support the development of future FRP anchorage standards.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
a | Length of Fracture |
FRP bar’s cross-sectional area | |
Concrete block cross-sectional area | |
CoV | Coefficient of variation |
Bar diameter | |
df | Failure plane diameter |
dh | Hole diameter |
Eb | FRP bar’s Young’s modulus |
Ec | Concrete’s Young’s modulus |
FRP rod’s Young’s modulus | |
Specified compressive strength of concrete | |
Le | Effective bond length |
Lemb | Embedded length |
Lper | Length of the debonding failure plane |
Pexp | Experimental pull-out force |
Pmax | Maximum predicted pull-out force |
tf | Thickness of the concrete cover attached to the FRP bar |
FRP bar’s displacement | |
Concrete block’s displacement | |
α | Factor for calculation of Le equal to −0.6 |
β | Lper/(EbAb) |
Local slip between FRP and concrete | |
Slip value at or | |
End of the pull-out test slip value | |
Maximum slip | |
(βτmax/δ1)0.5 | |
(βτmax/(δ2 − δ1))0.5 | |
FRP bar’s normal stress | |
τmax | Maximum bond stress |
FRP bar and concrete properties coefficient |
References
- Kim, S.J.; Smith, S.T. Pullout strength models for FRP anchors in uncracked concrete. J. Compos. Constr. 2010, 14, 406–414. [Google Scholar] [CrossRef]
- Zhou, Y.; Hao, E.; Ran, Y.; Cao, H.; Li, Y.; Tan, J. Shear Performance of Vertical Joints in Wind Turbine Concrete Towers with Different Interface Processes. Buildings 2025, 15, 250. [Google Scholar] [CrossRef]
- Mofidi, A.; Mirzabagheri, S.; Doyle, A.K.K.; Chaallal, O. A novel analytical bond model for ETS FRP bars in shear rehabilitation of concrete members. Int. J. Concr. Struct. Mater. 2024, 18, 81. [Google Scholar] [CrossRef]
- Mirzabagheri, S.; Doyle, A.K.K.; Mofidi, A.; Chaallal, O. A new bond model for RC beams strengthened with embedded through-section method. In Proceedings of the 16th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures (FRPRCS-16), New Orleans, LA, USA, 23–24 March 2024; ACI SP 360. American Concrete Institute: Farmington Hills, MI, USA; pp. 141–155. [Google Scholar]
- Challal, O.; Mofidi, A.; Benmokrane, B. Bond behavior of embedded through-section GFRP bars used to strengthen RC beams in shear. J. Compos. Constr. 2014, 18, 04013052. [Google Scholar]
- Zamaliev, F.S.; Tamrazyan, A.G.; Vatin, N.I. Anchor bonds of the contact joint of steel-concrete structures. Constr. Unique Build. Struct. 2025, 115, 11504. [Google Scholar]
- Benedetty, D.; Rossi, P.; Li, Y. Flexural and shear behavior of Steel-UHPC composite beams. J. Struct. Eng. 2023, 149, 04023204. [Google Scholar] [CrossRef]
- Fang, H.; Chen, X.; Zhang, Y. Shear performance of high-strength friction-grip bolted shear connectors. Eng. Struct. 2023, 275, 115123. [Google Scholar] [CrossRef]
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-25) and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2025. [Google Scholar]
- ACI Committee 355. Qualification of Post-Installed Adhesive Anchors in Concrete (ACI 355.4-19) and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2019; reapproved 2021. [Google Scholar]
- CSA Group. CSA A23.3:24—Design of Concrete Structures; CSA Group: Toronto, ON, Canada, 2024. [Google Scholar]
- California Department of Transportation. Post-Installed Adhesive Anchors in Concrete—Structure Technical Policy 5.50; California Department of Transportation: Sacramento, CA, USA, 2020. [Google Scholar]
- International Code Council. 2024 International Building Code (IBC); International Code Council: Washington, DC, USA, 2023. [Google Scholar]
- Trautner, C.A.; Hutchinson, T.; Grosser, P.R.; Silva, J.F. Effects of detailing on the cyclic behavior of steel baseplate connections designed to promote anchor yielding. J. Struct. Eng. 2016, 142, 04015117. [Google Scholar] [CrossRef]
- Siapno, M.P.; Dela Cruz, O.G. Post-installed reinforcement with the application of adhesives: A review. IOP Conf. Ser. Earth Environ. Sci. 2025, 1450, 012005. [Google Scholar] [CrossRef]
- Liška, P.; Šlanhof, J.; Nečasová, B. Revitalization of facade cladding with the use of bonded joints. Adv. Mater. Res. 2014, 1041, 191–194. [Google Scholar] [CrossRef]
- Nelson, P.E.; Egan, B. A case study of construction challenges and solutions: Installation of exterior insulation and finish system (EIFS) to an existing residential structure. In Exterior Insulation and Finish Systems (EIFS): Performance, Progress and Innovation; ASTM Selected Technical Papers; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar] [CrossRef]
- Lee, J. Best practice specification, design and installation for post-installed anchors in safety-critical applications. In Proceedings of the Swinburne Research Conference 2024, Melbourne, Australia, 20 March 2024. [Google Scholar]
- Borosnyoi, A.; Genesio, G. Post-installed rebars for seismic applications in concrete-to-concrete connections. SESOC J. 2021, 34, 52–65. [Google Scholar]
- Peier, W.H. Model for pull-out strength of anchors in concrete. J. Struct. Eng. 1983, 109, 1536–1544. [Google Scholar] [CrossRef]
- Eligehausen, R.; Popov, E.P.; Bertero, V.V. Local bond stress-slip relationship of a deformed bar under generalized excitations. In UCB/EERC 83/23; University of California: Berkeley, CA, USA, 1983. [Google Scholar]
- Cosenza, E.; Manfredi, G.; Realfonzo, R. Behavior and modeling of bond of FRP rebars to concrete. J. Compos. Constr. 1997, 1, 40–51. [Google Scholar] [CrossRef]
- Robinson, S.E.; Said, A.M. Effect of different parameters on the tensile strength of adhesive anchors. In Proceedings of the Structures Congress 2011, Las Vegas, NV, USA, 14–16 April 2011; ASCE: Reston, VA, USA; pp. 161–170. [Google Scholar]
- Ahmed, E.A.; El-Salakawy, E.; Benmokrane, B. Tensile capacity of GFRP post-installed adhesive anchors in concrete. J. Compos. Constr. 2008, 12, 596–603. [Google Scholar] [CrossRef]
- Valerio, P.; Ibell, T.J.; Darby, A.P. Deep embedment of FRP for concrete shear strengthening. Struct. Build. 2009, 162, 311–321. [Google Scholar] [CrossRef]
- Godat, A.; L’hady, A.; Mofidi, A.; Chaallal, O. Experimental investigation of bond behavior of embedded through-section FRP bar shear-strengthening method. In Proceedings of the 26th Annual Technical Conference of the American Society for Composites and the 2nd Joint US-Canada Conference on Composites, Montreal, QC, Canada, 26–28 September 2011; pp. 1137–1144. [Google Scholar]
- Raicic, V.; Ibell, T.; Darby, A.; Evernden, M.; Orr, J. Behaviour of deep embedded FRP/steel bars. In Proceedings of the Third Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Antalya, Turkey, 7–9 September 2015. [Google Scholar]
- Caro, M.; Jemaa, Y.; Dirar, S.; Quinn, A. Bond performance of deep embedment FRP bars epoxy-bonded into concrete. Eng. Struct. 2017, 147, 448–457. [Google Scholar] [CrossRef]
- Bui, L.V.H.; Stitmannaithum, B.; Ueda, T. Simulation of concrete beams strengthened by embedded through-section steel and GFRP bars with newly developed bond model. J. Adv. Concr. Technol. 2020, 18, 364–385. [Google Scholar] [CrossRef]
- Sogut, K. Numerical investigation on DE-strengthened-RC beams without steel shear reinforcement. J. Struct. Eng. Appl. Mech. 2022, 5, 238–248. [Google Scholar] [CrossRef]
- Dutta, B.; Nayak, A.N.; Dirar, S.; Nanda, B.; Theofanous, M. Shear strengthening of continuous RC T-beams with deep embedded CFRP and steel bars: A numerical study. Structures 2023, 52, 187–204. [Google Scholar] [CrossRef]
- De Lorenzis, L.; Nanni, A. Shear strengthening of reinforced concrete beams with NSM fiber-reinforced polymer rods. ACI Struct. J. 2001, 98, 60–68. [Google Scholar]
- Mofidi, A.; Chaallal, O.; Benmokrane, B.; Neale, K.W. Innovative shear strengthening technique for RC beams using ETS FRP bars. J. Compos. Constr. 2012, 16, 224–234. [Google Scholar]
Specimen Name | Bar Type | Lemb (mm) | db (mm) | dh (mm) | Lper (mm) | (MPa) | Efrp (GPa) | Ab (mm2) | Ac (mm2) |
---|---|---|---|---|---|---|---|---|---|
C26-15d-CFRP10-1.5d | CFRP | 150 | 10.00 | 15.0 | 53.40 | 26.1 | 130 | 78.53 | 39,922 |
C25-10d-GFRP12-1.5d | GFRP | 120 | 12.00 | 18.0 | 62.82 | 24.8 | 40 | 113.08 | 9887 |
C25-10d-CFRP12-1.5d | CFRP | 120 | 12.00 | 18.0 | 62.82 | 24.8 | 130 | 113.08 | 9887 |
C25-5d-GFRP12-1.5d | GFRP | 60 | 12.00 | 18.0 | 62.82 | 24.8 | 40 | 113.08 | 9887 |
C25-5d-GFRP12-1.5d | GFRP | 60 | 12.00 | 18.0 | 62.82 | 24.8 | 40 | 113.08 | 9887 |
C25-5d-CFRP12-1.5d | CFRP | 60 | 12.00 | 18.0 | 62.82 | 24.8 | 130 | 113.08 | 9887 |
C25-5d-CFRP12-1.5d | CFRP | 60 | 12.00 | 18.0 | 62.82 | 24.8 | 130 | 113.08 | 9887 |
C46-15d-CFRP10-1.5d | CFRP | 150 | 10.00 | 15.0 | 53.40 | 45.6 | 130 | 78.53 | 7772 |
C46-10d-GFRP10-1.5d | GFRP | 100 | 10.00 | 15.0 | 53.40 | 45.6 | 40 | 78.53 | 7772 |
C46-10d-CFRP10-1.5d | CFRP | 100 | 10.00 | 15.0 | 53.40 | 45.6 | 130 | 78.53 | 7772 |
C46-5d-GFRP10-1.5d | GFRP | 50 | 10.00 | 15.0 | 53.40 | 45.6 | 40 | 78.53 | 7772 |
C46-5d-CFRP10-1.5d | CFRP | 50 | 10.00 | 15.0 | 53.40 | 45.6 | 130 | 78.53 | 7772 |
C2-1.50d-9.5S-15d | CFRP | 143 | 9.52 | 15.0 | 53.40 | 42.7 | 155 | 71.17 | 36,100 |
C2-1.50d-9.5S-5.0d | CFRP | 48 | 9.52 | 15.0 | 53.40 | 42.7 | 155 | 71.17 | 36,100 |
C2-1.50d-9.5S-10.0d | CFRP | 95 | 9.52 | 15.0 | 53.40 | 42.7 | 155 | 71.17 | 36,100 |
C2-1.50d-9.5S-20.0d | CFRP | 190 | 9.52 | 15.0 | 53.40 | 42.7 | 155 | 71.17 | 36,100 |
C60-H500-CFRP7.5-15 | CFRP | 15 | 7.50 | 9.5 | 36.12 | 60.0 | 130 | 44.17 | 22,500 |
C60-H500-CFRP7.5-30 | CFRP | 30 | 7.50 | 9.5 | 36.12 | 60.0 | 130 | 44.17 | 22,500 |
C60-H500-CFRP7.5-45 | CFRP | 45 | 7.50 | 9.5 | 36.12 | 60.0 | 130 | 44.17 | 22,500 |
C60-H500-CFRP7.5-60 | CFRP | 60 | 7.50 | 9.5 | 36.12 | 60.0 | 130 | 44.17 | 22,500 |
C60-H500-CFRP7.5-75 | CFRP | 75 | 7.50 | 9.5 | 36.12 | 60.0 | 130 | 44.17 | 22,500 |
Specimen Name | (MPa) | (mm) | (mm) | Pexp (kN) | β | λ2 | Pmax (kN) | |
---|---|---|---|---|---|---|---|---|
C26-15d-CFRP10-1.5d | 11.9 | 1.60 | 5.1 | 56.20 | 5.231 × 106 | 0.0042 | 66.8 | 0.8 |
C25-10d-GFRP12-1.5d | 8.0 | 1.90 | 5.0 | 36.30 | 1.389 × 105 | 0.0060 | 30.7 | 1.2 |
C25-10d-CFRP12-1.5d | 11.0 | 1.50 | 5.0 | 49.60 | 4.274 × 106 | 0.0037 | 34.5 | 1.4 |
C25-5d-GFRP12-1.5d | 10.1 | 1.40 | 5.0 | 22.80 | 1.389 × 105 | 0.0062 | 32.0 | 0.7 |
C25-5d-GFRP12-1.5d | 12.0 | 2.10 | 5.0 | 27.10 | 1.389 × 105 | 0.0076 | 38.9 | 0.7 |
C25-5d-CFRP12-1.5d | 14.0 | 1.00 | 5.0 | 31.60 | 4.274 × 106 | 0.0039 | 36.4 | 0.9 |
C25-5d-CFRP12-1.5d | 13.3 | 1.20 | 5.0 | 30.10 | 4.274 × 106 | 0.0039 | 36.4 | 0.8 |
C46-15d-CFRP10-1.5d | 15.9 | 2.20 | 5.0 | 74.80 | 5.231 × 106 | 0.0055 | 51.0 | 1.5 |
C46-10d-GFRP10-1.5d | 12.9 | 2.80 | 4.2 | 40.40 | 1.700 × 105 | 0.0125 | 52.6 | 0.8 |
C46-10d-CFRP10-1.5d | 13.8 | 1.20 | 2.4 | 43.50 | 5.231 × 106 | 0.0078 | 34.8 | 1.2 |
C46-5d-GFRP10-1.5d | 13.8 | 1.70 | 2.3 | 21.60 | 1.700 × 105 | 0.0198 | 45.5 | 0.5 |
C46-5d-CFRP10-1.5d | 13.4 | 1.10 | 5.0 | 21.10 | 5.231 × 106 | 0.0042 | 39.6 | 0.5 |
C2-1.50d-9.5S-15d | 22.3 | 1.05 | 5.0 | 91.20 | 4.841 × 106 | 0.0052 | 101.0 | 0.9 |
C2-1.50d-9.5S-5.0d | 29.9 | 0.80 | 5.0 | 42.80 | 4.841 × 106 | 0.0059 | 113.4 | 0.4 |
C2-1.50d-9.5S-10.0d | 22.3 | 0.90 | 5.0 | 63.40 | 4.841 × 106 | 0.0051 | 99.1 | 0.6 |
C2-1.50d-9.5S-20.0d | 18.1 | 1.65 | 5.0 | 102.40 | 4.841 × 106 | 0.0051 | 98.8 | 1.0 |
C60-H500-CFRP7.5-15 | 36.0 | 0.85 | 3.9 | 12.72 | 6.291 × 106 | 0.0086 | 84.2 | 0.2 |
C60-H500-CFRP7.5-30 | 32.0 | 0.25 | 4.5 | 22.62 | 6.291 × 106 | 0.0069 | 77.6 | 0.3 |
C60-H500-CFRP7.5-45 | 28.0 | 0.70 | 4.9 | 29.69 | 6.291 × 106 | 0.0065 | 79.5 | 0.4 |
C60-H500-CFRP7.5-60 | 24.0 | 0.40 | 4.3 | 33.93 | 6.291 × 106 | 0.0062 | 67.0 | 0.5 |
C60-H500-CFRP7.5-75 | 25.0 | 0.80 | 4.2 | 44.18 | 6.291 × 106 | 0.0068 | 71.6 | 0.6 |
Specimen Name | Pexp (kN) | Pmax (kN) | |
---|---|---|---|
C26-15d-CFRP10-1.5d | 56.2 | 55.1 | 1.02 |
C25-10d-GFRP12-1.5d | 36.3 | 35.5 | 1.02 |
C25-10d-CFRP12-1.5d | 49.6 | 41.4 | 1.20 |
C25-5d-GFRP12-1.5d | 22.8 | 22.4 | 1.02 |
C25-5d-GFRP12-1.5d | 27.1 | 26.6 | 1.02 |
C25-5d-CFRP12-1.5d | 31.6 | 31.1 | 1.02 |
C25-5d-CFRP12-1.5d | 30.1 | 29.5 | 1.02 |
C46-15d-CFRP10-1.5d | 74.8 | 61.1 | 1.22 |
C46-10d-GFRP10-1.5d | 40.4 | 39.8 | 1.02 |
C46-10d-CFRP10-1.5d | 43.5 | 41.8 | 1.04 |
C46-5d-GFRP10-1.5d | 21.6 | 21.3 | 1.01 |
C46-5d-CFRP10-1.5d | 21.1 | 20.7 | 1.02 |
C2-1.50d-9.5S-15d | 91.2 | 93.6 | 0.97 |
C2-1.50d-9.5S-5.0d | 42.8 | 42.1 | 1.02 |
C2-1.50d-9.5S-10.0d | 63.4 | 62.2 | 1.02 |
C2-1.50d-9.5S-20.0d | 102.4 | 101.0 | 1.01 |
C60-H500-CFRP7.5-15 | 12.7 | 12.5 | 1.02 |
C60-H500-CFRP7.5-30 | 22.6 | 22.2 | 1.02 |
C60-H500-CFRP7.5-45 | 29.7 | 29.1 | 1.02 |
C60-H500-CFRP7.5-60 | 33.9 | 33.3 | 1.02 |
C60-H500-CFRP7.5-75 | 44.2 | 43.4 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mofidi, A.; Rajabifard, M. Fracture Mechanics-Based Modelling of Post-Installed Adhesive FRP Composite Anchors in Structural Concrete Applications. J. Compos. Sci. 2025, 9, 282. https://doi.org/10.3390/jcs9060282
Mofidi A, Rajabifard M. Fracture Mechanics-Based Modelling of Post-Installed Adhesive FRP Composite Anchors in Structural Concrete Applications. Journal of Composites Science. 2025; 9(6):282. https://doi.org/10.3390/jcs9060282
Chicago/Turabian StyleMofidi, Amir, and Mona Rajabifard. 2025. "Fracture Mechanics-Based Modelling of Post-Installed Adhesive FRP Composite Anchors in Structural Concrete Applications" Journal of Composites Science 9, no. 6: 282. https://doi.org/10.3390/jcs9060282
APA StyleMofidi, A., & Rajabifard, M. (2025). Fracture Mechanics-Based Modelling of Post-Installed Adhesive FRP Composite Anchors in Structural Concrete Applications. Journal of Composites Science, 9(6), 282. https://doi.org/10.3390/jcs9060282